Q.2 a. Consider a discrete memory less source with given data. Generate a Huffman code for the same. Also show that the minimum variance Huffman code is obtained by moving the probability of a combined symbol as high as possible.

Symbol	S ₀	S ₁	\mathbf{S}_2	S ₃	S ₄
Probability	0.4	0.2	0.2	0.1	0.1

Answer: 2.3 of Text Book.

b. Give any two properties of mutual information.

Answer: 2.5 of Text Book.

Q.3	a. Explain the following terms:	
	(i) Nyquist Rate	(ii) Aliasing error
	(iii) Quadrature sampling	(iv) Signal to Distortion Ratio

Answer:

(i) 4.1 of Text Book.	(ii) 4.4 of Text Book.
(iii) 4.2 of Text Book.	(iv) 4.4 of Text Book.

b. Explain the sample and hold circuit for signal recovery.

Answer: Page no 160-161 of Text Book.

Q.4 a. The information in an analog signal voltage waveform is to be transmitted over a PCM system with an accuracy $\pm 0.1\%$ (full scale). The analog voltage waveform has a band width of 100Hz and an amplitude range of -10 to +10 volts. Find the step size, No of quantization levels, minimum sampling frequency and number of bits in each PCM word.

Answer:

Accuracy = $\pm 0.1\%$, \therefore Quantization error must be $\pm 0.1\%$, of max Quantization error must be $\pm 0.1\%$ Thus $\varepsilon_{max} = \pm 0.1\% = \pm 0.001$ Since max Quantization error for a uniform quantizer i.e. $\varepsilon_{max} = |\Delta/2|$

so, $\Delta = 2 \times 0.001 = 0.002$ Since step size = $2 \times X_{max}/q$ Where $X_{max} = max$. amp of signal = 10V q = number of levels so, $0.002 = (2 \times 10)/q$ or q = 10,000 since q = 10,000 so to find no. of bits No. of bits $2^{b} = 10,000$ b = 14 bits max freq in signal = 100Hz $f_{m} = 100$ Hz so fs ≥ 2 fm $\geq 2 \times 100 \geq 200$ Hz

b. Explain Delta modulation.

Answer: 5.6 of Text Book.

Q.5 a. Explain the Nyquist criterion for distortionless baseband transmission in the absence of noise which provides a method for constructing bad limited function to overcome the effects of inter symbol interference.

Answer: 6.4 of Text Book.

b. What is Eye Pattern and how does it help to study inter symbol interference?

Answer: 6.6 of Text Book.

Q.6 a. Draw the block diagrams of a DPSK transmitter and receiver. State various advantages & disadvantages of this system of digital modulation format.

Answer: 7.4 of Text Book.

b. A binary ASK system for equally probable messages uses 100 $\mu sec.$ bits and channel has N_o = 1.338 \times 10⁻⁵ W/Hz. Determine the peak transmitted pulse amplitude to maintain $P_e \leq 2.055 \times 10^{-5}.$

Given if $\operatorname{erf}_{c} \sqrt{\frac{E_{b}}{2N_{0}}} \le 2 \times 2.055 \times 10^{-5}$ Then $\sqrt{\frac{E_{b}}{2N_{0}}} \le 2.9$

Answer: For ASK , $P_e = 1/2 \text{ erf}_c \sqrt{E_b/2N_o} < 2.055 \text{ X } 10^{-5}$

Or $\sqrt{E_b/2N_o} \ge 2.9$ or $E_b/N_o \ge 8.46$

 $E_b \ge 8.46 \text{ X } 2 \text{ X } 1.338 \text{ X } 10^{-5}$

 $E_b = A^2T/2$ so, $A^2T/2 \ge 8.46 \text{ X 2 X 1.338 X 10}^{-5}$

Also $T = 1/r_b = 100 \text{ X } 10^{-6} \text{ sec}$

Hence, $A^2 \ge 2 X 8.46 X 2 X 1.338 X 10^{-5}/100 X 10^{-6}$

A = 4.53 volts

AE67

Q7 a. Draw detector and vector receiver diagram and explain.

Answer: Page Number 84-86 of Text Book.

b. Explain the matched filter recovers

Answer: Page Number 86-87 of Text Book.

Q8. a. A spread spectrum communication system has the following parameters Information bit duration, $T_b = 4.095$ ms PN chip duration, $T_c = 1\mu s$. Find the processing gain, required P N sequence, feedback shift length.

If
$$\frac{E_b}{N_0} = 10$$
, find jamming margin.

Answer: 9.5 of Text Book.

b. Explain the difference between slow frequency Hopping and fast frequency Hopping.

Answer: 9.6 of Text Book.

- Q9 a. Write short notes on:
 - (i) Digital Communication by Satellite
 - (ii) Light Wave Transmission

Answer:

- (i) Page Number 354-355 of Text Book.
- (ii) Page Number 225-226 of Text Book.

Text Book

Digital Communications, Wiley Student Edition, Simon Haykin.