Q. 2 a. Consider a discrete memory less source with given data. Generate a Huffman code for the same. Also show that the minimum variance Huffman code is obtained by moving the probability of a combined symbol as high as possible.

Symbol	$\mathrm{S}_{\mathbf{0}}$	$\mathrm{S}_{\mathbf{1}}$	$\mathrm{S}_{\mathbf{2}}$	S_{3}	$\mathrm{~S}_{4}$
Probability	$\mathbf{0 . 4}$	$\mathbf{0 . 2}$	$\mathbf{0 . 2}$	$\mathbf{0 . 1}$	$\mathbf{0 . 1}$

Answer: 2.3 of Text Book.
b. Give any two properties of mutual information.

Answer: 2.5 of Text Book.
Q. 3 a. Explain the following terms:
(i) Nyquist Rate (ii) Aliasing error
(iii) Quadrature sampling
(iv) Signal to Distortion Ratio

Answer:
(i) 4.1 of Text Book.
(ii) 4.4 of Text Book.
(iii) 4.2 of Text Book.
(iv) 4.4 of Text Book.
b. Explain the sample and hold circuit for signal recovery.

Answer: Page no 160-161 of Text Book.
Q. 4 a. The information in an analog signal voltage waveform is to be transmitted over a PCM system with an accuracy $\pm \mathbf{0 . 1 \%}$ (full scale). The analog voltage waveform has a band width of 100 Hz and an amplitude range of -10 to +10 volts. Find the step size, No of quantization levels, minimum sampling frequency and number of bits in each PCM word.
Answer:
Accuracy $= \pm 0.1 \%, \therefore$ Quantization error must be $\pm 0.1 \%$, of max Quantization error must be $\pm 0.1 \%$
Thus $\epsilon_{\text {max }}= \pm 0.1 \%= \pm 0.001$
Since max Quantization error for a uniform quantizer
i.e. $G_{\max }=|\Delta / 2|$
so, $\Delta=2 \mathrm{X} 0.001=0.002$
Since step size $=2 \mathrm{X}_{\text {max }} / \mathrm{q}$
Where $X_{\text {max }}=$ max. amp of signal $=10 \mathrm{~V}$
$\mathrm{q}=$ number of levels
so, $0.002=(2 \mathrm{X} \mathrm{10}) / \mathrm{q}$
or $q=10,000$
since $q=10,000$
so to find no. of bits
No. of bits $2^{\text {b }}=10,000$
b $=14$ bits
max freq in signal $=100 \mathrm{~Hz}$
$\mathrm{f}_{\mathrm{m}}=100 \mathrm{~Hz}$
so fs $\geq 2 \mathrm{fm} \geq 2 \mathrm{X} 100 \geq 200 \mathrm{~Hz}$
b. Explain Delta modulation.

Answer: 5.6 of Text Book.
Q. 5 a. Explain the Nyquist criterion for distortionless baseband transmission in the absence of noise which provides a method for constructing bad limited function to overcome the effects of inter symbol interference.

Answer: 6.4 of Text Book.
b. What is Eye Pattern and how does it help to study inter symbol interference?

Answer: 6.6 of Text Book.
Q. 6 a. Draw the block diagrams of a DPSK transmitter and receiver. State various advantages \& disadvantages of this system of digital modulation format.

Answer: 7.4 of Text Book.
b. A binary ASK system for equally probable messages uses $100 \mu \mathrm{sec}$. bits and channel has $N_{0}=1.338 \times 10^{-5} \mathrm{~W} / \mathrm{Hz}$. Determine the peak transmitted pulse amplitude to maintain $\mathrm{P}_{\mathrm{e}} \leq 2.055 \times 10^{-5}$.
Given if erf $_{c} \sqrt{\frac{\mathrm{E}_{\mathrm{b}}}{2 \mathrm{~N}_{0}}} \leq 2 \times 2.055 \times 10^{-5} \quad$ Then $\sqrt{\frac{\mathrm{E}_{\mathrm{b}}}{2 \mathrm{~N}_{0}}} \leq 2.9$

Answer:

For ASK , $\mathrm{P}_{\mathrm{e}}=1 / 2 \operatorname{erf}_{\mathrm{c}} \sqrt{ } \mathrm{E}_{\mathrm{b}} / 2 \mathrm{~N}_{\mathrm{o}}<2.055 \times 10^{-5}$
Or $\sqrt{E_{b}} / 2 N_{o} \geq 2.9$ or $E_{b} / N_{o} \geq 8.46$
$\mathrm{E}_{\mathrm{b}} \geq 8.46 \times 2 \times 1.338 \times 10^{-5}$
$\mathrm{E}_{\mathrm{b}}=\mathrm{A}^{2} \mathrm{~T} / 2$ so, $\mathrm{A}^{2} \mathrm{~T} / 2 \geq 8.46 \times 2 \times 1.338 \times 10^{-5}$
Also $\mathrm{T}=1 / \mathrm{r}_{\mathrm{b}}=100 \times 10^{-6} \mathrm{sec}$

Hence, $\mathrm{A}^{2} \geq 2 \times 8.46 \times 2 \times 1.338 \times 10^{-5} / 100 \times 10^{-6}$
$\mathrm{A}=4.53$ volts
Q7 a. Draw detector and vector receiver diagram and explain.
Answer: Page Number 84-86 of Text Book.
b. Explain the matched filter recovers

Answer: Page Number 86-87 of Text Book.
Q8. a. A spread spectrum communication system has the following parameters
Information bit duration, $\mathrm{T}_{\mathbf{b}}=4.095 \mathrm{~ms}$
PN chip duration, $\mathrm{T}_{\mathrm{c}}=1 \mu \mathrm{~s}$.
Find the processing gain, required $\mathbf{P} \mathbf{N}$ sequence, feedback shift length.

If $\frac{\mathrm{E}_{\mathrm{b}}}{\mathrm{N}_{0}}=10$, find jamming margin.
Answer: 9.5 of Text Book.
b. Explain the difference between slow frequency Hopping and fast frequency Hopping.

Answer: 9.6 of Text Book.
Q9 a. Write short notes on:
(i) Digital Communication by Satellite
(ii) Light Wave Transmission

Answer:
(i) Page Number 354-355 of Text Book.
(ii) Page Number 225-226 of Text Book.

Text Book

Digital Communications, Wiley Student Edition, Simon Haykin.

