Q. 2 a. A circular ring of radius a carries a uniform charge $\rho_{L} \mathbf{C} / \mathbf{m}$ and is placed on the $x y$ - plane with axis the same as the z - axis. Show that

$$
\overrightarrow{\mathrm{E}}(0,0, \mathrm{~h})=\frac{\rho_{\mathrm{L}} \mathrm{ah}}{2 \in_{0}\left[\mathrm{~h}^{2}+\mathrm{a}^{2}\right]^{3 / 2}} \hat{a}_{\mathrm{z}}
$$

Answer:

Solution
Ra)

consider the system shown in Fig. we can calculate \vec{E} by

$$
\vec{E}=\int_{L} \frac{\rho_{L} d l}{4 \pi G_{0} R^{2}} a R
$$

In this case

$$
\begin{aligned}
d l & =a d \& \\
\vec{R} & =a\left(-a_{p}\right)+h a_{z} \\
R=|\vec{R}|_{\vec{R}} & =\left(a^{2}+h^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
\text { and } \quad a_{R}=\frac{\vec{R}}{R}
$$

$$
\begin{aligned}
& \frac{a_{R}}{R^{2}}=\frac{\vec{R}}{|\vec{R}|^{3}}=\frac{-a a_{p}+h a_{z}}{\left(a^{2}+h^{2}\right)^{3 / 2}} \\
& \text { so } \vec{E}=\frac{p_{L}}{4 \pi \epsilon_{0}} \int_{\&=0}^{2 \pi} \frac{\left(-a a_{p}+h a_{z}\right)}{\left(a^{2}+h^{2}\right)^{3 / 2}} a d \phi \\
& \text { son along ap add up to } z e
\end{aligned}
$$

by symmetry the contributions along ap add up to zero. Thus we have only z component so

$$
\begin{aligned}
& \vec{E}=\frac{p_{2} a h a_{z}}{4 \pi \epsilon_{0}\left(a^{2}+h^{2}\right)^{\frac{3}{2}}} \int_{0}^{2 \pi} d \phi \\
& =\frac{p_{L} a h a_{z}}{2 \epsilon_{0}\left(a^{2}+h^{2}\right)^{3 / 2}}
\end{aligned}
$$

b. A charge distribution with spherical symmetry has density $\rho_{v}=\left\{\begin{array}{ll}\frac{\rho_{0} r}{R} & 0 \leq r \leq R \\ 0 & r>R\end{array} . \quad\right.$ Determine \vec{E} everywhere

Answer:

(2b) Wing Gauss's law

$$
\varepsilon_{0} \oint \vec{E} \cdot d \vec{s}=\text { enclosed }=\int_{V} P_{v} d v
$$

(a) for $r<R$

$$
\begin{aligned}
& \text { or } r<R \\
& \varepsilon_{0} E_{r} 4 \pi r^{2}=\text { Qenclosed }=\int_{0}^{r} \int_{0}^{\pi} \int_{0}^{2 \pi} P_{r} r^{2} \sin \theta d \phi d \theta d r \\
& =\int_{0}^{r} 4 \pi r^{2} \frac{P_{0} r}{R} d r=\frac{P_{0} \pi r^{4}}{R} \\
& \text { or } \vec{E}=\frac{P_{0} r^{2}}{4 \epsilon_{0} R} \text { ar }
\end{aligned}
$$

(6) for $\begin{aligned} & \quad r>R \\ & \varepsilon_{0} E_{r}\end{aligned} 4 \pi r^{2}=Q_{\text {enclosed }}=\int_{0}^{r} \int_{0}^{\pi} \int_{0}^{2 \pi} \rho_{v} r^{2} \operatorname{sen} \theta d \phi d \theta$.

$$
=\int_{0}^{R} \frac{P_{0} r}{R} 4 \pi r^{2} d r+\int_{R}^{r} 0 \cdot 4 \pi r^{2} d r
$$

$$
=\pi \rho_{0} R^{3}
$$

$$
\vec{E}=\frac{\rho_{0} R^{3}}{4 \epsilon_{0} r^{2}} \text { ar }
$$

Q. 3 a. Discuss the boundary condition at a conductor and free space boundary in electrostatics.

Answer: Article 5.4, Page Number 124-125 of Text Book I
b. Given the potential $\mathrm{V}=$
(i) Find the electric flux density D at $(2, \pi / 2,0)$
(ii) Calculate the work done in moving a $10 \mu \mathrm{C}$ charge from the point

$$
\text { A }\left(1,30^{0}, 120^{0}\right) \text { to } \mathbf{B}\left(4,90^{0}, 60^{0}\right)
$$

Answer:
(Bb)

$$
\begin{aligned}
& \text { (1) } D=\varepsilon_{0} E \\
& E=-\nabla V=-\left[\frac{\partial V}{\partial r} a_{r}+\frac{1}{r} \frac{\partial V}{\partial \theta} a_{\theta}+\frac{1}{r^{2} \sin \theta} \frac{\partial V}{\partial \phi} a_{\phi}\right] \\
& =\frac{20}{n^{3}} \sin \theta \cos \phi a_{r}-\frac{10}{r^{3}} \cos \theta \cos \phi a_{\theta}+\frac{10}{r^{3}} \sin \phi a_{\phi} \\
& a t(2, \pi / 2,0) \\
& D=\varepsilon_{0} E=\varepsilon_{0}\left(\frac{20}{8} a_{r}-0 a_{\theta}-0 a_{4}\right) \\
& =2.5 \epsilon_{0} a_{r} C / m^{2} \\
& =22.1 a_{r} p C / \mathrm{m}^{2} \\
& W=-Q \int_{A}^{B} E \cdot d l=Q V_{A B} \\
& =Q\left(V_{B}-V_{A}\right) \cdot \\
& =10\left(\frac{10}{16} \sin 90 \cos 60-\frac{10}{1} \sin 30 \cos 120\right) \cdot 10^{-6} \\
& =28.125 \mu \mathrm{~J}
\end{aligned}
$$

(11)
Q. 4 a. State and derive the uniqueness theorem.

Answer: Article 7.2, Page Number 191-192 of Text Book I
b. In spherical coordinates $V=0$ at $r=0.2 \mathrm{~m}$ and $V=200$ at $r=4 m$. Calculate the potential in various regions. Assume free space between these concentric spherical shells.
Answer:

$$
\begin{aligned}
& \text { (4b) By Laplace equation } \\
& \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d v}{d r}\right)=0
\end{aligned}
$$

If $\theta \& \&$ are constant

$$
\begin{gathered}
\text { If } \frac{d}{d r}\left(r^{2} \frac{d V}{d r}\right)=0 \\
\text { or } r^{2} \frac{d V}{d r}=A=\text { constant } \\
\text { so } \frac{d V}{d r}=\frac{A}{r^{2}} \\
\int d V=\int \frac{A}{r^{2}} d r \\
\text { or } V=-\frac{A}{r}+B \\
\text { at } r=.2 \mathrm{~m} \quad V=0
\end{gathered}
$$

$$
0=\frac{-A}{.2}+B
$$

$$
\begin{aligned}
\text { or } B=\frac{A}{2} & =5 A \\
V & =200
\end{aligned}
$$

at $r=4 \mathrm{~m}$

$$
V=200
$$

$$
200=\frac{-A}{4}+B
$$

$$
\begin{aligned}
& 200=\frac{-\pi}{4} \\
& \text { so } A=38 \quad \& B=190.5
\end{aligned}
$$

$$
\begin{aligned}
& \text { so } A=38 \\
& \text { so } V=\left(-\frac{38}{2}+190.5\right) \text { volts }
\end{aligned}
$$

Q. 5 a. Explain the scalar and magnetic potentials with the help of one example of each.

Answer: Article 8.6 of Text Book I
b. Given the volume current density distribution in cylindrical coordinates as.
$\mathrm{J}(\mathrm{r}, \phi, \mathrm{z})=\mathbf{0} \quad \mathbf{0}<\mathbf{r}<\mathbf{a}$

$$
=\mathrm{J}_{0}\left(\frac{\mathrm{r}}{\mathrm{a}}\right) \mathrm{a}_{\mathrm{z}} \quad \mathbf{a} \leq \mathbf{r} \leq \mathbf{b}
$$

$$
=\mathbf{0} \quad \mathbf{b}<\mathbf{r}<\infty
$$

Find the magnetic field intensity H in various regions.

Answer:

$$
\text { (5b) for } 0<h<a \quad J(h, 8, z)=0
$$

using ampere's Law $\oint H \cdot d l=\int_{S} J \cdot d s$. $=\int_{r=0}^{a} \int_{\phi=0}^{2 \pi} J a_{z}, h d r d \& a_{z}$
$H \cdot 2 \pi r=0$
$H=0$
for $a<h<b$
$J=J_{0}\left(\frac{h}{a}\right) a_{z}$
$\phi H \cdot d l=\int_{\phi=0}^{2 \pi} \int_{a}^{r} J_{0}\left(\frac{r}{a}\right) r d r d \phi$
$H \cdot 2 \pi h=\left.\left.\frac{J_{0}}{a} \cdot \frac{r^{3}}{3}\right|_{a} ^{r} \phi\right|_{0} ^{2 \pi}$
$a=\frac{2 \pi J_{0}}{3 a}\left(r^{3}-a^{3}\right) a \neq$
at $r=b$
$H=\frac{J_{0}}{3 a b}\left(b^{3}-a^{3}\right) a s$.

$$
\begin{aligned}
& \text { for } b<r<\infty \\
& \phi H \cdot d l=\int_{\phi=0}^{2 \pi} \int_{h=a}^{b} \frac{J_{0} h}{a} r d r d \\
& H=\frac{J_{0}}{3 a r}\left(b^{3}-a^{3}\right) a \phi
\end{aligned}
$$

Q. 6 b. Given that $H_{1}=-2 a_{x}+6 a_{y}+4 a_{z} A / m$ in region $y-x-2 \leq 0$ where $\mu_{1}=5 \mu_{0}$
calculate
(i) $\mathrm{M}_{1} \& \mathrm{~B}_{1}$
(ii) $\mathrm{H}_{2} \& \mathrm{~B}_{2}$ in region $\mathbf{y}-\mathbf{x}-2 \geq 0$ where $\mu_{2}=2 \mu_{0}$

Answer:

bb.
Plane is $=y-x-2$; Unit vector normal to the plane is given by

$$
a_{n}=\frac{\nabla f}{|\nabla f|}=\frac{a_{y}-a_{x}}{\sqrt{2}}
$$

$$
\begin{align*}
& m_{1}=x_{m_{1} H_{1}}=\left(\mu_{1}-1\right) H_{1}=(5-1)(-2,6,4) . \tag{a}\\
&=-8 a_{x}+24 a_{y}+16 a_{z} \mathrm{~A} / \mathrm{m} \\
& B_{1}=\mu_{1} H_{1}=\mu_{0} \mu_{2} H_{1}=-12.57 a_{x}+37.7 a_{y}+25.13 a_{z} \\
& \quad\left(\mu \omega b / \mathrm{m}^{2}\right)
\end{align*}
$$

(b) $H_{1 n}=\left(H_{1} \cdot a_{n}\right) a_{n}=-4 a_{x}+4 a_{y}$
but $H_{1}=H_{1 n}+H_{1 t}$
$H_{1 t}=H_{1}-H_{1 n}=(-2,6,4)-(-4,4,0)$. $=2 a_{x}+2 a_{y}+4 a_{z}$
by boundary conditions

$$
\begin{aligned}
& \text { boundary conditions } \\
& H_{2 z}=H_{1 t}=2 a_{x}+2 a_{y}+4 a_{z} \\
& \mu_{2} H_{2 n}=\mu_{1} H_{1 n}
\end{aligned}
$$

$$
\begin{aligned}
& H_{2 t}=H_{1 t} \text { or } \mu_{2} H_{2 n}=\mu_{1} H_{1 n} \\
& B_{2 n}=B_{1 n}
\end{aligned}
$$

$$
H_{2 n}=\frac{\mu_{1}}{\mu_{2}} H_{1 n}=\frac{5}{2}\left(-4 a_{x}+4 a_{y}\right)
$$

$$
=-10 a x+10 a y
$$

So $\mathrm{H}_{2}=\mathrm{H}_{2}+\mathrm{H}_{2 z}=-8 a_{x}+12 a_{y}+4 \mathrm{a}_{z} \mathrm{~A} / \mathrm{m}$
and $\mathrm{B}_{2}=\mu_{2} \mathrm{H}_{2}=\mu_{0} \operatorname{ler}_{2} \mathrm{H}_{2}$

$$
\begin{aligned}
& =\mu_{2} \mathrm{H}_{2}=\mu_{0} \mu_{2} 12 \\
& =-20.11 a_{x}+30.16 a_{y}+10.05 a_{z} \mu \mathrm{wb} / \mathrm{m}^{2}
\end{aligned}
$$

Q. 7 b. A parallel - plate capacitor with plate area of $5 \mathrm{~cm}^{2}$ and plate separation of 3 mm has a voltage 50 sin 1000t volt applied to its plates. Calculate the displacement current. Assume $\in=2 \epsilon_{0}$.

Answer:
$D=\in E=\in \frac{V}{d}$
$J d=\frac{\partial D}{\partial t}=\frac{\in}{d} \frac{d V}{d t}$

So, $\mathrm{I}_{\mathrm{d}}=\mathrm{J}_{\mathrm{d} .} \mathrm{S}=\frac{\in S}{d} \cdot \frac{d V}{d t}=C \frac{d V}{d t}$
and $\mathrm{I}_{\mathrm{C}}=\frac{\mathrm{d} \theta}{\mathrm{dt}}=\mathrm{S} \frac{\mathrm{dP}_{\mathrm{S}}}{\mathrm{dt}}=\mathrm{S} \frac{\mathrm{dD}}{\mathrm{dt}}=\in \mathrm{S} \frac{\mathrm{dE}}{\mathrm{dt}}$
$=\frac{\in \mathrm{S}}{\mathrm{d}} \cdot \frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{C} \frac{\mathrm{dV}}{\mathrm{dt}}$
So, $\quad \mathrm{I}_{\mathrm{d}}=2 . \frac{10^{-9}}{36 \pi} \cdot \frac{5 \times 10^{-4}}{3 \times 10^{-3}} \times 10^{3} \times 50 \cos 1000 t$
$=147.4 \cos 1000 \mathrm{tnA}$
c. State and explain Faraday's law and find expression for the emf.

Answer: Article 10.5 of Text Book I
Q. 8 Explain the following:
(i) Polarization of waves

Answer: Article 8.1.1, Page Number 208 of Text Book II
(ii) Troposphere scatter propagation

Answer: Article 8.2.4, Page Number 230 of Text Book II
(iii) Skip distance

Answer: Article 9.1.2, Page Number 238 of Text Book II
(iv) Radiation Resistance

Answer: Article 9.2.2, Page Number 241 of Text Book II
Q. 9 a. Define the following:
(i) Directive gain
(ii) Resonant Antenna
(iii) End-fire array
(iv) Horn Antenna

Answer: Article 9.3.1 to 9.3.3 of Text Book II
b. Explain working principle and constructional features of Helical Antenna, also write its applications.

Answer: Article 9.8 of Text Book II

Text books

1) Engineering Electromagnetics, W.H. Hayt \& J.A. Buck, $7^{\text {th }}$ Edition, Tata Mc Graw Hill, Special Indian Edition 2006
2) Electronic Communication Systems, George Kennedy \& Bernard Davis, $4^{\text {th }}$ Edition (1999), Tata McGraw Hill Publishing Company Ltd.
