Q.2 b. Two capacitors $150 \pm 2.4\mu$ F and $120 \pm 1.5\mu$ F are connected in parallel. Determine the limiting error of the resultant capacitance in μ F and in percentage.

Answer:

We have $u = 150 \pm 2.4\mu$ F and $v = 120 \pm 1.5\mu$ F. When the two capacitors are connected in parallel, the resultant capacitance is: y = u + v $= (150 \pm 2.4) + (120 \pm 1.5) = (270 \pm 3.9) \mu$ F Therefore, the limiting error is $\pm 3.9 \mu$ F (Ans) Relative limiting error is

$$\frac{\delta y}{y} = \pm \frac{3.9}{270} = \pm 0.0144 \text{ or } \pm 1.44\%$$

Q.3 b. A dielectric sheet of thickness 1mm is tested at 50Hz between two electrodes of 10 cm diameter. The Schering bridge employed has a standard compressed air capacitor C_3 of 100 pF; a non-inductive resistor R_4 of 350 Ω in parallel with a variable capacitor C_4 and a non-inductive variable resistor R_2 . At balance $C_4 = 0.4\mu$ F, $R_2 = 250\Omega$. Calculate the power factor and the permittivity of the sheet.

Answer:

 $R_2 = 250 \Omega$, $C_3 = 100 \text{ pF} = 100 \times 10^{-12} \text{ F}$; $R_4 = 350 \Omega$; $C_4 = 0.4 \times 10^{-6} \text{ F}$ Power factor of the specimen, sinδ = tanδ = ω C₄ R₄ = 2π×50×0.4×10⁻⁶×350 = 0.04398 **ANS**

Unknown Capacitance, $Cs = (R_{4/} R_{2}) C_3 = (350/250) \times 100 \times 10^{-12} F = 140 \mu F$ Permittivity of the sheet= Cs ×d/absolute permittivity×A $140 \times 10^{-12} \times 0.001 / 8.854 \times 10^{-12} \times \pi/4 (0.1)^2 = 2$ ANS.

Q.4 b. Write short notes on solid state voltmeter.

Answer:

Resonating frequency, f = 450 KHz = 450×10^3 Hz Resonating capacitance, c = $250pF=250\times 10^{-12}$ F Resistance, R_{sh} = 0.75Ω Q = 105 Under resonant condition Inductance of coli, L = $1/(2\pi f)^2 c$ = $1/(2\pi \times 450 \times 10^3)^2 \times 250 \times 10^{-12}$ = 500μ H Resistance of the coli, R= ω L /Q - R_{sh} = $2\pi \times 450 \times 10^3 \times 500 \times 10^{-6} / 105 - 0.75$ = 12.76 Ω ANS

Text Books

- 1. A Course in Electrical & Electronic Measurements & Instrumentation, A.K. Sawhney, Dhanpat Rai & Co , New Delhi, 18th Edition 2007
- 2. Electronic Instrumentation, H.S. Kalsi, Tata Mc Graw Hill, II Edition 2004