Q2 (a) For the circuit shown in Fig.2, determine (i) its graph (ii) its oriented graph (iii) trees.

Fig. 3

Answer

Q2 (b) Define duality. Obtain dual of network shown in Fig.3. Write integrodifferential equation for both.

Answer
(b) Duality:- The process of converting loop basis to node basis for the puepose of analysis.

Q2 (c) Write various steps involved for loop analysis. Find the power dissipated in the 4Ω resistor in the circuit shown in Fig. 4 using loop analysis.

Answer

3 (*) Loop analysis steps:-

1) Select the various loops.
2) Show the various loop currents \& the polarities of the associated voltage drops.
3) search for any current source, before applying KVL tothe coops.
4) Apply KVL to the loops that do not consist current source. Follow sign convention.
5) Solve the eq obtained in steps 3 and 4 simultaneously,

$$
-24+4 I_{3}+3\left(I_{3}-I_{2}\right)+1\left(I_{1}-I_{2}\right)=0
$$

$$
\begin{equation*}
I_{1}-4 I_{2}+7 I_{3}=24 \tag{1}
\end{equation*}
$$

For Branches having sources

$$
I_{2}=-2 \quad I_{3}-I_{1}=8 \quad \text { (2) }
$$

From er. (1) $I_{1}+8 I_{2}+7 I_{3}=8$-(3)
from ea $(2) \&(3) . \quad I_{3}=3$ Arp.
Power dissipated in 4Ω resistor
$=I_{3}^{2} R=9 \times 4=36$ watts.
(a) After steady-state current is established in the R-L circuit shown in Fig. 5 with Switch S in position ' a ' the switch is moved to position ' b ' at $t=0$. Find $i_{L}(0+)$ and $i(t)$ for $t>0$. What will be the value of $i(t)$ when $t=4$ seconds?

Fig. 5

Fig. 6

Answer

Writing KVL C9, when switch just before
S is open
$L \frac{d i}{d t}+R_{1} i+R_{2} i=0$.
$4 \frac{d i}{d t}+2 i+2 i=0$ (onsubstiturg) After switeting to position ' b ',

$$
i(0)=\frac{V}{R}=\frac{2}{2}=1 \text { Ant. }
$$

$$
\begin{aligned}
& \text { After switering to } \\
& \text { current } i\left(0^{+}\right)=1 \text { Arp dueto } L \text {. }
\end{aligned}
$$

in the cat.

$$
\begin{aligned}
& \text { in the cut. } \\
& \therefore I(s)(s+1)=1 \Rightarrow I(s)=\frac{1}{s+1}
\end{aligned}
$$

Boy applying Laplace Travefunt toe (1)

$$
\begin{aligned}
& S I(s)-i\left(0^{+}\right)+I(s)=0 \\
& \therefore I(s)(s+1)=i\left(0^{+}\right)
\end{aligned}
$$

Q3 (b) In the given network of Fig.6, the switch S is closed at $t=0$. The voltage source follows the law $v(t)=V e^{-\alpha t}$, where α is a constant. Solve for the current assuming that (i) $\alpha \neq R / L$ (ii) $\alpha=R / L$.

Answer

Q4 (a) At $t=0$, a switch is closed, connecting a voltage source V to a series RC circuit. Find the expression for current by using method of Laplace transform. Assume capacitor has no initial charge.

Answer

Q: 4
(a) The Given now will be

By writing the voltage exp.
switch is cirsed at $t=0$. ie \Rightarrow Votrge expression

$$
\begin{array}{l|l}
\text { otrge expression } & \frac{1}{c}\left[\frac{I(s)}{s}+\frac{9\left(0^{-}\right)}{s}\right]+R I(s)=\frac{V}{s} \\
=V u(t) &
\end{array}
$$

Now $q\left(0^{\circ}\right)$ is the charge on capacitor at $t=0^{-}$.
If the capacitor is initially uncharged $9\left(0^{-}\right)=0$.

$$
I(s)\left(1 / c_{s}+R\right)=V / s
$$

 By rearragis

$$
\begin{aligned}
& I(s)=\frac{V / R}{(s+1 / R c)} \\
& \therefore i(t)=\frac{V}{R} e^{-t / R c} \quad t \geqslant 0 \\
& i(t)=0 \quad t<0
\end{aligned}
$$

Taking Inverse laplee

$$
L^{-1}\{I(s)\}=L^{-1}\left\{\frac{V / R}{(s+1 / R c)}\right\}
$$

Q4 (b) State and prove initial value theorem and final value theorem for Laplace transform. Obtain initial value for the function $F(s)=2(s+1) / s^{2}+2 s+5$

Answer

$$
\begin{aligned}
& \text { (b) For initial \& final value } T \text { of Laplace Transf } \\
& \text { Topic. } 8.4 \operatorname{Ref}(I) \\
& \left.F(s)=\frac{2(s+1)}{s^{2}+2 s+5}\right\} \text { Find the initial } \\
& f(0)^{+}=\operatorname{Lt}_{t \rightarrow 0^{+}}^{L(t)}=\underset{s \rightarrow \infty}{L+} B \cdot F(s)=L_{s \rightarrow \infty} \frac{2(s+1) s}{s^{2}+2 s+5}= \\
& \stackrel{\text { or }}{=} \text { By writing. } \\
& f(s)=\frac{2(s+1)}{(s+1)^{2}+2^{2}} \Rightarrow f(t)=2 e^{-t} \cos 2 t \quad f\left(0^{t}\right)=2 \frac{e^{0}}{1} \frac{\cos 0}{1}=2
\end{aligned}
$$

Q5 (a) State and prove reciprocity theorem. Write its application.

Answer
 Reciprocity Theorem, Topic 9.4 of Text Book I

Q5 (b) Obtain the transform impedance representation for a capacitor and an inductor. For initial conditions in the network, how they are transformed?

Answer

Transformation of Capacitor \& Inductor, Topic 9.2 of Text Book I
Q6 (a) Discuss the time domain behaviour from the pole and zero plot.

Answer

Topic 10.7 of Text book I
Q6 (b) Determine whether the polynomial are Hurwitz or not.
(i) $\mathbf{F}(\mathbf{s})=\mathbf{s}^{3}+2 \mathbf{s}^{2}+\mathrm{s}+2$
(ii) $F(s)=s^{4}+s^{3}+2 s^{2}+2 s+1=0$

Answer
(b). Hurwitz or pinot?

$$
\text { (i) } f(s)=s^{3}+2 s^{2}+8+2
$$

Using con

$$
\begin{aligned}
& m(s)=2 s^{2}+2 \text {-even } \\
& n(s)=s^{3}+s-\text { odd }
\end{aligned}
$$

continued Fraction Expansion $=\frac{n(s)}{m e s}$

$$
\begin{aligned}
& 2^{2} s^{2}+2 s^{3}+s \\
& \frac{s^{3}+s}{0} \\
& \text { Boy takis ratio of } \\
& \frac{\ln (s)}{m(s)}=\frac{s^{3}+s}{2 s^{2}+2}=\frac{s\left(s^{2}+1\right)}{2\left(s^{2}+1\right)}
\end{aligned}
$$

$$
\text { Hence } f(s)=\frac{\left(2 s^{2}+2\right)}{1}\left(\frac{1}{2} s+1\right)
$$

Hurtwiz Hurtwiz

$$
\text { (ii) } f(s)=s^{4}+5^{3}+2 s^{2}+2 s+1=0
$$

Using Routh's array

$$
5^{4} 1 \quad 2 \quad 1
$$

Two changes in sim implying than $F(S)$ has two roots with positive real parts.

Hence $F(S)$ is not
Hurwitz polynomial.

Q7 (a) State the condition of two port network to be reciprocal and symmetrical interms of Z, h, BCD \& Y parameters.

Answer

Q7 (b) Explain twin -T network.

Answer

Twin T-n/w, Topic 11.7 of Text Book I
Q7 (c) For the circuit as shown in Fig.7, find the Y-parameters.

Answer
Q:7
(b)

Let I_{3} be the current in middle loop.
in applying KVL.

$$
\begin{gathered}
V_{12} 2\left(I_{1}-I_{3}\right) \\
2\left(I_{3}-I_{1}\right)+1 I_{3}+3 Y_{1}+1 \cdot 5\left(I_{3}+I_{2}\right) I_{0}
\end{gathered}
$$

$$
\text { ie. } 8 \text { 4.5 } I_{3}=2 I_{1}-1.5 I_{2}-3 V_{1}
$$

and

$$
V_{2}=1.5\left(I_{2}+I_{3}\right)
$$

sing above eq.s.

$$
\begin{aligned}
& V_{1}=0.476 I_{1}-0.285 I_{2} \\
& V_{2}=0.19 I_{1}+1.285 I_{2} \\
& Z=\left[\begin{array}{ll}
0.476 & 0.285 \\
0.19 & 1.285
\end{array}\right] \\
& Y=[Z]^{-1}=\left[\begin{array}{ll}
0.476 & 0.285 \\
0.19 & 1.285
\end{array}\right]^{-1} \\
& Y=\left[\begin{array}{ll}
-1.285 & -0.285 \\
0.19 & -0.476
\end{array}\right]
\end{aligned}
$$

Bu.

Q8 (a) Obtain (i) Foster -I form realization and (ii) Causer -II form realization for

$$
Z(s)=2(s+1)(s+3) / s(s+2)
$$

Answer
Q:8

$$
\text { (a) } z(s)=\frac{2(s+1)(s+3)}{s(s+2)}
$$

Poles: $0,-2$ \& zens $-1,-3$.

Forter-I form.

$$
\begin{aligned}
F(s) & =\frac{2^{2}+8 s+6}{s^{2}+2 s}=2+\frac{4 s+6}{s(s+2)} \\
& =2(\infty)+F_{1}(s) \\
F_{1}(s) & =\frac{4 s+6}{s(s+2)}=\frac{A}{s}+\frac{B}{s+2}
\end{aligned}
$$

Sh solving $\quad A=3 \quad B=1$
hence

$F(s)$

$$
0
$$

Q8 (b) Synthesize $Z(s)=\left(s^{2}+5 s+4\right) /\left(s^{2}+5 s+6\right)$ using partial fraction expansion method.

Answer

$$
\begin{aligned}
& \square \\
& \int_{\text {(b) }}^{\text {(b) }} 2(s)=\left(s^{2}+5 s+4\right) /\left(s^{2}+5 s+6\right) \text { partial fraction Exp. } \\
& z(s)=\frac{(s+1)(s+4)}{(s+2)(s+3)} \\
& =\frac{k_{0}}{s}+\frac{k_{1}}{s+2}+\frac{k_{2}}{s+3}+k_{\infty} \\
& \therefore z(s)=\frac{s}{(s+2)}+\frac{2}{(s+3)} \\
& k_{0}=\left.s \cdot z(s)\right|_{s \rightarrow 0}=0 . \\
& \text { cos } 8 . \\
& k_{1}=(s+2)\left(\left.z(s)\right|_{s \rightarrow \rightarrow_{-}}\right. \\
& =\left.\frac{(s+1)(s+3)}{(s+3)}\right|_{s \rightarrow-2} \\
& =-2 \\
& k_{2}=\left.(s+3) \mathbb{Z}(s)\right|_{s \rightarrow-3} \\
& =2 \\
& k \infty \quad z(s) \quad \mid \quad s \rightarrow \infty \text {. } \\
& =\underline{(s+1)(s+4)} \\
& (s+2)(s+3) \\
& =(1+1 / s)(1+4 / s) \\
& (s+2 / s)(s+3 / s) \\
& =1
\end{aligned}
$$

Q9 (a) Discuss how the element change in Frequency Transformations used for filter design.

Answer

Frequency Transformation of Text Book II
Q9 (b) Realise $\mathbf{H}(\mathrm{s})=\mathrm{s} /\left\{\mathrm{s}^{3}+\mathrm{s}^{2}+3 \mathrm{~s}+1\right\}$ as a network terminated by 1Ω resistor.
Answer

Text Books

1. Network Analysis, M.E. Van Valkenberg, $3^{\text {rd }}$ Edition, Prentice-Hall India, EEE 2006.
2. Network Analysis and Synthesis, Franklin F Kuo, $2^{\text {nd }}$ Edition, Wiley India Student Edition 2006.
