Q2 (a) Show that the real and imaginary parts of the function $w=\log z$ satisfy the Cauchy Riemann equations when z is not zero.

Answer

Q2 (b) Find the bilinear transformation which maps $z=1, i,-1$ onto $w=i, 0$, $-\mathbf{i}$ respectively.

Answer
(2) b). The

$$
\begin{aligned}
& z=z_{1}, z_{2} z_{3} \\
& \text { is in given by }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(w_{1}-w_{1}\right)\left(w_{2}-w_{3}\right)}{\left(w_{1}-w_{2}\right)\left(w_{3}-w_{0}\right)}: \frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{1}\right)} \\
& \text { Sulusitutuing } z_{1}-1, z_{2}=i_{1}, z_{3}=-1 ; w_{1}=i_{1}, w_{2}=0, \\
& w_{3}=-i, w_{0} \text { get- } \\
& \frac{\left(w_{1}-i\right)(0+i)}{(\dot{-}-0)(-i-w)}=\frac{(z-1)(i+1)}{(1-i)(-1-z)}
\end{aligned}
$$

$$
\operatorname{or} \omega=i \frac{1+i}{1-i} \frac{z+\frac{1-i}{1+i}}{z+\frac{1+i}{1-i}}
$$

$$
w=i \cdot \frac{z-i}{z+i}
$$

$$
\text { or } \omega=-\frac{z-i}{z+i}
$$

Q3 (a) Evaluate the following integral using Cauchy integral formula $\int_{C} \frac{4-3 z}{z(z-1)(z-2)} d z$ where C is the circle $|z|=\frac{3}{2}$.

$$
\begin{aligned}
& =\frac{\omega-i}{\omega+i}=-\frac{(1+i)(z-1)}{(1-i)(z+1)}=-\frac{(1+i)^{2}(z-1)}{(1-i)(1+i)(z+1)} \\
& \text { or } \frac{\omega+i}{\omega+i}=\frac{2 i}{2} \frac{z-1}{z+1}=\frac{z+1}{z+1}=\frac{i z+i}{z+1} \\
& \frac{(\omega-i)+(\omega+i)}{(\omega+i)-(\omega-i)}=\frac{(i z-i)+(z+1)}{(z+1)-(i z-i)} \\
& \frac{w}{i}=\frac{Z(1+i)+(1-i)}{Z(1-i)+(1+\dot{u})}
\end{aligned}
$$

Answer
a).

Let $I=$

$$
\begin{aligned}
& \int_{C} \frac{4-3 z}{z(z-1)(z-2)} d z \\
& C:|z|=\frac{3}{2}
\end{aligned}
$$

Pales of the integrand are given by.

$$
z(z-1)(z-2)=0 \Rightarrow \quad z=0,1,2
$$

The integrand h ass 3 simple polers at $z=0,1,2$
The given circle $|z|=\frac{3}{2}$ with centre at $z=0$ and radius $\frac{3}{2}$ encloses two poles $z=0$ and $z=1$

$$
\begin{aligned}
& \therefore I=\int_{C} \frac{4-3 z}{z(z-1)(z-2)} d z \\
& =\int_{1} \frac{\frac{4-3 z}{(z-1)(z-2)}}{z} d z \\
& +\int_{C_{2}} \frac{\frac{4-3 z}{z(z-2)}}{z-1} d z \\
& =2 \pi i\left[\frac{4-3 z}{(z-1)(z-2)}\right]_{z=0}+2 \pi i\left[\frac{4-3 z}{z(z-2)}\right]_{z=1} \\
& =2 \pi i \cdot \frac{4}{(-1)(-2)} \\
& \begin{array}{r}
+2 \pi i\left[\frac{4-3 z}{z(z-2)}\right]_{z=1} \\
\text {, by Cauchy Integral } \\
\text { formula }
\end{array} \\
& +2 \pi i \frac{4-3}{1(1-2)} \\
& =2 \pi i(2-1) \\
& =2 \pi i \\
& \text { formula }
\end{aligned}
$$

Ans

Q3 (b) Obtain the Taylor's or Laurent's series which represents the function

$$
\mathbf{f}(\mathbf{z})=\frac{1}{\left(1+z^{2}\right)(z+2)}
$$

when-
(i) $1<|z|<2$
(ii) $|z|>2$

Answer
(3) b).

$$
-\frac{z}{5}+\frac{2}{5}
$$

$$
f(z)=\frac{1}{\left(1+z^{2}\right)(z+2)}=
$$

$$
=-\frac{1}{5} \frac{z-2}{1+z^{2}}+\frac{1}{5} \frac{1}{z+2}
$$

(1) Here $1<|z|<2$

$$
\begin{aligned}
& \therefore f(z)=-\frac{1}{5} \frac{1}{z^{2}} \frac{z-2}{1+\frac{1}{\frac{1}{2}^{2}}}+\frac{1}{5} \cdot \frac{1}{2} \frac{1}{1+\frac{z^{2}}{2}} \\
& \quad \text {, since c }\left|\frac{1}{\tau^{2}}\right| \text { and }\left|\frac{7}{2}\right| \text { are sens than } 1 .
\end{aligned}
$$

$$
f(z)=-\frac{1}{5 z^{2}}(z-2)\left(1+\frac{1}{z^{2}}\right)^{-1}+\frac{1}{10}\left(1+\frac{z}{2}\right)^{-1}
$$

$$
=-\frac{1}{5}\left(\frac{1}{z}-\frac{2}{z^{2}}\right)\left(1-\frac{1}{z^{2}}+\frac{1}{z^{4}}-\frac{1}{z^{6}}+\cdots\right)
$$

$$
+\frac{1}{10}\left(1-\frac{z}{2}+\frac{z^{2}}{4}-\frac{z^{3}}{8}+\cdots\right)
$$

$$
=\frac{1}{5}\left[-\frac{1}{z}+\frac{1}{z^{3}}-\frac{1}{z^{5}}+\frac{1}{z^{7}}+\cdots+\frac{2}{z^{2}}-\frac{2}{z^{4}}+\frac{6}{z^{6}}\right.
$$

$$
-\frac{2}{z^{8}}+\cdots+\frac{1}{2}-\frac{z}{4}+\frac{z^{2}}{8}-\frac{z^{3}}{16}
$$

$f(z)=\frac{1}{5}[$

$$
\begin{aligned}
-2 z^{8} & +z^{-7}+2 z^{-6}-z^{-5}-2 z^{-4}+z^{-3} \\
& +2 z^{-2}-z^{-1}+\frac{1}{2}-\frac{z}{4}+\frac{z^{2}}{8}-\frac{z^{3}}{16} \cdots
\end{aligned}
$$

ii) Here $|z|>2$

$$
\begin{aligned}
f(z)= & -\frac{1}{5} \frac{z-2}{1+z^{2}}+\frac{1}{5} \frac{1}{z+2} \\
= & -\frac{1}{5} \frac{1}{z^{2}}(z-2)\left(1+\frac{1}{z^{2}}\right)^{-1}+\frac{1}{5 z}\left(1+\frac{2}{z}\right)^{-1} \\
= & \frac{1}{5}\left(-\frac{1}{z}+\frac{2}{z^{2}}\right)\left(1-\frac{1}{z^{2}}+\frac{1}{z^{4}}-\frac{1}{z^{6}}+\cdots\right) \\
& \quad+\frac{1}{5 z}\left(1-\frac{2}{z}+\frac{4}{z^{2}}-\frac{8}{z^{3}}+\frac{16}{z^{4}}+\cdots\right) \\
= & \frac{1}{5}\left(-\frac{1}{z}+\frac{1}{z^{3}}-\frac{1}{z^{5}}+\frac{1}{z^{7}}+\cdots+\frac{2}{z^{2}}-\frac{2}{z^{4}}-\frac{2}{z^{6}}+\frac{2}{z^{8}}\right. \\
& \left.+\cdots+\frac{1}{z}-\frac{2}{z^{2}}+\frac{4}{z^{3}}-\frac{8}{z^{4}}+\cdots\right]
\end{aligned}
$$

Q4 (a) Find the directional derivative of the divergence 0 $f(x, y, z)=x y \hat{i}+x y^{2} \hat{j}+z^{2} \hat{k}$ at the point $(2,1,2)$ in the direction of the outer normal to the sphere, $x^{2}+y^{2}+z^{2}=9$

Answer
(4) a). Given- $f(x, y, z)=x y \hat{i}+x y^{2} \hat{j}+z^{2} \hat{k}$

Divergence of $f(x, y, z)=\pi . f$

$$
\begin{aligned}
& =\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \cdot\left(\begin{array}{rl}
\left(x y \hat{i}+x y^{2} \hat{j}\right. \\
& \left.+z^{2} \hat{k}\right)
\end{array}\right. \\
& =y+2 x y+2 z-
\end{aligned}
$$

Directional derivative of divergence of $(y+2 x y+2 z)$

$$
\begin{aligned}
& =\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)(y+2 x y+2 z) \\
& =2 y \hat{i}+(1+2 x) \hat{j}+2 \hat{k}
\end{aligned}
$$

Directional derivative at the point $(2,1,1)$

$$
=2 \hat{i}+5 \hat{j}+2 \hat{k}
$$

Normal to the sphere $x^{2}+y^{2}+z^{2}=9$

$$
\begin{aligned}
\dot{u} r & =\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(x^{2}+y^{2}+z^{2}-9\right) \\
& =2 x \hat{i}+2 y \hat{j}+2 z \hat{k}
\end{aligned}
$$

Normal at the point $(2,1,2)=4 \hat{j}+2 \hat{j}+4 \hat{k}$
Directional derivative along normal at $(2,1,2)$

$$
\begin{aligned}
& =(2 \hat{i}+5 \hat{j}+2 \hat{k}) \cdot \frac{4 \hat{i}+2 \hat{j}+4 \hat{k}}{\sqrt{16+4+16}} \\
& =\frac{1}{6}(8+10+8)=\frac{13}{3}
\end{aligned}
$$

Ans

Q4 (b) A vector \vec{r} is defined by $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$. If $|\vec{r}|=r$ then show that the vector $r^{n} \vec{r}$ is irrotational.

Answer

(4) b). Curl $\vec{F}=\square \times \vec{F}$

$$
=7 \times r^{n} \vec{\gamma}
$$

$$
\begin{aligned}
&=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \times\left(x^{2}+y^{2}+z^{2}\right)^{n / 2} \\
&(x i+y \hat{j}+z \hat{k}
\end{aligned}
$$

$$
=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{j}{\partial y} & \frac{\partial}{\partial z} \\
\left(x^{2}+y^{2}+z^{2}\right)^{m / 2} x & \left(x^{2}+y^{2}+z^{2}\right)^{n / 2} & \left(x^{2}+y^{2}+z^{2}\right)^{n / 2}
\end{array}\right|
$$

$$
=\left[\frac{n}{2}\left(x^{2}+y^{2}+z^{2}\right)^{m / 2-1}(2 y z)-\frac{n}{2}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{n}{2}-1}(2 y z)\right]
$$

$$
-\left[\frac{n}{2}\left(x^{2}+y^{2}+z^{2}\right)^{n / 12}(2 x z)-\frac{n}{2}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{n}{2}-1}(2 x z\right.
$$

$$
+\left[\frac{n}{2}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{n}{2}-1}(2 x y)-\frac{n}{2}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{n}{2}-1}(2 x y)\right] i
$$

$$
\begin{aligned}
& =0 \\
& \text { Hence } \left.\begin{array}{l}
\text { n} \\
r
\end{array}\right) \text { is irrotational. }
\end{aligned}
$$

Q5 (a) Evaluate by Green's theorem in plane $\int_{c}\left(e^{-x} \sin y d x+e^{-x} \cos y d y\right)$ Where \mathbf{C} is the rectangle with vertices $(0,0),(\pi, 0),\left(\pi, \frac{1}{2} \pi\right),\left(0, \frac{1}{2} \pi\right)$

Answer
5) a). By Greenis theorem in plare, we have-

Here

$$
\begin{aligned}
& \therefore \quad M=e^{-x} \sin y, \quad N=e^{-x} \cos y \\
& \therefore \frac{\partial N}{\partial x}=-e^{-x} \cos y, \frac{\partial m}{\partial y}=e^{-x} \cos y
\end{aligned}
$$

Hernce, the given line cintegral

$$
=\iint_{R}\left(-e^{-x} \cos y-e^{-x} \cos y\right) d x d y
$$

cuheroe R irs the region enclased by the rectangle C

$$
\begin{aligned}
& =\int_{x=0}^{\pi} \int_{y=0}^{\pi / 2}\left(-2 e^{-x} \cos y d x d y\right) \\
& =\int_{x=0}^{\pi}-2 e^{-x}(\sin y)_{y=0}^{\pi / 2} d x
\end{aligned}
$$

$$
=\int_{0}^{\pi}-2 e^{-x} d x=2\left(e^{-x}\right)_{0}^{\pi}
$$

$$
=2\left(e^{-\pi}-1\right)
$$

Arrs

Q5 (b) Using Stoke's theorem, evaluate $\int_{c}\left[(2 x-y) d x-y z^{2} d y-y^{2} z d z\right]$ where C is the circle $x^{2}+y^{2}=1$, corresponding to the surface of sphere of unit radius.

Answer
5) b). The given integral $=\int_{c}\left[(2 x-y) d x-y z^{2} d y-y^{2} z d z\right]$ $=\int_{C}\left[(2 x-y) \hat{i}-y z^{2} \hat{j}-y^{2} z \hat{k}\right]$.
$(\hat{i} d x+\hat{j} d y+\hat{k} d z)$.
By stokels the orem -

$$
\int_{C} \vec{F} \cdot \overrightarrow{d r}=\iint_{S} \operatorname{cural} \vec{F} \cdot \hat{n} d S \quad \sigma \longrightarrow(1)
$$

Now

$$
\text { curate } \vec{F}=\square \times \vec{F}
$$

$$
=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 x-y & -y z^{2} & -y^{2} z
\end{array}\right|
$$

$$
=(-2 y z+2 y z) \hat{u}-(0-0) \hat{\jmath}+(0+1) \hat{k}
$$

$$
\begin{aligned}
& \text { Putting th } \\
& \text { required }
\end{aligned}
$$

$$
\text { integral }=
$$

+an (1), we get the

$$
\iint \hat{k} \cdot \hat{h} d s
$$

$$
=\iint \hat{k} \cdot \hat{\eta} \frac{d x d y}{\hat{\imath} \cdot \hat{k}}
$$

$$
=\iint d x d y
$$

$$
, \because d s=\frac{d x d y}{n \cdot \vec{k}}
$$

$$
=\pi
$$

Arse

Q6 (a) Determine $f(x)$ as a polynomial in for the following data:

$\mathrm{x}:$	-4	-1	0	2	5
$\mathrm{~F}(\mathrm{x}):$	1245	33	5	9	1335

by using Newton's divided difference formula

Answer

$$
\begin{aligned}
& \text { (6) a). We shall have to use newtons divided } \\
& \text { difference forrumla. The divided difference } \\
& \text { table irs- } \\
& \begin{array}{c|c|c|c|c|c|}
x & f(x) & \begin{array}{c}
\text { st divided } \\
\text { ditferorers }
\end{array} & \begin{array}{c}
2^{\text {nd }} \text { divided } \\
\text { differeres }
\end{array} & \begin{array}{c}
\text { sod divided } \\
\text { differences }
\end{array} & \begin{array}{c}
4^{\text {th }} \text { divided } \\
\text { differences }
\end{array} \\
\hline-4 & 1245 & -404 & 94 & & \\
-1 & 33 & -28 & 10 & 14 & 3 \\
0 & 5 & 2 & 88 & 13 & 3 \\
2 & 9 & 1535 & 442 & &
\end{array} \\
& \text { Applying Newton's divided difference formula } \\
& f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right)\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right)\left[x_{0}, x_{1}, x_{2}\right]+\cdots \\
& =1245+(x+4)(-404)+(x+4)(x+1)(94) \\
& +(x+4)(x+1)(x-0)(-14)+(x+4)(x+1) x(x-2) 3 \\
& =3 x^{4}-5 x^{3}+6 x^{2}-14 x+5
\end{aligned}
$$

this

Q6 (b) Find $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ by using Simpson's $\frac{1}{3^{\text {rd }}}$ and $\frac{3}{8^{\text {th }}}$ rule by dividing the range of integration into 6 equal parts. Hence obtain the approximate value of π in each case.

Answer

x	$y=\frac{1}{1+x^{2}}$
$x_{0}=0$	$1 / 1=1.0000000$
$x_{0}+h=\frac{1}{6}$	$36 / 37=0.9729729$
$x_{0}+2 h=\frac{2}{6}$	$36 / 40=0.9000000$
$x_{0}+3 h=\frac{3}{6}$	$36 / 45=0.8000000$
$x_{0}+4 h=\frac{4}{6}$	$36 / 52=0.6923076$
$x_{0}+5 h=\frac{5}{6}$	$36 / 61=0.5901639$
$x_{0}+6 h=1$	$1 / 2=0.5000000$

By Simpson's $\frac{1}{3}$ rd rwe, we get -

$$
\begin{aligned}
& \int_{0}^{1} \frac{d x}{1+x^{2}}= \int_{x_{0}}^{x_{0}+6 h} \frac{d x}{1+x^{2}}=\frac{h}{3}\left[\begin{array}{r}
y_{0}+y_{\sigma}+4\left(y_{1}+y_{3}+y_{5}\right) \\
\left.+2\left(y_{2}+y_{x}\right)\right]
\end{array}\right. \\
&= \frac{1}{18}[1.5000000+4(2.3651569) \\
&+2(1.5923077)] \\
&=\frac{1}{18}(14.137163) \\
&=0.7853979 \quad \rightarrow(1)
\end{aligned}
$$

By Simpson's $\frac{3}{8}$ th rute, we get-

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{1+x^{2}} & =\frac{3}{8} h\left[y_{0}+y_{\sigma}+3\left(y_{1}+y_{2}+y_{4}+y_{5}\right)+2 y_{3}\right] \\
& =\frac{1}{16}[1.5000000+3(3.1554446)+2(0.8000000)]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{16}(12.566334) \\
& =0.7853958
\end{aligned}
$$

Bat

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{1+x^{2}}=\left(\tan ^{4} x\right)_{0}^{1} & =\tan ^{-1} 1-\tan ^{-1} 0 \\
& =\frac{\pi}{4} \rightarrow(3)
\end{aligned}
$$

From (1) \& (3), we get-

$$
\begin{aligned}
& \frac{\pi}{4}=0.7853979 \\
& \Rightarrow \pi=3.1415916
\end{aligned}
$$

From

$$
\begin{aligned}
& (2) \&(3) \text {, we get- } \\
& \frac{\pi}{4}=0.7853958 \\
& \Rightarrow \pi=3.1415835
\end{aligned}
$$

Q7 (a) Use Lagrange's method to solve $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)$

Answer

$$
\text { Choosing } x, y,-1 \text { ars mutibliers, each fraction }
$$

$$
\text { of } \tan ^{n}(1)=x d x+y d y-d z
$$

$$
x^{2}\left(y^{2}+z\right)-y^{2}\left(x^{2}+z\right)-z\left(x^{2}-y^{2}\right)
$$

$$
\Rightarrow x d x+y d y-d z=0
$$

$$
=\frac{x d x+y d y-d z}{0}
$$

$$
\Leftrightarrow \text { Integrating, we get. }
$$

$$
\begin{equation*}
x^{2}+y^{2}-2 z=c_{2} \tag{3}
\end{equation*}
$$

$2) *(3)$, the salhtion is -
$\phi\left(x^{2}+y^{2}-2 z, x y z\right)=0$, ϕ being arn Ams

Q7 (b) Use Charpit's method to find complete integral of $q=(z+p x)^{2}$

$$
\begin{aligned}
& \text { (1) a). Here, Lagrangels subrsidiary eands for } \\
& \text { given eairs aroe- } \\
& \frac{d x}{x\left(y^{2}+z\right)}=\frac{d y}{-y\left(x^{2}+z\right)}=\frac{d z}{z\left(x^{2}-y^{2}\right)} \\
& \text { Chooseing } \frac{1}{x}, \frac{1}{y}, \frac{1}{z} \text { ars multiplies, each } \\
& \text { fraction of (1) }=\frac{\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z}{y^{2}+z-\left(x^{2}+z\right)+x^{2}-y^{2}} \\
& =\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z \\
& \Rightarrow \frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z=0 \\
& \text { Irrtegrating, we get } \longrightarrow \\
& \log x+\log y+\log z=\log c_{1} \\
& \Rightarrow \quad \log x y z=\log c_{1} \\
& \Longrightarrow \quad x y z=c_{1} \longrightarrow(2)
\end{aligned}
$$

Answer
(1) b). Here Given ean us-

$$
f(x, y, z, p, w) \equiv(z+p x)^{2}-w=0
$$

Charopit's auniliary eans are-

$$
\frac{d p}{f_{x}+p f_{z}}=\frac{d \alpha}{f_{y}+a f_{z}}=\frac{d z}{-p_{p}-a f_{w}}=\frac{d x}{-f_{p}}=\frac{d y}{-f_{w}}
$$

$$
\text { oo } \begin{aligned}
\frac{d p}{2 p(z+p x)+2 p(z+p x)}=\frac{d N}{2 N(z+p x)} & =\frac{d z}{-2 p x(z+p x)+N} \\
& =\frac{d x}{-2 x(z+p x)}=\frac{d y}{0}, t_{0}(1)
\end{aligned}
$$

Taking the $2^{\text {nd }}$ ard $4^{\text {th }}$ fractions, wreng स....

$$
\frac{1}{a} d a=-\frac{1}{x} d x
$$

Integrating, we get

$$
\begin{aligned}
& \log v=\log a-\log x \\
& \Rightarrow a=\frac{a}{x}
\end{aligned}
$$

sabstituting this value of a in (1), we get.

$$
\left(z+p_{x}\right)^{2}=\frac{a}{x} \text { or } p x=\frac{\sqrt{a}}{\sqrt{x}}-z
$$

$$
\text { or } p=\frac{\sqrt{a}}{x \sqrt{x}}-\frac{z}{x}
$$

Now $\rightarrow d z=p d x+a d y$

$$
\Rightarrow \quad d y=\left(\frac{\sqrt{a}}{x \sqrt{x}}-\frac{z}{x}\right) d x+\frac{a}{x} d y
$$

, by (2) 4(3)

$$
\therefore x d z=\sqrt{a} x^{-1 / 2} d x-z d x+a d y
$$

or $\quad x d z+z d x=\sqrt{a} x^{-1 / 2} d x+a d y$
or $\quad d(x z)=\sqrt{a} x^{-1 / 2} d x+a d y$
Integrating, we get-

$$
x z=2 \sqrt{a} \sqrt{x}+a y+b
$$

ahere a \& b are arbitrary constonits.

Q8 (a) A bag contains 6 white and 9 black balls. Four balls are drawn at a time. Find the probability for the first draw to give 4 white and the second draw to give 4 black balls in each of the following cases-
(i) The balls are replaced before the second daw
(ii) The balls are not replaced before the second draw

Answer
 withe balls am be down at ot 6 wite bull in ${ }^{6} C_{4}$ may. \therefore The probability that the 4 bells drown
the first draw are white is $=\frac{6 C_{4}}{15 S_{4}}$

Before the second draw, the balls are replaced. Therefore we again have 6 white and a black ball Any four balls can be drawn out of $6+9=15$ balls in ${ }^{15} C_{4}$ ways and 4 black balls can be drawn out of 9 in ${ }^{9} C_{4}$ ways.
\therefore The probability that 4 black balks are drawn in the second draw $=\frac{{ }^{9} C_{4}}{{ }^{15 C_{4}}}$

$$
=\frac{126}{1365}=\frac{6}{65}
$$

\therefore Required probability $=\frac{1}{91} \times \frac{6}{65}=\frac{6}{5915}$
(ii) The probability of drawing 4 white balls in The first draw is $\frac{{ }^{5} C_{4}}{{ }^{15 C_{4}}}=\frac{1}{91}$
Since the drawn balls are not replaced, wee are deft with 2 white balls and a black balls. The probability of drawing 4 black balls out of these 11 balls is

$$
=\frac{9 c_{4}}{{ }^{15} c_{4}}=\frac{21}{55}
$$

$$
\therefore \text { Required probability }=\frac{1}{91} \times \frac{21}{55}=\frac{3}{715}
$$

Q8 (b) Three groups of children contain respectively 3 girls and 1 boy, 2 girls and 2 boys; 1 girl and 3 boys. One child is selected at random from each group. Find the chance of selecting 1 girl and 2 boys.

Answer
(8) b) These are throe cays of selecting (y) 1 girl and two boys.
I way: Viral is selected from first group, boy from second group and second boy from third group.
\therefore Probability of the selection of (Girl + Boy+ Boy)
$=\frac{3}{4} \times \frac{2}{4} \times \frac{3}{4}=\frac{18}{64}$
II way: Boy in selected from first group,
girl from second group and second boy from third group.

Probability of the selection of (Boggy Givelt Boy'
$=\frac{1}{4} \times \frac{2}{4} \times \frac{3}{4}=\frac{6}{64}$
III way: Boy is selected from first group, second boy from second group and the
girl from the third group. probability of selection of (Boy + Boy+Gioe)

$$
=\frac{1}{4} \times \frac{2}{4} \times \frac{1}{4}=\frac{2}{64}
$$

$\begin{aligned} \text { Total probability } & =\frac{18}{64}+\frac{6}{6 x}+ \\ & =\frac{26}{64}=\frac{13}{32}\end{aligned}$
Ares
Q9 (a) A manufacturer knows that the condensers he makes contain on an average
$\mathbf{1 \%}$ of defectives. He packs them in boxes of $\mathbf{1 0 0}$. What is the probability that a box picked at random will contain 4 or more faulty condensers?

Answer

$$
\begin{aligned}
& \text { (9) a) Here } p=1 \%=0.01, n=100, m=n p \\
& \begin{aligned}
P(r) & =\frac{e^{-m}(m)^{r}}{L^{r}} & =100 \times 0.01 \\
& =\frac{e^{-1}(1)^{r}}{L^{r}}=\frac{e^{-1}}{L r} &
\end{aligned} \\
& \text { P (} 4 \text { or more faulty condensers) } \\
& =P(4)+P(5)+\cdots+P(100) \\
& =1-[P(0)+P(1)+P(2)+P(3)] \\
& =1-\left[\frac{e^{-1}}{20}+\frac{e^{-1}}{L}+\frac{e^{-1}}{L^{2}}+\frac{e^{-1}}{L^{3}}\right] \\
& =1-e^{-1}\left(1+1+\frac{1}{2}+\frac{1}{6}\right) \\
& =1-\frac{8}{3 e}=1-0.981=0.019
\end{aligned}
$$

Q9 (b) A sample of $\mathbf{1 0 0}$ dry battery cells tested to find the length of life produced the following results-

$$
\bar{x}=12 \text { hours, } \sigma=3 \text { hours }
$$

Assuming the data to be normally distributed, what percentage of battery cells are expected to have life-
(i) More than 15 hours
(ii) Less than 6 hours
(iii)Between 10 and 14 hours

Answer

APO
(i), when $x=15, z=1$
$\therefore P(x>15)=P(z>1)$
$=P(0<z<\infty)-P(0<z<1)$
$=0.5-0.3415=0.1587=15.87 \%$
(ii) cohen $x=6, \quad z=-2$
$\therefore P(x<6)=P(z<-2)$
$=P(z>z)$
$=P(0<z<\infty)$
$=P(z>z)$
$=P(0<z<\infty)$

- $P(0<z<2)$
$=0.5-0.4772$
$=0.0228=2.28 \% 1 \%$
(iii)

$$
\text { when } x=10, z=-\frac{2}{3}=-0.67
$$

$$
\text { when } x=14, z=\frac{2}{3}=0.67
$$

$$
\therefore P(10<x<14)
$$

$$
=P(-0.67<z<0.67)
$$

$=2 P(0<z<0.67)$
$=2 \times 0.2487$
$=0.4974=49.74 \%$

