Q. 2 (a) For the circuit shown in fig (1), find the voltage across 2 mho conductance using Nodal analysis

Answer: Book1-Example-10.3
Q2(b) Explain Norton and Reciprocity Theorem with suitable example.
Answer: Book1-10.7(page-485)
Q3(a) A full-wave rectifier with a centre-tapped transformer supplies a dc current of 100 mA to a load resistance of $R=20 \Omega$. The secondary resistance of the transformer is 1Ω Each diode has a forward resistance of 0.5Ω. Determine the following:
(i) RMS value of signal voltage across each half of the secondary.
(ii) DC power supplied to the load.
(iii) PIV rating of each diode.
(iv) AC power input to the rectifier.
(v) Conversion efficiency.
(vi) Voltage regulation.

Answer : Book1-Example-1.14
Q3(b). Compare performance of a halfwave rectifier, a centre tapped full wave rectifier and a bridge type full wave rectifier.
Answer : Book1-1.14 (page-39)
Q4(a). Draw and explain the transfer characteristics of FETs.
Answer : Book (page-175)
Q4(b). What are four layer devices? Explain the switching action of Silicon controlled rectifier (SCR).
Answer : Book1-2.5 (page-107)

Q5(a) Explain the need of biasing in transistor circuit and determine the stability factor of fixed bias circuit.
Answer : Book1-3.5 (page-151)

Q5(b). What is h-parameter model? Draw and explain of BJT h-parameter model.
Answer : Book1-3.4 (page-142)
Q6(a). Draw \& explain the circuit diagram and frequency response of a Single stage RC-coupled amplifier.
Answer : Book1-4.2 (page-214)
Q6(b). A BJT transistor amplifier stage has $R_{E}=R_{C}=1.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=600 \Omega$, $R_{L}=2 \mathrm{k} \Omega$ and transistor parameter as $\beta=100$ and $r_{\pi}=1 \mathrm{k} \Omega$.
Determine the value of $C_{C 1}, C_{C 2}$ and C_{E} needed to obtain $f_{L}=50 \mathrm{~Hz}$ and also draw the circuit.
Answer : Book1- Example-4.7 (page-229)
Q7(a) In the ideal class-B amplifier with complimentary symmetry shown in figure having $V_{C C}=15 V, R_{L}=10 \Omega$. The input is sinusoidal. Determine the maximum signal output power, the corresponding collector dissipation and conversion efficiency.

Class-B amplifier with complimentary symmetry
Answer : Book1- Example-5.12 (page-314)
Q7(b) Use suitable diagram to explain any two:
(i) Class-A power amplifier (ii) Class-C power amplifier

Answer : Book1-5.2 (page-278)
Q8(a) Explain Wein bridge Oscillator.
Answer : Book1-6.10 (page-338)
Q8(b). What are the effect of negative feedback on I/P impedence, bandwidth and gain of an amplifier? Explain
Answer : Book1-6.5 (page-326)
Q.9(a) Explain the electron beam lithography. What advantage does it have over photolithographic process?
Answer : Book1- page-449

Q9(b) What is the width required to fabricate $5 \mathrm{k} \Omega$ register whose length is $25 \mu \mathrm{~m}$. Given $\mathrm{R}_{\mathrm{S}}=\Omega /$ square
Answer : Book1-Example-9.3 (page-471)
Q9(c). Briefly explain the steps involved in IC fabrication.
Answer : Book1-9.3 (page-446)

Text Book

Electronic Devices and Circuits, I J Nagrath, PHI - (2007)

