Q. 2 a. Write about IC chip size and circuit complexity and explain power supply connections of an Op-Amp.

Answer: Page no. 41 of Text Book I
b. Calculate i_{1}, v_{0}, i_{L} and total current is into the output pin of the circuit shown below in Fig. 1

Answer: Page no. 44/2.2 of Text Book I
Q. 3 a. Draw and explain the internal circuit of op-Amp. Explain the following terms:
(i) Input Offset current
(ii) Input Offset Voltage
(iii) Slew rate
(iv) Stability of Op-Amp

Answer: Page no. 105 of Text Book I
b. Draw the circuit of instrumentation amplifier and derive the expression for its output.
(i) Using two Op-Amp
(ii) Using three Op-Amp

Answer: Page no. 141-143 of Text Book I

Q. 4 a. Draw the circuit of Half-Wave rectifier using Op-Amp and explain.

Answer: Page no. 148-149 of Text Book I
b. Explain the operation of practical differentiator circuit using OpAmp.

Answer: Page no. 164-165 of Text Book I
Q. 5 a. Explain the working of monostable multivibrator and derive the expression for the time period " T ".

Answer: Page no. 218-220 of Text Book I
b. Draw and explain the functional diagram of 555 Timer IC. Explain its application as pulse position modulator.

Answer: Page no. 311-312 of Text Book I
Q. 6 a. Write the advantages of digital techniques and discuss serial and parallel transmission.

Answer: Page no. 41 of Text Book II
b. Explain the following codes:
(i) BCD Code (ii) ASCII Code
(iii) Gray Code
(iv) Alphanumeric Code

Answer: Page no. 38-39 of Text Book II
Q. 7 a. Construct a logic circuit for the following Boolean expression $Y=A C+B \bar{C}+\bar{A} B C$ using NAND gates only.

Answer: Page no. 70 of Text Book II
b. Simplify the following logic expression using Karnaugh Map and explain in steps;

$$
Y=\bar{C}(\bar{A} \bar{B} \bar{D}+D)+A \bar{B} C+\bar{D}
$$

Answer: Page no. 130-131 of Text Book II
Q. 8 a. Explain BCD adder with a neat diagram.

Answer: Page no. 243 of Text Book II
b. Implement full adder using 3×8 decoder.

Answer: Page no. 345/7.55(a) of Text Book II
Q. 9 b. Explain, with a neat diagram and waveforms, the working of a Mod-6 Johnson counter.

Answer: Page no. 372-374 of Text Book II

Text Books

I Linear integrated circuits, $4^{\text {th }}$ edition by D. Roy Choudhary \& Shail B Jain of New Age International Publishers.

II Digital Systems-Principles and Applications by Ronald J. Tocci \& Neil S Widmer, Eighth edition of Pearson Education.

