Q.2 a. State Superposition Theorem.

Answer: Page Number 484 of Text Book.

b. In the circuit shown below, determine (i) I (ii) find I_S for $V_S = 16V$ and I=0 (iii) find V_S for $I_S = 16 A$ and I = 0

Answer: Page Number 484 of Text Book.

c. Define the terms (i) Node (ii) Branch (iii) Loop (iv) Mesh and write the procedure for writing nodal equations.

Answer: Page Number 480-481 of Text Book.

Q.3 a. Explain about n-type doping and p-type doping.

Answer: Page Number 10-11 of Text Book.

b. Explain PN junction behaviour under forward and reverse bias.

Answer: Page Number 14-16 of Text Book.

Q.4 a. Explain the operating of PNP transistor.

Answer: Page Number 81-82 of Text Book.

b. For the transistor circuit shown below, calculate I_C , I_E and I_B , if the transistor's $\beta = 50$.

Answer: Page Number 91 of Text Book.

Q.5 a. Explain h-parameter model of an amplifying device and draw h-parameter models of BJT.

Answer: Page Number 142-144 of Text Book.

b. Discuss the BJT biasing circuit with voltage feedback.

Answer: Page Number 157-158 of Text Book.

Q.6 a. Explain the mid-frequency response of RC coupled amplifier.

Answer: Page Number 218-220 of Text Book.

b. In the BJT RC-coupled amplifier of Fig.4 determine:

(i) V_o for $V_s = 5mV$ (ii) R_{in} and (iii) R_{out} in the mid-frequency region. Given $r_{\pi} = 600\Omega, \beta = 100.$

Answer: Page Number 220-221 of Text Book.

Q.7 a. Explain the working of Class B transformer coupled push-pull amplifier and derive the expression for its efficiency.

Answer: Page Number 292-294 of Text Book.

b. Explain Crossover distortion in the push-pull operation of Class B amplifier.

Answer: Page Number 305-326 of Text Book.

Q.8 a. Explain the effect of feedback on impedances.

Answer: Page Number 324-325 of Text Book.

b. Draw the circuit of Wien bridge oscillator and derive the expression for its frequency of oscillation.

Answer: Page Number 338-339 of Text Book.

Q.9 a. Explain the following processes in IC fabrication

(i) Diffusion (ii) Ion implantation

Answer: Page Number 450-451of Text Book.

b. Explain the fabrication of NMOS enhancement type MOSFET.

Answer: Page Number 459-460 of Text Book.

TEXT BOOK

Electronic Devices and Circuits by I. J. Nagarath, May 2010 Edition, PHI Learning Pvt. Ltd.