Q. 2 a. State Superposition Theorem.

Answer: Page Number 484 of Text Book.
b. In the circuit shown below, determine (i) I (ii) find I_{S} for $V_{S}=16 \mathrm{~V}$ and $I=0$ (iii) find V_{S} for $I_{S}=16 A$ and $I=0$

Answer: Page Number 484 of Text Book.
c. Define the terms (i) Node (ii) Branch (iii) Loop (iv) Mesh and write the procedure for writing nodal equations.

Answer: Page Number 480-481 of Text Book.
Q. 3 a. Explain about n-type doping and p-type doping.

Answer: Page Number 10-11 of Text Book.
b. Explain PN junction behaviour under forward and reverse bias.

Answer: Page Number 14-16 of Text Book.
Q. 4 a. Explain the operating of PNP transistor.

Answer: Page Number 81-82 of Text Book.
b. For the transistor circuit shown below, calculate I_{C}, I_{E} and I_{B}, if the transistor's $\beta=50$.

Answer: Page Number 91 of Text Book.
Q. 5 a. Explain h-parameter model of an amplifying device and draw hparameter models of BJT.

Answer: Page Number 142-144 of Text Book.
b. Discuss the BJT biasing circuit with voltage feedback.

Answer: Page Number 157-158 of Text Book.
Q. 6 a. Explain the mid-frequency response of RC coupled amplifier.

Answer: Page Number 218-220 of Text Book.
b. In the BJT RC-coupled amplifier of Fig. 4 determine:
(i) V_{o} for $V_{S}=5 m V$ (ii) $R_{\text {in }}$ and (iii) $R_{\text {out }}$ in the mid-frequency region.
Given $r_{\pi}=600 \Omega, \beta=100$.

Answer: Page Number 220-221 of Text Book.
Q. 7 a. Explain the working of Class B transformer coupled push-pull amplifier and derive the expression for its efficiency.

Answer: Page Number 292-294 of Text Book.
b. Explain Crossover distortion in the push-pull operation of Class B amplifier.

Answer: Page Number 305-326 of Text Book.
Q. 8 a. Explain the effect of feedback on impedances.

Answer: Page Number 324-325 of Text Book.
b. Draw the circuit of Wien bridge oscillator and derive the expression for its frequency of oscillation.

Answer: Page Number 338-339 of Text Book.
Q. 9 a. Explain the following processes in IC fabrication
(i) Diffusion
(ii) Ion implantation

Answer: Page Number 450-451of Text Book.
b. Explain the fabrication of NMOS enhancement type MOSFET.

Answer: Page Number 459-460 of Text Book.

TEXT BOOK

Electronic Devices and Circuits by I. J. Nagarath, May 2010 Edition, PHI Learning Pvt. Ltd.

