
AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 1

Q.2 a. List the main characteristics of database approach versus file-
processing approach.

Answer:
The main characteristics of the database approach versus the file-processing
approach are the following:

• Self-describing nature of the database system.
• Insulation between programs and data, and data abstraction.
• Support of multiple views of the data.

Sharing of data and multiuser transaction processing.

 b. Discuss the different types of user-friendly interfaces and the types of

users who typically use each.

Answer:
 User-friendly interfaces provided by a DBMS may include the following.

• Menu-Based Interfaces for Browsing: These interfaces present the user with
lists of options, called menus, that lead the user through the formulation of a
request. Menus do away with the need to memorize the specific commands and
syntax of a query language; rather, the query is composed step by step by picking
options from a menu that is displayed by the system. Pull-down menus are
becoming a very popular technique in window-based user hethe contents of a
database in an exploratory and unstructured manner.

• Forms-Based Interfaces: A forms-based interface displays a form to each user.
Users can fill out all of the form entries to insert new data, or they fill out only
certain entries, in which case the DBMS will retrieve matching data for the
remaining entries. Forms are usually designed and programmed for naive users as
interfaces to canned transactions. Many DBMSs have forms specification
languages, special languages that help programmers specify such forms. Some
systems have utilities that define a form by letting the end user interactively
construct a sample form on the screen.

• Graphical User Interfaces: A graphical interface (GUI) typically displays a
schema to the user in diagrammatic form. The user can then specify a query by
manipulating the diagram. In many cases, GUIs utilize both menus and forms.
Most GUIs use a pointing device, such as a mouse, to pick certain parts of the
displayed schema diagram.

• Natural Language Interfaces: These interfaces accept requests written in
English or some other language and attempt to "understand" them. A natural
language interface usually has its own "schema," which is similar to the database
conceptual schema. The natural language interface refers to the words in its
schema, as well as to a set of standard words, to interpret the request. If the
interpretation is successful, the interface generates a high-level query

AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 2

corresponding to the natural language request and submits it to the DBMS for
processing; otherwise, a dialogue is started with the user to clarify the request.

• Interfaces for Parametric Users: Parametric users, such as bank tellers, often
have a small set of operations that they must perform repeatedly. Systems analysts
and programmers design and implement a special interface for a known class of
naive users. Usually, a small set of abbreviated commands is included, with the
goal of minimizing the number of keystrokes required for each request. For
example, function keys in a terminal can be programmed to initiate the various
commands. This allows the parametric user to proceed with a minimal number of
keystrokes.

• Interfaces for the DBA: Most database systems contain privileged commands
that can be used only by the DBA’s staff. These include commands for creating
accounts, setting system parameters, granting account authorization, changing a
schema, and reorganizing the storage structures of a database.

 c. Describe the following attributes of ER – model:

(i) Simple versus composite
(ii) Single-valued versus multivalued
(iii)Stored versus derived

Answer:
 Simple versus composite

(i) Composite attributes can be divided into smaller subparts, which represent
more basic attributes with independent meanings. For example, the Address
attribute of the EMPLOYEE entity shown in Figure (A) below can be
subdivided into Street_address, City, State, and Zip, with the values ‘2311
Kirby’, ‘Houston’, ‘Texas’, and ‘77001.’ Attributes that are not divisible are
called simple or atomic attributes. Composite attributes can form a hierarchy;
for example, Street_address can be further subdivided into three simple
component attributes: Number, Street, and Apartment_number, as shown in
Figure (B) below. The value of a composite attribute is the concatenation of
the values of its component simple attributes.

AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 3

 Figure (A): Two entities EMPLOYEE e1, and COMPANY c1, and their
attributes

Figure (B): A hierarchy of composite attributes

(i) Single- valued versus multivalued

Most attributes have a single value for a particular entity; such attributes are
called single-valued. For example, Age is a single-valued attribute of a person. In
some cases an attribute can have a set of values for the same entity—for instance,
a Colors attribute for a car, or a College

Composite attributes are useful to model situations in which a user sometimes
refers to the composite attribute as a unit but at other times refers specifically to
its components. If the degrees attribute for a person. Cars with one color have a
single value, whereas two-tone cars have two color values. Similarly, one person
may not have a college degree, another person may have one, and a third person
may have two or more degrees; therefore, different people can have different
numbers of values for the College_degrees attribute. Such attributes are called
multivalued. A multivalued attribute may have lower and upper bounds to
constrain the number of values allowed for each individual entity. For example,
the Colors attribute of a car may be restricted to have between one and three
values, if we assume that a car can have three colors at most.

(iv) Stored versus derived

In some cases, two (or more) attribute values are related—for example, the Age
and Birth_date attributes of a person. For a particular person entity, the value of
Age can be determined from the current (today’s) date and the value of that
person’s Birth_date. The Age attribute is hence called a derived attribute and is
said to be derivable from the Birth_date attribute, which is called a stored
attribute. Some attribute values can be derived from related entities; for
example, an attribute Number_of_employees of a DEPARTMENT entity can be
derived by counting the number of employees related to (working for) that
department.

AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 4

Q.3 a. Consider the following schema:
 Suppliers(sid: integer, sname: string, address: string)
 Parts(pid: integer, pname: string, color: string)
 Catalog(sid: integer, pid: integer, cost: real)

The key fields are underlined, and the domain of each field is listed after
the field name. Therefore sid is the key for Suppliers, pid is the key for
Parts, and sid and pid together form the key for Catalog. The Catalog
relation lists the prices charged for parts by Suppliers. Write the
following queries in relational algebra.

(i) Find the names of suppliers who supply some red part.
(ii) Find the sids of suppliers who supply some red part and some green

part.
(iii)Find the pids of the most expensive parts supplied by suppliers named

SHANKER.

Answer:
 πsname(πsid((πpidσcolor='red' Parts) Catalog) Suppliers)

(i) ρ(R1, πsid((πpidσcolor='red' Parts) Catalog))
ρ(R2, πsid((πpidσcolor='green' Parts) Catalog))
R1 ∩ R2

(ii) ρ(R1, πsidσsname='SHANKER' Suppliers)

ρ(R2,R1 Catalog)
ρ(R3,R2)
ρ(R4(1 → sid, 2 → pid, 3 → cost), σR3.cost<R2.cost(R3 × R2))
πpid(R2 – πsid,pid,cost R4)

 b. Discuss the characteristics of a relation that make them different from
ordinary tables and files?

Answer:
 The characteristics that make a relation different from ordinary tables and files

are as follows:

• Ordering of Tuples in a Relation. A relation is defined as a set of tuples.
Mathematically, elements of a set have no order among them; hence, tuples in a
relation do not have any particular order. In other words, a relation is not sensitive
to the ordering of tuples. But, in a file, records are physically stored on disk (or in
memory), so there always is an order among the records. This ordering indicates

AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 5

first, second, ith, and last records in the file. Similarly, when we display a relation
as a table, the rows are displayed in a certain order.

• Ordering of Values within a Tuple and an Alternative Definition of a
Relation. According to the preceding definition of a relation, an n-tuple is an
ordered list of n values, so the ordering of values in a tuple—and hence of
attributes in a relation schema—is important. However, at a more abstract level,
the order of attributes and their values is not that important as long as the
correspondence between attributes and values is maintained.

• Values and NULLs in the Tuples. Each value in a tuple is an atomic value; that
is, it is not divisible into components within the framework of the basic relational
model. Hence, composite and multivalued attributes are not allowed. This model
is sometimes called the flat relational model. Much of the theory behind the
relational model was developed with this assumption in mind, which is called the
first normal form assumption. Hence, multivalued attributes must be represented
by separate relations, and composite attributes are represented only by their
simple component attributes in the basic relational model. An important concept
is that of NULL values, which are used to represent the values of attributes that
may be unknown or may not apply to a tuple. A special value, called NULL, is
used in these cases.

• Interpretation of a Relation. The relation schema can be interpreted as a
declaration or a type of assertion. Each tuple in the relation can then be
interpreted as a fact or a particular instance of the assertion. Some relations may
represent facts about entities, whereas other relations may represent facts about
relationships.

 (c) What is meant by a safe expression in relational calculus?

Answer:
Whenever we use universal quantifiers, existential quantifiers, or negation of predicates
in a calculus expression, we must make sure that the resulting expression makes sense. A
safe expression in relational calculus is one that is guaranteed to yield a finite number of
tuples as its result; otherwise, the expression is called unsafe. For example, the
expression

{t | not (EMPLOYEE(t))}
is unsafe because it yields all tuples in the universe that are not EMPLOYEE tuples,
which are infinitely numerous. If we follow the rules, we will get a safe expression when
using universal quantifiers. We can define safe expressions more precisely by introducing
the concept of the domain of a tuple relational calculus expression: This is the set of all
values that either appear as constant values in the expression or exist in any tuple of the
relations referenced in the expression. The domain of {t | not(EMPLOYEE(t))} is the set
of all attribute values appearing in some tuple of the EMPLOYEE relation (for any
attribute).
An expression is said to be safe if all values in its result are from the domain of the
expression. Notice that the result of {t | not(EMPLOYEE(t))} is unsafe, since it will, in

AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 6

general, include tuples (and hence values) from outside the EMPLOYEE relation; such
values are not in the domain of the expression.
Q.4 a. Consider the following ER conceptual schema diagram for the

COMPANY database. Map the given ER diagram into relational
database schema.

Answer:
Result of mapping the given COMPANY ER schema into a relational database schema is
as follows:

AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 7

 b. Describe the circumstances in which you would choose to use embedded
SQL rather than SQL alone or only a general-purpose programming language?

Answer:
SQL provides a powerful declarative query language. Writing queries in SQL is usually
much easier than coding the same queries in a general-purpose programming language.
However, a programmer must have access to a database from a general purpose
programming language for at least two reasons:

1. Not all queries can be expressed in SQL, since SQL does not provide the full
expressive power of a general-purpose language. That is, there exist queries that can be
expressed in a language such as C, Java, or Cobol that cannot be expressed in SQL. To
write such queries, we can embed SQL within a more powerful language. SQL is
designed so that queries written in it can be optimized automatically and executed
efficiently—and providing the full power of a programming language makes automatic
optimization exceedingly difficult.

2. Nondeclarative actions—such as printing a report, interacting with a user, or

sending the results of a query to a graphical user interface—cannot be done from within
SQL. Applications usually have several components, and querying or updating data is
only one component; other components are written in general-purpose programming
languages. For an integrated application, the programs written in the programming
language must be able to access the database.

AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 8

The SQL standard defines embeddings of SQL in a variety of programming languages,
such as C, Cobol, Pascal, Java, PL/I, and Fortran. A language in which SQL queries are
embedded is referred to as a host language, and the SQL structures permitted in the host
language constitute embedded SQL.

Programs written in the host language can use the embedded SQL syntax to access and
update data stored in a database. This embedded form of SQL extends the programmer’s
ability to manipulate the database even further. In embedded SQL, all query processing is
performed by the database system, which then makes the result of the query available to
the program one tuple (record) at a time.

An embedded SQL program must be processed by a special preprocessor prior to
compilation. The preprocessor replaces embedded SQL requests with host-language
declarations and procedure calls that allow run-time execution of the database accesses.
Then, the resulting program is compiled by the host-language compiler. To identify
embedded SQL requests to the preprocessor, we use the EXEC SQL statement; it has the
form

EXEC SQL <embedded SQL statement > END-EXEC

The exact syntax for embedded SQL requests depends on the language in which SQL is
embedded. For instance, a semicolon is used instead of END-EXEC when SQL is
embedded in C. The Java embedding of SQL (called SQLJ) uses the syntax

SQL { <embedded SQL statement > };

We place the statement SQL INCLUDE in the program to identify the place where the
preprocessor should insert the special variables used for communication between the
program and the database system. Variables of the host language can be used within
embedded SQL statements, but they must be preceded by a colon (:) to distinguish them
from SQL variables.

Q.5 a. (i) When are two sets of functional dependencies equivalent? What
conditions are to be satisfied to define a set of functional dependencies
F to be minimal?

 (ii) Let the given set of functional dependencies be E: {B A, D A,

AB D}. Find the minimal cover of E.

Answer:
Two sets of functional dependencies E and F are equivalent if E+ = F+. Therefore,
equivalence means that every FD in E can be inferred from F, and every FD in F can be
inferred from E; that is, E is equivalent to f if both the conditions E cover F and F covers
E hold.

Conditions to be satisfied to define a set of functional dependencies F to be minimal
are as follows:

AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 9

1. Every dependency in F has a single attribute for its right-hand side.
2. We cannot replace any dependency X → A in F with a dependency Y → A, where

Y is a proper subset of X, and still have a set of dependencies that is equivalent to
F.

3. We cannot remove any dependency from F and still have a set of dependencies
that is equivalent to F.

 (ii) Let the given set of functional dependencies be E: {B → A, D → A, AB →
 D}. Find the minimal cover of E.

Answer:

• All above dependencies are already in canonical form. In next step we determine
if AB → D has any redundant attribute on the left-hand side; i.e., can it be
replaced by B → D or A → D?

• Since B → A, hence by augmenting with B on both sides, we have BB → AB, or
B → AB. But it is given AB → D.

• Hence by transitive rule, we get B → D. Hence, AB → D may be replaced by B →
D.

• Now we get a set equivalent to original E, say E' : {B → A, D → A, B → D}. No
further reduction is possible since all FDS have a single attribute on the left-hand
side.

• Now we look for a redundant FD in E'. By using transitive rule on B → A and D
→ A, we drive B → A. Hence B → A is redundant in E' and can be eliminated.

• Hence the minimum cover of E is {B → A, D → A}.

 b. Define decomposition. State the properties that must be satisfied by a
relation R to be decomposed into a set of relations.

Answer:
Decompositiion means breaking the relation schema into smaller schema. We may also
call this schema refinement. Suppose a relation schema R(A, B, C, D, E, F, G) is split
into R1(A, B, C, D) and R2(E, F, G) then we can say that R1 and R2 are decomposition
of R.
We can say a relation R is decomposed into a set of relations R1 and R2 if and only if it
satisfies the following properties of decomposition.

Attribute Prevention

• If R1 and R2 are projections of some relation R and R1 and R2 between them
include all attributes of R, then we say that R is decomposed into R1 and R2. For
e.g., consider the relation R(A, B, C, D, E, F, G) and the decomposition of this
relation are R1(A, B, C, D) and R2(E, F, G) are the attribute preserving
decompositions.

Loss-Less Join Decomposition

AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 10

• We can say that the decomposition of R into R1, with attribute set X1 and R2
with attribute set X2 is loss-less decomposition if by joining R1 and R2 we get
back the original decomposition.

• The word loss-less refers to loss of information and not loss of tuples.
• Let R be a relation with attribute set X and F is the set of FDs that hold over R.

The decomposition of R into R1 and R2 with attributes X1 and X2 respectively is
loss-less if and only if F+ contains either

X1 ∩ X2 X1 or,
X1 ∩ X2 X2

 In other words, the attributes common to R1 and R2 must contain a key for either
R1 or R2.

• If an FD, X Y holds over a relation schema R and X ∩ Y is empty, the
decomposition of R into R – Y and XY is loss-less.
For e.g., consider the relation schema R(A, B, C) with FDs AB C and C B.
The relation is not in BCNF since C holds in R. We decompose this relation
into R1(A1, C) (i.e. R – Y) and R2(B, C) (i.e. XY) is a loss-less decomposition
because B ∩ C is empty.

Dependency Preservation
• If R is decomposed into X, Y and Z and we enforce the FDs that hold on X, on Y

and on Z, and then all FDs that were given to hold on R must also hold.
• The decomposition of relation R with FDs F into R1 and R2 is said to be

dependency preserving if FR1 ∪ FR2)+ = F+
In other words, if we take the dependencies of FR1 and FR2 and compute the
closure of their union, we get back the original FDs in F.
For e.g., consider the relation R(A, B, C, D) with FDs A B and C is
decomposed into R1(A, B) and R2(C, D) is a dependency preserving
decomposition.

• It is always possible to find a dependency preserving decomposition with respect
to an F such that the resulting relations are in 3NF.

• In general, there may not be a dependency preserving decomposition that also
decomposes relations in BCNF. For e.g., consider a relation R(A, B, C) with FDs
AB C and C B is a relation that cannot be decomposed to satisfy both
dependency preserving and BCNF.

Q.6 a. What are the reasons for having variable length records?

Answer:
A file is a sequence of records. In many cases, all records in a file are of the same record
type. If every record in the file has exactly the same size (in bytes), the file is said to be
made up of fixed-length records. If different records in the file have different sizes, the
file is said to be made up of variable-length records.

A file may have variable-length records for several reasons:

AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 11

• The file records are of the same record type, but one or more of the fields are of
 varying size (variable-length fields). For example, the NAME field of
 EMPLOYEE can be a variable-length field.

• The file records are of the same record type, but one or more of the fields may

 have multiple values for individual records; such a field is called a repeating
 field and a group of values for the field is often called a repeating group.

• The file records are of the same record type, but one or more of the fields are

 optional; that is, they may have values for some but not all of the file records
 (optional fields).

 • The file contains records of different record types and hence of varying size
 (mixed file). This would occur if related records of different types were
 clustered (placed together) on disk blocks.

 b. Briefly explain any two hashing techniques that allow dynamic file
expansion.

Answer: Page Number 495 of Text Book.

 c. Why does the index file for a primary index need substantially fewer

blocks than the data file?

 Answer:
The index file for a primary index needs substantially fewer blocks than does the data
file, for two reasons:

• First, there are fewer index entries than there are records in the data file.

• Second, each index entry is typically smaller in size than a data record because it
has only two fields; consequently more index entries than data records can fit in
one block. Therefore, a binary search on the index file requires fewer block
accesses than a binary search on the data file.

Q.7 a. Discuss the cost components for a cost function that is used to estimate
query execution cost. What are the different parameters that are used
in cost functions? Where is this information kept?

Answer:
The cost of executing a query includes the following components:

1. Access cost to secondary storage: This is the cost of searching for, reading, and
writing data blocks that reside on secondary storage, mainly on disk. The cost of
searching for records in a file depends on the type of access structures on that file, such as
ordering, hashing, and primary or secondary indexes. In addition, factors such as whether

AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 12

the file blocks are allocated contiguously on the same disk cylinder or scattered on the
disk affect the access cost.

2. Storage cost: This is the cost of storing any intermediate files that are

generated by an execution strategy for the query.

3. Computation cost: This is the cost of performing in-memory operations on the

data buffers during query execution. Such operations include searching for and sorting
records, merging records for a join, and performing computations on field values.

4. Memory usage cost: This is the cost pertaining to the number of memory

buffers needed during query execution.

5. Communication cost: This is the cost of shipping the query and its results from

the database site to the site or terminal where the query originated.

For large databases, the main emphasis is on minimizing the access cost to secondary
storage. Simple cost functions ignore other factors and compare different query execution
strategies in terms of the number of block transfers between disk and main memory. For
smaller databases, where most of the data in the files involved in the query can be
completely stored in memory, the emphasis is on minimizing computation cost. In
distributed databases, where many sites are involved, communication cost must be
minimized also. It is difficult to include all the cost components in a (weighted) cost
function because of the difficulty of assigning suitable weights to the cost components.
That is why some cost functions consider a single factor only—disk access

To estimate the costs of various execution strategies, we must keep track of any
information that is needed for the cost functions. This information may be stored in the
DBMS catalog, where it is accessed by the query optimizer. First, we must know the size
of each file. For a file whose records are all of the same type, the number of records
(tuples) (r), the (average) record size (R), and the number of blocks (b) (or close
estimates of them) are needed. The blocking factor (bfr) for the file may also be needed.
We must also keep track of the primary access method and the primary access attributes
for each file. The file records may be unordered, ordered by an attribute with or without a
primary or clustering index, or hashed on a key attribute. Information is kept on all
secondary indexes and indexing attributes. The number of levels (x) of each multilevel
index (primary, secondary, or clustering) is needed for cost functions that estimate the
number of block accesses that occur during query execution. In some cost functions the
number of first-level index blocks is needed.

Another important parameter is the number of distinct values (d) of an attribute and its
selectivity (sl), which is the fraction of records satisfying an equality condition on the
attribute. This allows estimation of the selection cardinality (s = sl * r) of an attribute,
which is the average number of records that will satisfy an equality selection condition
on that attribute. For a key attribute, d = r, sl = 1/r and s = 1. For a nonkey attribute, by

AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 13

making an assumption that the d distinct values are uniformly distributed among the
records, we estimate sl = (1/d) and so s = (r/d) (Note 21).

Information such as the number of index levels is easy to maintain because it does not
change very often. However, other information may change frequently; for example, the
number of records r in a file changes every time a record is inserted or deleted. The query
optimizer will need reasonably close but not necessarily completely up-to-the-minute
values of these parameters for use in estimating the cost of various execution strategies.

 b. Discuss the different phases of external sorting. Also give an outline of

the algorithm used.

Answer:
External sorting refers to sorting algorithms that are suitable for large files of records
stored on disk that do not fit entirely in main memory, such as most database files. The
typical external sorting algorithm uses a sort-merge strategy, which starts by sorting
small subfiles called runs, of the main file and then merges the sorted runs, creating
larger sorted subfiles that are merged in turn. The sort-merge algorithm, like other
database algorithms, requires buffer space in main memory, where the actual sorting and
merging of the runs is performed. The buffer space in main memory is part of the DBMS
cache—an area in the computer’s main memory that is controlled by the DBMS. The
buffer space is divided into individual buffers, where each buffer is the same size in
bytes as the size of one disk block. Thus, one buffer can hold the contents of exactly one
disk block. The basic algorithm consists of two phases:

• The sorting phase: In the sorting phase, runs (portions or pieces) of the file that
can fit in the available buffer space are read into main memory, sorted using an
internal sorting algorithm, and written back to disk as temporary sorted subfiles
(or runs). The size of each run and the number of initial runs (nR) are dictated
by the number of file blocks (b) and the available buffer space (nB). For
example, if the number of available main memory buffers nB = 5 disk blocks and
the size of the file b = 1024 disk blocks, then nR= [(b/nB)] or 205 initial runs each
of size 5 blocks (except the last run which will have only 4 blocks). Hence, after
the sorting phase, 205 sorted runs (or 205 sorted subfiles of the original file) are
stored as temporary subfiles on disk.

• The merging phase: In the merging phase, the sorted runs are merged during
one or more merge passes. Each merge pass can have one or more merge steps.
The degree of merging (dM) is the number of sorted subfiles that can be merged
in each merge step. During each merge step, one buffer block is needed to hold
one disk block from each of the sorted subfiles being merged, and one additional
buffer is needed for containing one disk block of the merge result, which will
produce a larger sorted file that is the result of merging several smaller sorted
subfiles. Hence, dM is the smaller of (nB − 1) and nR, and the number of merge
passes is [(logdM(nR))]. In our example where nB = 5, dM = 4 (four-way merging),

AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 14

so the 205 initial sorted runs would be merged 4 at a time in each step into 52
larger sorted subfiles at the end of the first merge pass. These 52 sorted files are
then merged 4 at a time into 13 sorted files, which are then merged into 4 sorted
files, and then finally into 1 fully sorted file, which means that four passes are
needed. The minimum dM of 2 gives the worst-case performance of the algorithm,
which is

(2 * b) + (2 * (b * (log2 nR)))

Outline of the Sort-Merge algorithm for external sorting

set i ← 1;

j ← b; {size of the file in blocks}
k ← nB; {size of buffer in blocks}
m ← ⎡(j/k)⎤;

{Sorting Phase}
while (i ≤ m)

do {
read next k blocks of the file into the buffer or if there are less than k blocks
remaining, then read in the remaining blocks;
sort the records in the buffer and write as a temporary subfile;
i ← i + 1;

}

{Merging Phase: merge subfiles until only 1 remains}
set i ← 1;

p ← [logk–1m] {p is the number of passes for the merging phase}
j ← m;

while (i ≤ p)

do {
n ← 1;
q ← (j/(k–1)⎤ ; {number of subfiles to write in this pass}

while (n ≤ q)

do {
read next k–1 subfiles or remaining subfiles (from previous pass)
one block at a time; merge and write as new subfile one block at a

time;
n ← n + 1;

}
j ← q;
i ← i + 1;

}

AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 15

Q.8 a. Define Deadlock. What are the necessary four conditions for a
deadlock to occur? Discuss the different methods that can be used for
deadlock prevention.

Answer:
Deadlock: A system is in a deadlock state if there exists a set of transactions such that
every transaction in the set is waiting for another transaction in the set. More precisely,
there exists a set of waiting transactions {T0, T1, . . ., Tn} such that T0 is waiting for a
data item that T1 holds, and T1 is waiting for a data item that T2 holds, and . . ., and Tn−1
is waiting for a data item that Tn holds, and Tn is waiting for a data item that
T0 holds. None of the transactions can make progress in such a situation.
There are two principal methods for dealing with the deadlock problem. We can use a
deadlock prevention protocol to ensure that the system will never enter a deadlock state.
Alternatively, we can allow the system to enter a deadlock state, and then try to recover
by using a deadlock detection and deadlock recovery scheme.

Necessary conditions for a deadlock to occur

Mutual Exclusion: Some data items must be locked by some transactions in Exclusive
Mode. These data items are not accessible to other transactions than the one currently
holding it.
Hold and Wait: Some transactions must be holding Exclusive Locks on some data items
and at the same waiting for grant of Exclusive Lock on some other data items, which may
be currently locked by other transactions.
No Pre-emption: The data items locked exclusively by a Transaction cannot be forcibly
pre-empted. The Transaction will release the locks on such items only voluntarily, when
it has finished with the data items.
Cyclic Wait: There must exist a situation, wherein a set of n transactions say (T1, T2,
……….Tn) are waiting in a cyclic manner for the data items locked by each other i.e T0
is waiting for a data item that T1 holds, and T1 is waiting for a data item that T2 holds,
and . . ., and Tn−1 is waiting for a data item that Tn holds, and Tn is waiting for a data
item that T0 holds.

Two different deadlock prevention schemes using timestamps are as below:

(i) The wait–die scheme is a non-preemptive technique. When transaction Ti requests a
data item currently held by Tj , Ti is allowed to wait only if it has a timestamp smaller
than that of Tj (that is, Ti is older than Tj). Otherwise, Ti is rolled back (dies).
For example, suppose that transactions T1, T2, and T3 have timestamps 5, 10, and 15,
respectively. If T1 requests a data item held by T2, then T1 will wait. If T3 requests a data
item held by T2, then T3 will be rolled back.

(ii) The wound–wait scheme is a preemptive technique. It is a counterpart to the wait–die
scheme. When transaction Ti requests a data item currently held by Tj , Ti is allowed to
wait only if it has a timestamp larger than that of Tj (that is, Ti is younger than Tj).
Otherwise, Tj is rolled back (Tj is wounded by Ti).

AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 16

Consider the same example, with transactions T1, T2, and T3, if T1 requests a data item
held by T2, then the data item will be preempted from T2, and T2 will be rolled back. If
T3 requests a data item held by T2, then T3will wait.

 b. What are the conditions that lead to the two schedules being view
equivalent. When a schedule S is said to be view serializable?

Answer:
Two schedules S and S' are said to be view equivalent if the following three conditions
hold:

1. The same set of transactions participants in S and S', and S and S' include the
same operations of those transactions.

2. For any operation ri(X) of Ti in S, if the value of X read by the operation has been
written by an operation wj(X) of Tj (or if it is the original value of X before the
schedule started), the same condition must hold for the value of X read by
operation ri(X) of Ti in S'.

3. If the operation wk(Y) of Tk is the last operation to write item in S, then wk(Y) of
Tk must also be the last operation to write item Y in S'.

The idea behind view equivalence is that, as long as each read operation of a transaction
reads the result of the same write operation in both schedules, the write operations of
each transaction must produce the same results. The read operations are hence said to see
the same view in both schedules. Condition 3 ensures that the final write operation on
each data item is the same in both schedules, so the database state should be the same at
the end of both schedules.

“A schedule S is said to be view serializable if it is view equivalent to a serial schedule.”

 c. What are the rules followed when shared / exclusive locking scheme is

used?

Answer:
When we use the shared/exclusive locking scheme, the system must enforce the
following rules:

1. A transaction T must issue the operation read_lock(X) or write_lock(X) before any
read_item(X) operation is performed in T.

2. A transaction T must issue the operation write_lock(X) before any write_item(X)
operation is performed in T.

3. A transaction T must issue the operation unlock(X) after all read_item(X) and
write_item(X) operations are completed in T.

4. A transaction T will not issue a read_lock(X) operation if it already holds a read
(shared) lock or a write (exclusive) lock on item X. This rule may be relaxed.

5. A transaction T will not issue a write_lock(X) operation if it already holds a read
(shared) lock or write (exclusive) lock on item X. This rule may also be relaxed.

AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 17

6. A transaction T will not issue an unlock(X) operation unless it already holds a
read (shared) lock or a write (exclusive) lock on item X.

Q.9 a. What are checkpoints and why are they important? List the actions

taken by the recovery manager during checkpoints.

Answer:
Checkpoint is a type of entry in the log . A checkpoint record is written into the log
periodically at that point when the system writes out to the database on disk all DBMS
buffers that have been modified. As a consequence of this, all transactions that have their
[commit, T] entries in the log before a checkpoint entry do not need to have their WRITE
operations redone in case of a system crash, since all their updates will be recorded in the
database on disk during checkpointing.

Actions taken by the recovery manager during Checkpoint

The recovery manager of a DBMS must decide at what intervals to take a checkpoint.
The interval may be measured in time—say, every m minutes—or in the number t of
committed transactions since the last checkpoint, where the values of m or t are system
parameters. Taking a checkpoint consists of the following actions:
1. Suspend execution of transactions temporarily.
2. Force-write all main memory buffers that have been modified to disk.
3. Write a [checkpoint] record to the log, and force-write the log to disk.
4. Resume executing transactions.
As a consequence of Step 2, a checkpoint record in the log may also include additional
information, such as a list of active transaction ids, and the locations (addresses) of the
first and most recent (last) records in the log for each active transaction. This can
facilitate undoing transaction operations in the event that a transaction must be rolled
back.

 b. Explain the term “steal and no-steal” approach in standard DBMS
recovery schemes.

Answer:
Standard DBMS recovery terminology includes the terms steal/no-steal, which specify
when a page from the database can be written to disk from the cache:
If a cache page updated by a transaction cannot be written to disk before the transaction
commits, this is called a no-steal approach. The pin-unpin bit indicates if a page cannot
be written back to disk. Otherwise, if the protocol allows writing an updated buffer before
the transaction commits, it is called steal. Steal is used when the DBMS cache (buffer)
manager needs a buffer frame for another transaction and the buffer manager replaces an
existing page that had been updated but whose transaction has not committed.
The deferred update recovery scheme follows a no-steal approach. However, typical
database systems employ a steal strategy. The advantage of steal is that it avoids the need
for a very large buffer space to store all updated pages in memory.

AC61/AT61 DATA BASE MANAGEMENT SYSTEMS JUNE 20014

© IETE 18

 c. Discuss the two main techniques for recovery from non-catastrophic
 transaction.

Answer:
The two main techniques for recovery from noncatastrophic transaction failures are
as follows:

• Deferred Update: The deferred update techniques do not physically update the
database on the disk until after a transaction reaches its commit point; then the
updates are recorded in the database. Before reaching commit, all transaction
updates are recorded in the local transaction workspace (or buffers). During
commit, the updates are first recorded persistently in the log and then written to
the database. If a transaction fails before reaching its commit point, it will not
have changed the database in any way, so UNDO is not needed. It may be
necessary to REDO the effect of the operations of a committed transaction from
the log, because their effect may not yet have been recorded in the database.
Hence, deferred update is also known as the NO-UNDO/REDO algorithm.

Immediate Update: In the immediate techniques, the database may be update by some
operations of a transaction before the transaction reaches its commit point. However,
these operations are typically recorded in the log on disk by force writing before they are
applied to the database, making recovery still possible. If a transaction fails after
recording some changes in the database but before reaching its commit point, the effect
of its operations on the database must be done; i.e., the transaction must be rolled back. In
the general case of immediate update, both undo and redo may be required during
recovery. This technique, known as the UNDO/REDO algorithm, requires both
operations, and is used most often in practice. A variation of the algorithm where all
updates are recorded in the database before a transaction commits requires undo also, so
it is known as the UNDO/NO-REDO algorithm.

TEXT BOOK

Fundamentals of Database systems, Elmasri, Navathe, Somayajalu, Gupta, Pearson
Education, 2006.

