
AC105/AT105 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 1

Q.2 a. Describe the basic characteristics of Object-Oriented Programming.

Answer:
The basic characteristics of Object-oriented Programming are:-

(i) Encapsulation – (Including in an object everything it needs, hiding elements that

other objects needn’t know about). This keeps data and related routines together
and un-clutters the large scale organization of the program. Each object has a
‘public’ set of routines that can be called, and these routines are all that other
objects need to know.

(ii) Inheritance (creating new types of objects from existing ones). Rather than having

many seemingly unrelated objects, objects can be organized hierarchically,
inheriting behavior. This simplifies the large-scale organization.

(iii) Polymorphism (different objects responding to the same message in different

ways). Rather than having a different routine to do the same thing to each of many
different types of objects, a single routine does the job. An example of this is how
the + operator can be overloaded in C++ so that it can be used with new classes.

 b. What is the main advantage of passing arguments by reference?

Explain this with an example.

Answer:
There may arise situations where we would like to change the values of variables in the
calling program. Passing arguments by reference is useful in object-oriented
programming because it permits the manipulation of objects by reference and eliminates
the copying of object parameters back and forth. References can be created not only for
built-in data types but also for user-defined data types such as structures and classes. This
means that when the function is working with its own arguments, it is actually working
on the original data. E.g. In sorting algorithms we compare two adjacent elements in the
list and interchange their values if the first element is greater than the second.

 c. What is the output of the following program? In view of these outputs,

explain the meaning of pre/post increment & pre/post decrement
operators.

 #include <iostream.h>
 #include<conio.h>
 void main()
 {
 int a=5,b=0;
 clrscr();
 b=b+(++a);
 cout<< “\n\nb =” <<b;
 b=b+(a++);
 cout<< “\n\nb =” <<b;

AC105/AT105 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 2

 b=b+(--a);
 cout<< “\n\nb =” <<b;

 b=b+(a--);
 cout<<“\n\nb=”<<b;
 getch();
 }

Answer:

#include<iostream.h>
#include<conio.h>
void main()
{
int a=5,b=0;
clrscr();
b=b+(++a); //pre-increament b=0+(6) a=6,b=6
cout << "\n\nb = "<<b;

b=b+(a++); //post-increament b=6+(6) a=7,b=12
cout << "\n\nb = "<<b;

b=b+(--a); //pre -decreament b=12+(6) a=6,b=18
cout << "\n\nb = "<<b;

b=b+(a--); //post -decreament b=18+(6) a=7,b=24
cout << "\n\nb = "<<b;
getch();
}
6
12
18
24

 Q.3 a. Write a program that read the student name and marks in three

subjects and display the total marks and percentage obtained by the
student. The program should declare the student as a structure and
read and write the elements accordingly.

Answer:

#include<stdio.h>
#include<iostream.h>
#include<conio.h>
struct student
{
 char name[20];
 int mark1,mark2,mark3;

AC105/AT105 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 3

};

void main()
{
 clrscr();
 float total,percent;
 student temp;
 cout<<"enter the student details :\n";
 cout<<"Name : ";
 cin>>temp.name;
 cout<<"Marks (out of 100) in three subjects\n";
 cin>>temp.mark1>>temp.mark2>>temp.mark3;
 total=(temp.mark1+temp.mark2+temp.mark3);
 cout<<"\nTotal marks = "<<total;
 cout<<"\nTotal Percentage = "<<(total/3);
}

 b. Write a C++ program to generate the following series:
 1 2 3 5 8 13 21 34.......

Answer:

#include<iostream.h>
#include<conio.h>
void main()
{
int size,a=0,b=1,c,i;
cout<< "\n\nEnter the size of the series : -";
cin >> size;
cout << "\n\n\t\t\t";

for(i=0;i<size;i++)
{
c=a+b;
cout <<" "<< c;
a=b;
b=c;
}
getch();
}

Q.4 a. Explain inline function in C++ using a suitable example. State various

situations where inline expansion may not work.

AC105/AT105 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 4

Answer:
Whenever we write functions, there are certain costs associated with it such as jumping to
the function, saving registers, pushing arguments into the stack and returning to the
calling function. To remove this overhead we write an inline function. It is a sort of
request to the compiler. If we declare and define a function within the class definition
then it is automatically inline. We do not need to sue the term inline.

function definition min()
inline void min (int x, int y)
cout<< (x < Y? x : y);
}
Void main()
{
int num1, num2;
cout<<”\Enter the two intergers\n”;
cin>>num1>>num2;
min (num1,num2; //function code inserted here

}

There are certain conditions in which an inline function may not work:
• If a function is returning some value and it contains a loop, a switch or a goto

statement.
• If a function is not returning a value and it contains a return statement.
• If a function contains a static variable.
• If the inline function is made recursive.

 b. Explain meaning of a reference and call by reference method. Write a

C++ program that swap two numbers using call by reference.

Answer:
A reference provides an alias – an alternate name – for the variable, i.e., the same
variable’s value can be used by two different names : the original name and the alias
name.
In call by reference method, a reference to the actual arguments(s) in the calling program
is passed (only variables). So the called function does not create its own copy of original
value(s) but works with the original value(s) with different name. Any change in the
original data in the called function gets reflected back to the calling function.

It is useful when you want to change the original variables in the calling function by the
called function.

//Swapping of two numbers using function call by reference
#include<iostream.h>
#include<conio.h>
void main()

AC105/AT105 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 5

{
clrscr();
int num1,num2;
void swap (int &, int &); //function prototype
cin>>num1>>num2;
cout<<”\nBefore swapping:\nNum1: “<<num1;
cout<<endl<<”num2: “<<num2;
swap(num1,num2); //function call
cout<<”\n\nAfter swapping : \Num1: “<<num1;
cout<<endl<<”num2: “<<num2;
getch();
}
//function fefinition swap()
void swap (int & a, int & b)
{
Int temp=a;
a=b;
b=temp;

 }

Q.5 a. Write a C++ program that implement the following specifications:
 A class that represent bank account number, type of accounts (s for

savings and c for current), balance amount.

 The class contains member functions to do the following:
 (i) To initialize the data member
 (ii) To deposit money
 (iii) To withdraw money after checking balance (minimum balance is

Rs. 1000/-)
 (iv) To display the data members

Answer:

#include<iostream.h>
#include<conio.h>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
class bank
{
 char name[25],type;
 long ac_no;
 float bal, amt;
 public:
 class bank *next;
 bank()
 {

AC105/AT105 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 6

 strcpy(name," ");
 type=' ';
 ac_no=0;
 bal=0;
 next=NULL;
 }
 void deposit()
 {
 cout<<endl<<"Amount to be deposited:-> ";
 cin>>amt;
 bal+=amt;
 cout<<endl<<"Amount deposited successfully";

 }
 void withdraw()
 {
 cout<<endl<<"How much u want to withdraw:-> ";
 cin>>amt;
 if(bal-amt >= 1000)
 {
 bal=amt;
 cout<<endl<<"Withdraw Done";
 }
 else
 {
 cout<<endl<<"amount exceeds the available balance ";
 getch();
 }
 }
 void showdata()
 {
 cout<<endl<<name<<'\t'<<ac_no<<'\t';
 if (type == 'S') cout<<"Savings";
 else
 if (type=='C') cout<<"Current";
 cout<<'\t'<<bal;

 }
 int search(long x)
 {
 if (ac_no==x)
 return 1;
 else
 return 0;

 }

AC105/AT105 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 7

 void getdata();
};
void bank::getdata()
{
 cout<<endl<<"Enter name of Account Holder:-> ";
 cin>>name;
 cout<<endl<<"Enter Account Number:-> ";
 cin>>ac_no;
 rep:
 cout<<endl<<"Enter type of Account S=Saving, C=Current):-> ";
 cin>>type;
 if (type!='S' && type !='C')
 {
 cout<<endl<<"Wrong Input";
 getch();
 goto rep;
 }
 cout<<endl<<"Enter Amount:-> ";
 cin>>bal;
 next=NULL;

}

void main()
{
 class bank *bptr=NULL, *tmp=NULL, *counter=NULL;
 int i=0,found=0,ch=0;

 long acno=0;

 while(1)
 {
 clrscr();
 cout<<endl<<"1. Add a new customer";
 cout<<endl<<"2. View Customer Details";
 cout<<endl<<"3. Deposit Amount";
 cout<<endl<<"4. Withdraw Amount";
 cout<<endl<<"5. Exit.";
 cout<<endl<<"Enter your choice:-> ";
 cin>>ch;
 switch(ch)
 {
 case 1: if (bptr==NULL)
 {
 bptr=new bank;
 if (bptr==NULL)

AC105/AT105 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 8

 {
 cout<<endl<<"Memory Allocation Problem";
 exit(1);
 }
 }
 else
 {
 tmp=new bank;
 if (tmp==NULL)
 {
 cout<<endl<<"Memory Allocation problem";
 exit(1);
 }
 tmp->getdata();
 for (counter=bptr; counter->next!=NULL;
counter=counter->next);
 counter->next=tmp;
 }
 break;
 case 2:
 cout<<endl<<"Name \t Ac. No. \t Type \tBalance \n";
 for (counter=bptr; counter!=NULL; counter=counter-
>next)
 counter->showdata();
 getch();
 break;

 case 3:
 cout<<endl<<"Enter the account no. to deposit ";
 long acno;
 cin>>acno;
 for (counter=bptr;counter!=NULL;counter=counter-
>next)
 {
 found=counter->search(acno);
 if(found==1)
 {
 counter->deposit();
 getch();
 break;
 }
 }
 if (found==0)
 {
 cout<<endl<<"Account does not exist ";
 getch();

AC105/AT105 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 9

 }
 break;
 case 4:

 cout<<endl<<"Enter the account no. to Withdraw ";
 cin>>acno;
 for (counter=bptr;counter!=NULL;counter=counter-
>next)
 {
 found=counter->search(acno);
 if(found==1)
 {
 counter->withdraw();
 break;
 }
 }
 if (found==0)
 {
 cout<<endl<<"Account does not exist ";
 getch();

 }
 break;

 case 5:exit(1);

 default: cout<<endl<<"Wrong Choice ";

 }//switch
 }
 getch();
}

 b. Why is a destructor function required in class? Can a destructor accept
 argument?

Answer:
 Just as a constructor is used to initialize an object when it is created, a destructor

is used to clean up the object just before it is destroyed. A destructor has the same
name as the class itself, but is preceded with a ~ symbol. Unlike constructors a
class may have at most one destructor. A destructor does not take any arguments
and has no explicit return type.

 e.g. the destructor for the class integer can be defined as shown below:

AC105/AT105 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 10

 ~ integer() { };

 The destructor will be invoked implicitly by the compiler upon exit from the

program (or block or function as the case may be) to clean up storage that is no
longer accessible. It is a good practice to declare destructors in a program since it
releases memory space for future use.

 Destructors are generally useful for classes which have pointer data

members which point to memory blocks allocated by the class itself. In
such cases it is important to release member-allocated memory before the
object is destroyed. A destructor can do just that. Whenever new is used
to allocate memory in the constructors, we should use delete to free that
memory. This is required because when the pointers to objects go out of
scope, a destructor is not called implicitly.

Q.6 a. What do you mean by operator overloading? What is the difference
between implementation of overloading unary and binary operators using member
and friend functions?

Answer:
When an operator is overloaded it doesn’t lose its original meaning but it gains an
additional meaning relative to the class for which it is defined. We can overload unary
and binary operators using member and friend functions.
When a member operator function overloads a binary operator the function will have
only one parameter. This parameter will receive the object that is on right of the operator.
The object on the left side is the object that generates the call to the operator function and
is passed implicitly by “this”.
Overloading a unary operator is similar to overloading a binary operator except that there
is only one operand to deal with. When you overload a unary operator using a member
function the function has no parameter. Since there is only one operand, it is this operand
that generates the call to the operator function.
Overloading operator using a friend function: as we know that a friend function does not
have a ‘this’ pointer. Thus in cases of overloading a binary operator two arguments are
passed to a friend operator function. For unary operator, single operand is passed
explicitly.

 b. Illustrate with an example the overloading of ++ operator for
 incrementing.

Answer:
include<iostream>
using namespace std;

//Increment and decrement overloading
class Inc {
 private:

AC105/AT105 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 11

 int count ;
 public:
 Inc() {
 //Default constructor
 count = 0 ;
 }

 Inc(int C) {
 // Constructor with Argument
 count = C ;
 }

 Inc operator ++ () {
 // Operator Function Definition
 return Inc(++count);
 }

 void display(void) {
 cout << count << endl ;
 }
};

void main(void) {
 Inc a, b(4), c, d, e(1), f(4);

 cout << "Before using the operator ++()\n";
 cout << "a = ";
 a.display();
 cout << "b = ";
 b.display();
 ++a;
 b++;
 cout << "After using the operator ++()\n";
 cout << "a = ";
 a.display();
 cout << "b = ";
 b.display();
 c = ++a;
 d = b++;
 cout << "Result prefix (on a) and postfix (on b)\n";
 cout << "c = ";
 c.display();
 cout << "d = ";
 d.display();

AC105/AT105 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 12

}

Q7 a. What is polymorphism? Differentiate between compile-time and run-time
polymorphism using suitable examples.

Answer:
The information is known to the compiler at the compile time and, therefore compiler is
able to select the appropriate function for a particular call at the compile time itself. This
is called early binding or static binding.
The linking of function with a class much later after the compilation, this process is
termed as late binding or dynamic binding because the selection of the appropriate
function is done dynamically at run time. This requires the use of pointers to objects.
(write small C++ programs for illustration)

 b. Is it possible for a derived class to inherit two or more base classes?

Explain how it is implemented in C++ using an example program and
its output.

Answer:
It is possible for a derived class to inherit two or more base classes. For example, in this
short example, derived inherits both base1 and base2.
// An example of multiple base classes.

#include <iostream>
using namespace std;
class base1 {
protected:
int x;
public:
void showx() { cout << x << "\n"; }
};
class base2 {
protected:
int y;
public:
void showy() {cout << y << "\n";}
};
// Inherit multiple base classes.
class derived: public base1, public base2 {
public:
void set(int i, int j) { x=i; y=j; }
};
int main()
{
derived ob;
ob.set(10, 20); // provided by derived
ob.showx(); // from base1

AC105/AT105 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 13

ob.showy(); // from base2
return 0;
}

Q8. a. What is a class template? Write a template-based complete program

for adding two objects of the vector class.

Answer:
The class template definition is very similar to an ordinary class definition except the
prefix template<class T> and the use of type T. This prefix tells the complier that we are
going to declare a template and use T as a type name in the Declaration. Thus, vector has
become a parameterized class with the type T as its parameters. T may be substituted by
any data type including the user defined types. Now we can create vectors for holding
different data types.

Example;

vector<int> v1(10); //10 element int vector
vector<float> v2(30); //30 element float vector
The type T may represent a class name as well.

Example:

Vector<complex> v3 (5); // vector of 5 complex numbers
A class created from a class template is called a template class. The syntax for defining
an object of a template class is:
Classname<type> objectname (arglist);
This process of creating a specific class from a class template is called instantiation. The
complier will perform the error analysis only when an instantiating take place. It is,
therefore, advisable to create and debug an ordinary class before converting it in to
template.

 b. How is an exception handled in C++? Write a program that illustrates

the application of multiple catch statements.

Answer:
 C++ exception handling is built upon 3 keywords: try, catch and throw.

• The ‘try’ block contains program statements that we want
to monitor for exceptions.

• The ‘throw’ block throws an exception to the ‘catch’ block
if it occurs within the try block.

• The ‘catch’ block proceeds on the exception thrown by the
‘throw’ block.

When an exception is thrown, it is caught by its corresponding catch statement, which
processes the exception. there can be more that one catch statement associated with a try.

AC105/AT105 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 14

The catch statement that is used is determined by the type of the exception. An example
illustrates the working of the three blocks.

It is possible that arguments of several catch statements match the type of an exception.
In such cases, the first handler that matches the exception type is executed.

#include<iostream.h>
void test(int x)
{
 try

{
 if (x == 1) throw x; //int
 else
 if(x == 0) throw ‘x’; //char
 else
 if(x == -1) throw 1.0; //double
 cout<<”End of try-block \n”;
}
catch(char c) //Catch 1
{
 cout<<” Caught a Character \n”;
}
catch(int c) //Catch 2
{
 cout<<” Caught an integer \n”;
}
catch(double d) //Catch 3
{
 cout<<” Caught a double \n”;
}
cout<<” End of try-catch system \n\n”;

}
void main()
{
 cout<<” Testing Multiple catches \n”;
 cout<<” x == 1 \n”;

test(1);
cout<<” x == 0 \n”;
test(0);
cout<<” x == -1 \n”;
test(-1);
cout<<” x == 2 \n”;
test(2);

}

AC105/AT105 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 15

Q9. a. Using a suitable C++ program, illustrate the meaning of following ios
function: width(), fill() and precision().

Answer:
By default, when a value is output, it occupies only as much space as the number of
characters it takes to display it. However, you can specify a minimum field width by
using the width() function. Its prototype is shown here:

streamsize width(streamsize w);
Here, w becomes the field width, and the previous field width is returned. In some
implementations, the field width must be set before each output. If it isn't, the default
field width is used. The streamsize type is defined as some form of integer by the
compiler.
After you set a minimum field width, when a value uses less than the specified width, the
field will be padded with the current fill character (space, by default) to reach the field
width. If the size of the value exceeds the minimum field width, the field will be overrun.
No values are truncated.
When outputting floating-point values, you can determine the number of digits to be
displayed after the decimal point by using the precision() function. Its prototype is shown
here:

streamsize precision(streamsize p);
Here, the precision is set to p, and the old value is returned. The default precision is 6.
In some implementations, the precision must be set before each floating-point output.
If it is not, then the default precision will be used.
By default, when a field needs to be filled, it is filled with spaces. You can specify the fill
character by using the fill() function. Its prototype is

char fill(char ch);
After a call to fill() , ch becomes the new fill character, and the old one is returned.
Here is a program that illustrates these functions:

#include <iostream>
using namespace std;
int main()
{
cout.precision(4) ;
cout.width(10);
cout << 10.12345 << "\n"; // displays 10.12
cout.fill('*');
cout.width(10);
cout << 10.12345 << "\n"; // displays *****10.12
// field width applies to strings, too
cout.width(10);
cout << "Hi!" << "\n"; // displays *******Hi!
cout.width(10);
cout.setf(ios::left); // left justify
cout << 10.12345; // displays 10.12*****
return 0;
}

AC105/AT105 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 16

This program's output is shown here:
10.12
*****10.12
*******Hi!
10.12*****

 b. Briefly explain the three foundational items of the standard template
 library(STL):
 containers, algorithms and iterators

Answer:
Containers: Containers are objects that hold other objects, and there are several different
types. For example, the vector class defines a dynamic array, deque creates a double-
ended queue, and list provides a linear list. These containers are called sequence
containers because in STL terminology, a sequence is a linear list. In addition to the basic
containers, the STL also defines associative containers, which allow efficient retrieval of
values based on keys. For example, a map provides access to values with unique keys.
Thus, a map stores a key/value pair and allows a value to be retrieved given its key.
Each container class defines a set of functions that may be applied to the container.
For example, a list container includes functions that insert, delete, and merge elements.
A stack includes functions that push and pop values.
Algorithms: Algorithms act on containers. They provide the means by which you will
manipulate the contents of containers. Their capabilities include initialization, sorting,
searching, and transforming the contents of containers. Many algorithms operate on a
range of elements within a container.
Iterators: Iterators are objects that are, more or less, pointers. They give you the ability
to cycle through the contents of a container in much the same way that you would use a
pointer to cycle through an array. There are five types of iterators:
Iterator Access Allowed
Random Access Store and retrieve values. Elements may be accessed randomly.
Bidirectional Store and retrieve values. Forward and backward moving.
Forward Store and retrieve values. Forward moving only.
Input Retrieve, but not store values. Forward moving only.
Output Store, but not retrieve values. Forward moving only.
In general, an iterator that has greater access capabilities can be used in place of one that
has lesser capabilities. For example, a forward iterator can be used in place of an input
iterator.
Iterators are handled just like pointers. You can increment and decrement them.
You can apply the * operator to them. Iterators are declared using the iterator type
defined by the various containers.
The STL also supports reverse iterators. Reverse iterators are either bidirectional or
random-access iterators that move through a sequence in the reverse direction. Thus, if a
reverse iterator points to the end of a sequence, incrementing that iterator will cause it to
point to one element before the end.

AC105/AT105 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 17

Text Book

C++ & Object-Oriented Programming Paradigm, Debasish Jana, 2nd Edition, PHI,
2005.

	There may arise situations where we would like to change the values of variables in the calling program. Passing arguments by reference is useful in object-oriented programming because it permits the manipulation of objects by reference and eliminates...

