Q.2 a. Explain the formation of N-type and P-type semiconductors.

Answer: Page Number 11-12 of Text Book I.

b. Explain the forward and reverse characteristics of a PN junction diode.

**Answer:** Page Number 35-36 of Text Book I.

c. Calculate the resistivity of Si at 300K. If donor impurity to the extent of 1 part of  $10^8$  atoms of Si is added. Find the density of minority carriers and the resistivity.

**Answer:** Page Number 13 of Text Book I.

Q.3 a. Draw the circuit of bridge rectifier & explain its working with the waveforms. Also obtain the expression of its PIV and conversion efficiency.

**Answer:** Page Number 77-78 of Text Book I.

b. Draw the circuits of series clipping circuits and explain its working with waveforms.

**Answer:** Page Number 113-114 of Text Book I.

Q.4 a. Explain the operation of NPN transistor with neat diagrams and also discuss, its operating modes and applications.

**Answer:** Page Number 145-147 of Text Book I.

b. Draw the circuit of collector to base bias and explain. Also obtain the expression of its stability factor.

**Answer:** Page Number 192-193 of Text Book I.

Q.5 a. Explain the capacitor coupled two stage CE amplifier with a neat circuit diagram.

Answer: Page Number 485-486 of Text Book I.

b. Explain the effect of negative feedback on Input Impedance, Output Impedance and bandwidth of voltage series and current shunt feedback amplifier.

**Answer:** Page Number 581-582 of Text Book I.

# Q.6 a. What are the advantages and limitations of digital techniques?

**Answer:** Page Number 6-7 of Text Book II.

b. Explain BCD code and compare it with binary code.

**Answer:** Page Number 38-39 of Text Book II.

### c. Perform the following conversions:

(i) 
$$(1001.101)_2 = ()_{10}, (10101)_2 = ()_{16}$$

**(ii)** 
$$(-42)_{10} = ()_{10}$$

**(iii)** 
$$(4FF)_{16} = ()_8$$

**Answer:** 

(i) 
$$(1001.101)_2 = (9.625)_{10}$$
  
 $(10101)_2 = (15)_{16}$ 

(ii) 
$$42 = (101010)$$
  
 $-42 = 1010110$ 

(iii) 
$$(4FF)_{16} = (0100111111111)2$$
  
=  $(1377)_{8}$ 

d. What are gray codes? Discuss its properties and applications in digital systems. Convert  $(11101)_2$  into gray code.

**Answer:**  $(11101)_2 = 10011 \rightarrow \text{Gray code.}$ 

## Q.7 a. Explain the universality of NAND and NOR gates.

Answer: Page Number 83-84 of Text Book II.

**b.** Simplify the expression  $y = \overline{C}(\overline{A}\overline{B}\overline{D} + D) + A\overline{B}C + \overline{D}$  using Karnaugh map.

Answer: Page Number 130-131 of Text Book II.

c. Implement two input XOR using four NAND gates only.

#### **Answer:**



Q.8 a. Draw the block diagram of a 5 bit parallel adder circuit and explain.

Answer: Page Number 283-285 of Text Book II.

b. What is a Decoder? Explain with a diagram the working of a 3 line to 8 line decoder.

Answer: Page Number 504-505 of Text Book II.

c. Implement full subtractor using  $3 \times 8$  multiplexers.

#### **Answer:**



Q.9 a. Explain the working of a clocked D flip flop with neat diagram and waveforms. Implement T flip-flop using D flip-flop.

**Answer:** Page Number 201-202 of Text Book II.

b. Draw the diagram of a Mod-8 Counter and explain its working with waveforms.

Answer: Page Number 336-337 of Text Book II.

### **TEXT BOOKS**

- 1) Electronic Devices and Circuits by David A Bell, 5<sup>th</sup> Edition, Oxford University Press.
- 2) Digital Systems Principles and Applications by Ronald J. Tocci & Neil S Widmer, 8<sup>th</sup> Edition of Pearson Education.