
DC65 SOFTWARE ENGINEERING JUNE 2013

© IETE 1

Q 2 (a) What do you mean by system requirement and system design?

Answer

A requirement is an objective that must be met. Planners cast most requirements in
functional terms, leaving design and implementation details to the developers. They may
specify price, performance, and reliability objectives in fine detail, along with some
aspects of the user interface. Sometimes, they describe their objectives more precisely
than realistically. There are actually several kinds of requirements; the term requirement
is awkward because it describes the concept of an objective or goal or necessary
characteristic, but at the same time the term also describes a kind of formal
documentation, namely the requirements document. Putting aside the particular document
for now, requirements are instructions describing what functions the software is supposed
to provide, what characteristics the software is supposed to have, and what goals the
software is supposed to meet or to enable users to meet.

Design objectives assist in selecting a solution from a number that are offered to you.
Only you know what is the most important feature of a new system, whether it should be
fast, have large storage, be easy to use, or whatever. Unfortunately you can’t have all you
want; compromises have to be made. A number of teams were given an identical set of
functional requirements, but each had a different design objective: some had to make the
system fast, some small to use only a small amount of computer storage, some easy to
use, etc. Each team delivered a system that met their top objective fully, and other
objectives to a lesser degree. If you do not produce a set of design objectives, which are
in a priority order, the developers will produce their own, and these might not be what
you want. For the customer records example the top design objective could be that it easy
for users to find customer information.

Q 2 (b) With the help of a suitable diagram, explain the software lifecycle.

Answer

DC65 SOFTWARE ENGINEERING JUNE 2013

© IETE 2

The relationship of each stage to the others can be roughly described as a waterfall, where
the outputs from a specific stage serve as the initial inputs for the following stage.
During each stage, additional information is gathered or developed, combined with the
inputs, and used to produce the stage deliverables. It is important to note that the
additional information is restricted in scope; “new ideas” that would take the project in
directions not anticipated by the initial set of high-level requirements are not incorporated
into the project. Rather, ideas for new capabilities or features that are out-of-scope are
preserved for later consideration.
After the project is completed, the Primary Developer Representative (PDR) and
Primary End-User Representative (PER), in concert with other customer and
development team personnel develop a list of recommendations for enhancement of the
current software.

Q 2 (c) Explain the risk management process. What are the different categories of
risk?

Answer
Risk management identifies a new type of a risk that has a 100% probability of occurring
but is ignored by the organization due to a lack of identification ability. For example,
when deficient knowledge is applied to a situation, a knowledge risk materializes.
Relationship risk appears when ineffective collaboration occurs. Process-engagement risk
may be an issue when ineffective operational procedures are applied. These risks directly
reduce the productivity of knowledge workers, decrease cost effectiveness, profitability,
service, quality, reputation, brand value, and earnings quality. Intangible risk
management allows risk management to create immediate value from the identification
and reduction of risks that reduce productivity.
Risk management also faces difficulties in allocating resources. This is the idea of
opportunity cost. Resources spent on risk management could have been spent on more
profitable activities. Again, ideal risk management minimizes spending and minimizes
the negative effects of risks.
“Risk are future uncertain events with a probability of occurrence and a potential for
loss”
Risk identification and management are the main concerns in every software project.
Effective analysis of software risks will help to effective planning and assignments of
work.

Types of risks:

ScheduleRisk:
Project schedule get slip when project tasks and schedule release risks are not addressed
properly. Schedule risks mainly affect on project and finally on company economy and
may lead to project failure.
Schedules often slip due to following reasons:
Budget Risk:
Wrong budget estimation.
Cost overruns

http://en.wikipedia.org/wiki/Knowledge

DC65 SOFTWARE ENGINEERING JUNE 2013

© IETE 3

 Project scope expansion
Operational Risks:
Risks of loss due to improper process implementation, failed system or some external
events risks.
Technical risks:Programmatic Risks:
These are the external risks beyond the operational limits. These are all uncertain risks are outside
 the control of the program.

Q 3 (a) Differentiate between the functional and non functional requirements.

Answer
Basically, functional requirements directly support the user requirements by describing
the "processing" of the information or materials as inputs or outputs. Nonfunctional
requirements generally support all users in that they describe the business standards and
the business environment, as well as the overall user's experience (user attributes).
Functional Nonfunctional
Product features Product properties
Describe the work that is done Describe the character of the work
Describe the actions with which the work
is concerned

Describe the experience of the user while
doing the work

Characterized by verbs Characterized by adjectives
The functional requirements specify what the product must do. They relate to the actions.

Q 3 (b) What are the various activities performed during the requirement
engineering process.

Answer
Requirements engineering can be divided into discrete chronological steps:

1. Requirements elicitation,
2. Requirements analysis and negotiation,
3. Requirements specification,
4. System modeling,
5. Requirements validation,
6. Requirements management.

Requirement engineering is "a sub discipline of systems engineering and software
engineering that is concerned with determining the goals, functions, and constraints of
hardware and software systems.” In some life cycle models, the requirement engineering
process begins with a feasibility study activity, which leads to a feasibility report. If the
feasibility study suggests that the product should be developed, then requirement analysis
can begin. If requirement analysis precedes feasibility studies, which may foster outside
the box thinking, then feasibility should be determined before requirements are finalized.

http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_development_life_cycle
http://en.wikipedia.org/wiki/Outside_the_box
http://en.wikipedia.org/wiki/Outside_the_box
http://en.wikipedia.org/wiki/Outside_the_box

DC65 SOFTWARE ENGINEERING JUNE 2013

© IETE 4

Q 4 (a) Explain the various stages of software specification and its interface
with the design process.

Answer
A software development process, also known as a software development lifecycle, is a
structure imposed on the development of a software product. Similar terms include
software life cycle and software process. There are several models for such processes,
each describing approaches to a variety of tasks or activities that take place during the
process. Some people consider a lifecycle model a more general term and a software
development process a more specific term. For example, there are many specific software
development processes that 'fit' the spiral lifecycle model.

Q 4 (b) With the help of a neat diagram, draw and explain the RAD model.

Answer
Rapid application development (RAD) refers to a type of software development
methodology that uses minimal planning in favor of rapid prototyping. The "planning" of
software developed using RAD is interleaved with writing the software itself. The lack of
extensive pre-planning generally allows software to be written much faster, and makes it
easier to change requirements.
“Rapid Application
Development (RAD) is a development lifecycle designed to give much faster
development and higher-quality results than those achieved with the traditional lifecycle.
It is designed to take the maximum advantage of powerful development software that has
evolved recently.”
RAD (rapid application development) is a concept that products can be developed faster
and of higher quality through:
Gathering requirements using workshops or focus groups
Prototyping and early, reiterative user testing of designs

http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_Lifecycle_Processes
http://en.wikipedia.org/wiki/Software_development_process#Software_Development_Models
http://en.wikipedia.org/wiki/Software_development_process#Software_development_activities

DC65 SOFTWARE ENGINEERING JUNE 2013

© IETE 5

The re-use of software components
A rigidly paced schedule that defers design improvements to the next product version
Less formality in reviews and other team communication
Rapid Application Development encouraged the creation of quick-and-dirty prototype-
style software which fulfilled most of the user’s requirements but not necessarily all.
Development would take place in a series of short cycles, called time boxes, each of
which would deepen the functionality of the application a little more. Features to be
implemented in each time box were agreed in advance and this game plan rigidly
adhered to. The strong emphasis on this point came from unhappy experience with
other development practices in which new requirements would tend to be added as the
project was evolving, caused massive chaos and disrupting the already carefully
prepared plans and development schedules. Rapid Application Development
methodology advocated that development be undertaken by small, experienced teams
using CASE (Computer Aided Software Engineering) tools to enhance their
productivity.

Q 5 (a) Explain Modular Decomposition Style. Also write various properties of a

modular system.

Answer Page Number 276 of Text Book

Q 5 (b) Differentiate between two-tier Client Server approach and three-tier
Client Server architecture.

Answer
2-tier architecture
In 2-tier, the application logic is either buried inside the User Interface on the client or
within the database on the server (or both). With two tier client/server architectures, the
user system interface is usually located in the user's desktop environment and the
database management services are usually in a server that is a more powerful machine
that services many clients

3-tier architecture
In 3-tier, the application logic (or) process lives in the middle-tier, it is separated from the
data and the user interface. 3-tier systems are more scalable, robust and flexible. In
addition, they can integrate data from multiple sources. In the three tier architecture, a
middle tier was added between the user system interface client environment and the
database management server environment.
There are a variety of ways of implementing this middle tier, such as transaction
processing monitors, message servers, or application servers. The middle tier can perform
queuing, application execution, and database staging. For example, if the middle tier
provides queuing, the client can deliver its request to the middle layer and disengage
because the middle tier will access the data and return the answer to the client
The most basic type of three tier architecture has a middle layer consisting of Transaction
Processing (TP) monitor technology. The TP monitor technology is a type of message
queuing, transaction scheduling, and prioritization service where the client connects to

DC65 SOFTWARE ENGINEERING JUNE 2013

© IETE 6

the TP monitor (middle tier) instead of the database server. The transaction is accepted by
the monitor, which queues it and then takes responsibility for managing it to completion,
thus freeing up the client.

Q 6 (a) Explain different stages of an object oriented design process. Use

suitable examples wherever necessary.

Answer
 Object-Oriented Design is concerned with developing an object-oriented

model of a software system to implement the identified requirements. The
objects in an object oriented design are related to the solution to the
problem that is being solved. There may be close relationships between
some problem objects and some solution objects but the designer
inevitably has to add new objects and to transform problem objects to
implement the solution.

 1. Understand and define the context and the modes of use of the system.
 2. Design the system architecture
 3. Identify the principal objects in the system
 4. Develop design models
 5. Specify object interfaces

Q 6 (b) Discuss the benefits and problems of software reuse.

Answer
Benefits of reuse
Increased dependability
Reused software, that has been tried and tested in working systems, should be m ore
dependable than new software. The initial use of the software reveals any design and
implementation faults. These are then fixed, thus reducing the number of failures when
the software is reused.

Reduced process risk
If software exists, there is less uncertainty in the costs of reusing that software than in the
costs of development. This is an important factor for project management as it reduces
the margin of error in project cost estimation. This is particularly true when relatively
large software components such as sub-systems are reused.

Effective use of specialists
Instead of application specialists doing the same work on different projects, these
specialists can develop reusable software that encapsulate their knowledge.

Standards compliance
Some standards, such as user interface standards, can be implemented as a set of standard
reusable components. For example, if menus in a user interfaces are implemented using
reusable components, all applications present the same menu formats to users. The use of

DC65 SOFTWARE ENGINEERING JUNE 2013

© IETE 7

standard user interfaces improves dependability as users are less likely to make mistakes
when presented with a familiar interface.

Accelerated development
Bringing a system to market as early as possible is often more important than overall
development costs. Reusing software can speed up system production because both
development and validation time should be reduced.

Reuse problems

Increased maintenance Costs
If the source code of a reused software system or component is not available then
maintenance costs may be increased as the reused elements of the system may become
increasingly incompatible with system changes.

Lack of tool support
CASE toolsets may not support development with reuse. It may be difficult or impossible
to integrate these tools with a component library system. The software process assumed
by these tools may not take reuse into account.

Not-invented-here Syndrome
Some software engineers sometimes prefer to re-write components as they believe that
they can improve on the reusable component. This is partly to do with trust and partly to
do with the fact that writing original software is seen as more challenging than reusing
other people’s software.

Creating and maintaining a component library
 Populating a reusable component library and ensuring the software

developers can use this library can be expensive. Our current techniques
for classifying, cataloguing and retrieving software components are
immature.

Q 7 (a) Explain the general principles of user interface design.

Answer

structure The principle. Your design should organize the user interface purposefully, in
meaningful and useful ways based on clear, consistent models that are apparent and
recognizable to users, putting related things together and separating unrelated things,
differentiating dissimilar things and making similar things resemble one another. The
structure principle is concerned with your overall user interface architecture.

1. The simplicity principle. Your design should make simple, common tasks simple
to do, communicating clearly and simply in the user’s own language, and
providing good shortcuts that are meaningfully related to longer procedures.

DC65 SOFTWARE ENGINEERING JUNE 2013

© IETE 8

2. The visibility principle. Your design should keep all needed options and
materials for a given task visible without distracting the user with extraneous or
redundant information. Good designs don’t overwhelm users with too many
alternatives or confuse them with unneeded information.

3. The feedback principle. Your design should keep users informed of actions or
interpretations, changes of state or condition, and errors or exceptions that are
relevant and of interest to the user through clear, concise, and unambiguous
language familiar to users.

4. The tolerance principle. Your design should be flexible and tolerant, reducing
the cost of mistakes and misuse by allowing undoing and redoing, while also
preventing errors wherever possible by tolerating varied inputs and sequences
and by interpreting all reasonable actions reasonable.

5. The reuse principle. Your design should reuse internal and external components
and behaviors, maintaining consistency with purpose rather than merely arbitrary
consistency, thus reducing the need for users to rethink and remember.

Q 7 (b) Explain the basic elements of a component model. Write a brief note on
CBSE.

Answer
Software component technology, which is based on building software systems from
reusable components, has attracted attention because it is capable of reducing
developmental costs. In a narrow sense, a software component is defined as a unit of
composition, and can be independently exchanged in the form of an object code without
source codes. The internal structure of the component is not available to the public.
The characteristics of the component-based development are the following:

• Black-box reuse
• Reactive-control and component's granularity
• Using RAD (rapid application development) tools
• Contractually specified interfaces
• Introspection mechanism provided by the component systems
• Software component market (CALS)

Q 8 (a) Differentiate between Verification and Validation.

Answer
 Verification is quality control in which we only take corrective actions

and Verification is quality assurance which involves preventive actions.
Software companies combine both verification and validation in their
software quality assurance departments to produce high quality software.
Software Quality Assurance is an essential part of Software Development
Life Cycle and Software Testing comes under Software Quality
Assurance. Validation and Verification are part of Software Quality
Assurance and Software Testing.
To understand the basic concept of Verification and Validation, let's

DC65 SOFTWARE ENGINEERING JUNE 2013

© IETE 9

discuss them separately.
Verification is a process of ensuring that every product is designed
according to the user requirements. Reviews and meetings are conducted
to evaluate different documents. These include requirements,
specifications, plans and code. Evaluation of all these documents is done
via checklists, walkthroughs and inspections. After completion of
verification we move one step further and start validation.
Validation involves the actual testing where we check the program design
to see if it is according to the intended design. Validation is performed
both by software developers and software testers. Unit testing comes under
validation and it is performed by Software developers in order to check
that their code is working correctly. Alpha and beta testing also comes
under validation.

Q 8 (b) What are the different levels of testing? Explain briefly.

Answer
1. Levels of testing
•Unit Testing
Unit testing refers to tests that verify the functionality of a specific section of code,
usually at the function level. In an object-oriented environment, this is usually at the class
level, and the minimal unit tests include the constructors and destructors.
These type of tests are usually written by developers as they work on code (white-box
style), to ensure that the specific function is working as expected. One function might
have multiple tests, to catch corner cases or other branches in the code. Unit testing alone
cannot verify the functionality of a piece of software, but rather is used to assure that the
building blocks the software uses work independently of each other.

Unit testing is also called component testing

•Integration Testing

Integration testing is any type of software testing that seeks to verify the interfaces
between components against a software design. Software components may be integrated
in an iterative way or all together ("big bang"). Normally the former is considered a better
practice since it allows interface issues to be localised more quickly and fixed.

Integration testing works to expose defects in the interfaces and interaction between
integrated components (modules). Progressively larger groups of tested software
components corresponding to elements of the architectural design are integrated and
tested until the software works as a system.[

•System Testing

System testing tests a completely integrated system to verify that it meets its
requirements.

http://en.wikipedia.org/wiki/System_testing

DC65 SOFTWARE ENGINEERING JUNE 2013

© IETE 10

•Acceptance Testing

Acceptance testing can mean one of two things:

1. A smoke test is used as an acceptance test prior to introducing a new build to the
main testing process, i.e. before integration or regression.

2. Acceptance testing is performed by the customer, often in their lab environment
on their own hardware, is known as user acceptance testing (UAT). Acceptance
testing may be performed as part of the hand-off process between any two phases
of development.

•Regression testing
Regression testing focuses on finding defects after a major code change has occurred.
Specifically, it seeks to uncover software regressions, or old bugs that have come back.
Such regressions occur whenever software functionality that was previously working
correctly stops working as intended. Typically, regressions occur as an unintended
consequence of program changes, when the newly developed part of the software collides
with the previously existing code. Common methods of regression testing include re-
running previously run tests and checking whether previously fixed faults have re-
emerged. The depth of testing depends on the phase in the release process and the risk of
the added features. They can either be complete, for changes added late in the release or
deemed to be risky, to very shallow, consisting of positive tests on each feature, if the
changes are early in the release or deemed to be of low risk

Q 9 (b) What is SQA? Discuss different software quality factors.

Answer
Software quality assurance (SQA) consists of a means of monitoring the software
engineering processes and methods used to ensure quality. The methods by which this is
accomplished are many and varied, and may include ensuring conformance to one or
more standards, such as ISO 9000 or a model such as CMMI
A software quality factor is a non-functional requirement for a software program which is
not called up by the customer's contract, but nevertheless is a desirable requirement
which enhances the quality of the software program. Note that none of these factors are
binary; that is, they are not “either you have it or you don’t” traits. Rather, they are
characteristics that one seeks to maximize in one’s software to optimize its quality. So
rather than asking whether a software product “has” factor x, ask instead the degree to
which it does (or does not).

 Some software quality factors are listed here:

 Understandability
Clarity of purpose. This goes further than just a statement of purpose; all of the
design and user documentation must be clearly written so that it is easily

http://en.wikipedia.org/wiki/Smoke_testing#Smoke_testing_in_software_development
http://en.wikipedia.org/wiki/Integration_testing
http://en.wikipedia.org/wiki/Regression_testing
http://en.wikipedia.org/wiki/Acceptance_testing#User_acceptance_testing
http://en.wikipedia.org/wiki/Software_regression
http://en.wikipedia.org/wiki/Unintended_consequence
http://en.wikipedia.org/wiki/Unintended_consequence
http://en.wikipedia.org/wiki/Unintended_consequence
http://en.wikipedia.org/wiki/Risk_management
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/ISO_9000
http://en.wikipedia.org/wiki/CMMI

DC65 SOFTWARE ENGINEERING JUNE 2013

© IETE 11

understandable. This is obviously subjective in that the user context must be taken
into account: for instance, if the software product is to be used by software
engineers it is not required to be understandable to the layman.

 Completeness
Presence of all constituent parts, with each part fully developed. This means that
if the code calls a subroutine from an external library, the software package must
provide reference to that library and all required parameters must be passed. All
required input data must also be available.

 Conciseness
Minimization of excessive or redundant information or processing. This is
important where memory capacity is limited, and it is generally considered good
practice to keep lines of code to a minimum. It can be improved by replacing
repeated functionality by one subroutine or function which achieves that
functionality. It also applies to documents.

Text Book

Software Engineering, Ian Sommerville, 7th Edition, Pearson Education,

2004

http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Software_library
http://en.wikipedia.org/wiki/Data_redundancy
http://en.wikipedia.org/wiki/Lines_of_code

