
DC61 OPERATING SYSTEMS & SYSTEMS SOFTWARE

JUNE 2013

© IETE 1

Q 2 (a) Compare and contrast Multiprogramming system with time sharing system.

Answer

Multiprogramming vs Time Sharing Systems: Multiprogramming is the allocation of
more than one concurrent program on a computer system and its resources.
Multiprogramming allows using the CPU effectively by allowing various users to use the
CPU and I/O devices effectively. Multiprogramming makes sure that the CPU always has
something to execute, thus increases the CPU utilization. On the other hand, Time
sharing is the sharing of computing resources among several users at the same time.
Since this will allow a large number of users to work in a single computer system at the
same time, it would lower the cost of providing computing capabilities.

Difference between Multiprogramming System and Time Sharing System: Main
difference between multiprogramming and time sharing is that multiprogramming is the
effective utilization of CPU time, by allowing several programs to use the CPU at the
same time but time sharing is the sharing of a computing facility by several users that
want to use the same facility at the same time. Each user on a time sharing system gets
her own terminal and gets the feeling that she is using the CPU alone. Actually, time
sharing systems use the concept of multiprogramming to share the CPU time between
multiple users at the same time.

 Q2 (b) With the help of suitable diagram, list the various elements of a Process
Control Block.

Answer Process Page No.320 and 325 of textbook.

Q3 (a) What is process scheduling? Explain the different sub-functions of process
scheduling.

Answer

 Scheduling is a key part of the workload management software which usually perform

some or all of:

 Queuing

 Scheduling

 Monitoring

 Resource management

 Accounting

The difficult part of scheduling is to balance policy enforcement with resource

optimization in order to pick the best job to run. Essentially one can think of the

DC61 OPERATING SYSTEMS & SYSTEMS SOFTWARE

JUNE 2013

© IETE 2

scheduler performing the following loop:

 Select the best job to run, according to policy and available resources.

 Start the job.

 Stop the job and/or clean up after completion.

 repeat.

Process scheduling consists of the following sub-functions:

1. Scheduling: Selects the process to be executed next on the CPU. The scheduling

function uses information from the PCB’s and selects a process based on the scheduling

policy in force.

2. Dispatching: Sets up execution of the selected process on the CPU. This function

involves setting up the execution environment of the selected process, and loading

information from the PSR and registers fields of the PCB into the CPU.

3. Context save: Saves the status of a running process when its execution is to be

suspended. This function performs housekeeping whenever a process releases the CPU or

is pre-empted.

Use of scheduling sub functions: Occurrence of an event invokes the context save

function. The kernel now processes the event that has occurred. The scheduling function

is now invoked to select a process for execution on the CPU. The dispatching function

arranges execution of the selected function on the CPU.The dispatching function arranges

execution of the selected function on the CPU.

Event

Context save

Event processing

Scheduling

Dispatching

DC61 OPERATING SYSTEMS & SYSTEMS SOFTWARE

JUNE 2013

© IETE 3

Q 3 (b) Define deadlock. Explain the conditions that are required for a deadlock to
occur.

Answer Page Number 376-377 of Textbook

Q 4 (a) Explain critical section problem in relation to process synchronization. List
various requirements that critical section problem solution must satisfy.

Answer

Critical Section Problem:

• Consider a system consisting of n processes {Po, P1, Pn-1.} Each process has a

segment of code, caIled a critical sectio'. .in which the process may be changing

common variables, updating a table, writing a file, and so on. The important

feature of the system is that, when one process is executing in its critical section,

no other process is to be allowed to execute in its critical section. Thus, the

execution of critical sections by the processes is mutually exclusive in time. The

critical-section problem is to design a protocol at the processes can use to

cooperate. Each process request permission to enter its critical section.

• The section of code implementing this request is the entry section. The critical

section may be followed by an exit section. The remaining code is the

remainder section·

Solutions to Critical Section Problem:

A solution to the critical-section problem must satisfy the following three

requirements:

1. Mutual Exclusion: If process Pi is executing in its critical section, then no

other processes can be executing in their critical sections.

2. Progress: If no process is executing in its critical section and there exist some

processes that wish to enter their critical sections, then only those processes that are

not executing in their remainder section can participate in the decision of which will

enter its critic a section next and this selection cannot be postponed indefinitely.

3. Bounded Waiting: There exist a bound on the number of times that other
processes are allowed to enter their critical sections after a process has made a
request to enter its critical section and before that request is granted.

DC61 OPERATING SYSTEMS & SYSTEMS SOFTWARE

JUNE 2013

© IETE 4

Q 4 (b) Explain with the help of examples, the two disk allocation methods: linked
and indexed.

Answer Page Number 510 of textbook.

Q 5 (a) Using suitable example, explain any two page replacement algorithms.

 Answer Page Number 471-479 of Text Book

Q5 (b) List various approaches used for realization of virtual memory. List
advantages and disadvantages of virtual memory.

Answer Page Number 481 of Text Book

Q6 (a) What do you mean by language processing? Describe language processing
activities.

Answer

A language processor is software which bridges a specification or execution gap.

Language processing describes the activity performed by a language processor. Input

program to a language processor is known as source program and the output program of a

language processor is called a target program.

There are two different types of language processing activities:

1. Program generation activities

2. Program execution activities

Program generation activities: A program generation activity aims at automatic

generation of a program. The source language is a specification language of an

application domain and the target language is typically a procedure oriented

programming language. The following figure shows program generation activity

Errors

 Program in target PL

The program generator is a software system which accepts the specification of a program

to be generated and generates a program in the target. PL. The program generator

Program
Specification

Program
Generator

DC61 OPERATING SYSTEMS & SYSTEMS SOFTWARE

JUNE 2013

© IETE 5

introduces a new domain between the application and PL domains. We call this the

program generator domain. The specification gab is now gap between the application

domain and the program generator domain. This gab is smaller than the gap between the

application domain and PL domain.

Program execution activities: A program execution activity organizes system. Two

model program executions are:

1. Translation

2. Interpretation

Translation: The program translation models bridges execution gap by translating a

program written in a PL, called the source program into an equivalent program in the

machine or assembly language of the computer system.

Errors

 Target Program

Interpretation: The interpreter reads the source program and stores it in its memory.

During interpretation it takes a statement, determines its meaning and performs actions

which implement it.

Errors

 Target Program

Q6 (b) How the data structures used for language processors are classified? Explain.

Answer

The data structures used in language processing can be classified on the basis of the

following criteria:

1. Nature of data structure: (whether a linear or non-linear data structure)

2. Purpose of a data structure: (whether a search data structure or an allocation data

Source
Program

Translator

Source
Program

Interpreter

DC61 OPERATING SYSTEMS & SYSTEMS SOFTWARE

JUNE 2013

© IETE 6

structure)

3. Life time of a data structure: (whether used during language processing or during

target program execution)

A linear data structure consists of a linear arrangement of elements in the memory. A

linear data structure requires a contiguous area of memory for its elements. This poses a

problem in situations where the size of a data structure is difficult to predict. The

elements of non linear data structures are accessed using pointers. Hence the elements

need not occupy contiguous area of memory.

Search Data structures are used during language processing to maintain attribute

information concerning different entities in the source program. In this the entry for an

entity is created only once, but may be searched for large number of times.

Allocation data structures are characterized by the fact that the address of memory area
allocated to an entity is known to the users. So no search operations are conducted.

Q 7 (a) Define Parsing. What are the goals of parsing? Explain its various types.

Answer

Parsing: Source programmed statements are regarded as tokens, building block of

language the task of scanning the source statement, recognizing and classifying the

various tokens is known as lexical analysis. The part of the compiler that performs this

task is commonly called a scanner. After the token scan, each statement in the program

must be recognized as some language constructs, such as declaration or an assignment

statement described by the grammar. This process is called Syntactic analysis or parsing

and is performed by the part of compiler called parser.

Goals:

1. To check the validity of a source string, and

2. To determine the syntactic structure of a source string.

 i,e. given an input program:

a. Find all syntax errors; for each, produce an appropriate diagnostic

message, and recover quickly.

b. Produce the parse tree, or at least a trace of the parse tree, for the

program

DC61 OPERATING SYSTEMS & SYSTEMS SOFTWARE

JUNE 2013

© IETE 7

Types of Parsing:

Top-down parsing - Top-down parsing can be viewed as an attempt to find left-most

derivations of an input-stream by searching for parse trees using a top-down expansion of

the given formal grammar rules. Tokens are consumed from left to right. Inclusive choice

is used to accommodate ambiguity by expanding all alternative righthand-sides of

grammar rules.

Bottom-up parsing - A parser can start with the input and attempt to rewrite it to the

start symbol. Intuitively, the parser attempts to locate the most basic elements, then the

elements containing these, and so on. LR parsers are examples of bottom-up parsers.

Another term used for this type of parser is Shift-Reduce parsing.

Recursive descent parsing- It is a top down parsing without backtracking. This parsing
technique uses a set of recursive procedures to perform parsing. Salient advantages of
recursive descent parsing are its simplicity and generality. It can be implemented in any
language supporting recursive procedures.

Q7 (b) What is macro-expansion? List the key notions concerning macro expansion.
Write an algorithm to outline the macro-expansion using macro-expansion counter.

Answer

macro call leads to macro expansion. During macro expansion, the macro call statement

is replaced by a sequence of assembly statements. Two key notions concerning macro

expansion are:

1.Expansion time control flow- this determines the order in which model statements are

visited during macro expansion.

2.Lexical substitution: Lexical substitution is used to generate an assembly statement

from a modal statement.

The flow of control during macro expansion can be implemented using a macroexpansion

counter (MEC). The outline of algorithm is as follows:

1. MEC:=statement number of first statement following the prototype statement;

2. While statement pointed by MEC is not a MEND statement

(a) If a model statement then

(i) expand the statement.

(ii) MEC:=MEC+1;

DC61 OPERATING SYSTEMS & SYSTEMS SOFTWARE

JUNE 2013

© IETE 8

(b) Else (i.e. a pre processor statement)

(i) MEC:=new value specified in the statement;

3. Exit from macro expansion.

Q8 (a) What is assembly language? What kinds of statements are present in an
assembly language program? Discuss.

Answer
Assembly language is a family of low-level language for programming computers,

microprocessors, microcontrollers etc. They implement a symbolic representation of the

numeric machine codes and other constants needed to program a particular CPU

architecture. This representation is usually defined by the hardware manufacturer, and

is based on abbreviations (called mnemonic) that help the programmer remember

individual instruction, register etc. Assembly language programming is writing machine

instructions in mnemonic form, using an assembler to convert these mnemonics into

actual processor instructions and associated data.

An assembly program contains following three kinds of statements:

1. Imperative statements: These indicate an action to be performed during execution of

the assembled program. Each imperative statement typically translates into one machine

instruction.

2. Declaration statements: The syntax of declaration statements is as follows:

[Label] DS<constant>

[Label] DC ‘<value>’

The DS statement reserves areas of memory and associates names with them.

The DC statement constructs memory words containing constants.

3. Assembler directives: These instruct the assembler to perform certain actions during

the assembly of a program. For example

START <constant> directive indicates that the first word of the target program generated

by the assembler should be placed in the memory word with address <constant>.

Advantages of assembly language program:

 reduced errors

 faster translation times

DC61 OPERATING SYSTEMS & SYSTEMS SOFTWARE

JUNE 2013

© IETE 9

 changes could be made easier and faster

Q8 (b) Explain the stepwise approach to arrive at a design specification for an
assembler.

Answer

Four step approach is used to arrive at a design specifications for an assembler:

Step 1: Identify the information necessary to perform a task.

Step 2: Select a suitable data structure to hold the information.

Step 3: Determine the processing necessary to maintain the information in the data

structure.

Step 4: Determine the processing necessary to perform the task.

The fundamental information requirements are determined by the synthesis phase of
assembly. Hence it is the best to begin by considering synthesis of the target program.
We then consider how best this information can be made available i.e. whether it should
be collected during analysis or generated during the synthesis phase.

Q 9 (a) Define and explain memory allocation. What are different approaches of
memory allocation?

Answer

 Memory Allocation:-

• The run time representation of a variable is a string of bits in some memory word

or CPU register. The value of the variable is determined from the bit string in

accordance with the variable’s type. A compiler ensures type integrity by

generating type specific code, i.e. the value of a variable of typei is only

manipulated through instructions which know values of typei are represented.

• Each instruction is type specific, i.e. it expects the operand to be of a specific

type. Type integrity is guaranteed by fact that the choice of the instruction opcode

is based on the type of its operand.

 Memory allocation involves the following tasks:-

1. Determine the amount of memory required to represent the value of a data item.

DC61 OPERATING SYSTEMS & SYSTEMS SOFTWARE

JUNE 2013

© IETE 10

2. Use an appropriated memory allocation model to implement the lifetimes and

scoped of data items.

3. Determine appropriate memory mapping to access the values in a non scalar data

item, e.g. values in an array.

The first task is simple since semantic analysis of data declaration statement would

have extracted all necessary information.

Static and Dynamic Allocation:-

• A memory binding is an association between the ‘memory address’ attribute of a

data item and the address of a memory area.

• Memory allocation is the procedure used to perform memory binding. The

binding ceases to exist when memory is deallocated. Two forms of memory

binding are static and dynamic binding. The corresponding memory allocation

models are called static and dynamic memory allocation. In static memory

allocation, memory is allocated to a variable before the execution of a program

begins. This is typically performed during compilation. Thus no memory

allocation/deallocation takes place during the execution of a program, and

variables remain permanently allocated irrespective of their accessibility at any

point in a program’s execution. For example, allocation to a variable exists even if

the program unit in which it is defined is not active. In dynamic memory

allocation memory binding are established and destroyed during the execution of

a program. Typical examples of the use of these memory allocation models are

Fortran for static allocation and block structured language like PL/I, Pascal, Ada,

etc., for dynamic allocation.

• Dynamic allocation is of two types namely:

1. Automatic allocation/deallocation and

2. Program controlled allocation/deallocation

• The automatic allocation/deallocation implies memory binding performed

at execution init time of a program unit, while the Program controlled

allocation/deallocation implies memory binding performed during the execution

of a program unit.

DC61 OPERATING SYSTEMS & SYSTEMS SOFTWARE

JUNE 2013

© IETE 11

• In automatic dynamic allocation, memory is allocated to the variable -

declared in a program unit when the program unit is entered during execution and

the same is de allocated when the program unit exited. Thus the same memory

area may be used for the variables of different program units. In program

controlled dynamic allocation, a program can allocate/deallocate memory at

arbitrary points during execution.

• Dynamic memory allocation is implemented using stacks and heaps, thus

necessitating pointer based access to variables. This tends to make it slower in

execution than static memory allocation. Automatic dynamic allocation is

implemented using a stack since entry /exit from program units is LIFO in nature.

When a program unit is entered during the execution of a program, a record is

created in the stack to contain its variables. A pointer is set to point to this record.

Individual variables of the program unit are accessed using displacements from

this pointer. Program controlled dynamic allocation is implemented using a heap.

A pointer is needed to point to each allocated memory area.

Q 9 (b) Explain various parameter passing techniques.

Answer

Parameter passing:-

Language rules for parameter passing define the semantics of parameter

usage inside a function, thereby defining the kind of side effects a function

can produce on its actual parameter.

1. Call by value:-

• In this mechanism, values of actual parameter are passed to the called

function. These values are assigned to the corresponding formal

parameters. The passing of values only takes place in one direction-from

the value of a formal parameter, the change is not reflected on the

corresponding actual parameter. Thus a function cannot produce any side

effects on its parameters.

DC61 OPERATING SYSTEMS & SYSTEMS SOFTWARE

JUNE 2013

© IETE 12

• Call by value is commonly used for built in functions of language. Its

main advantage is its simplicity. A called function may allocate memory

to a formal parameter and copy the value of the actual parameter into this

location at every call. During execution, the function need not distinguish

between a formal parameter and a local variable. This mechanism is very

efficient if parameters are scalar variables.

Call by value-result: This mechanism extends the capabilities of the call by value

mechanism by copying the values of formal parameters back into corresponding actual

parameters at return. Thus, side effects are realized at return. This mechanism inherits the

simplicity of the call by value mechanism.

2. Call by reference: - In this mechanism, the address of an actual parameter is

passed to the called function. If the parameter is an expression, its value is

computed and stored in a temporary location and the address of the temporary

location is passed to the called function. If the parameter is an array element, its

address is similarly computed at the time of call. The parameter list is thus a list

of addresses of actual parameters. At every access of a formal parameter in the

function, the address of the corresponding actual parameter is obtained from the

parameter list. This used as the address of the formal parameter.

3. Call by name:- This parameter transmission mechanism has the same effect as if

every occurrence of a formal parameter in the body of the called function is

replaced by the name of the corresponding actual parameter.

Text Book

Systems Programming and Operating Systems, D.M. Dhamdhere, Tata McGraw-
Hill, Second Revised Edition, 2005

	Answer Page Number 376-377 of Textbook

