
DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 1 

 
Q2 (a) List four major differences between C++ and Java.    
 
Answer Page Number 15 of 4th edition of textbook. 
 
Q2 (b) what are the following components used for?  
  (i)     javac (ii)   java 
 (iii)  appletviewer                               (iv)  jdb         
 
Answer Page Number 28 of 4th edition of textbook. 
 
Q3 (a) Explain iteration statements in java with suitable examples. 
 
Answer   
Java's iteration statements are for, while, and do-while. These statements create what we 
commonly call loops. As you probably know, a loop repeatedly executes the same set of 
instructions until a termination condition is met 
while 

 

The while loop is Java's most fundamental looping statement. It repeats a statement or 
block while its controlling expression is true. Here is its general form:  

 
while(condition) {  

// body of loop  
} 
 

The condition can be any Boolean expression. The body of the loop will be executed as 
long as the conditional expression is true. When condition becomes false, control passes 
to the next line of code immediately following the loop. The curly braces are unnecessary 
if only a single statement is being repeated.  
Since the while loop evaluates its conditional expression at the top of the loop, the  
body of the loop will not execute even once if the condition is false to begin with. For  
example, in the following fragment, the call to println( ) is never executed:  
 

int a = 10, b = 20;  
 
while(a > b)  

System.out.println("This will not be displayed");  
 

The body of the while (or any other of Java's loops) can be empty. This is because a null 
statement (one that consists only of a semicolon) is syntactically valid in Java. For 
example, consider the following program:  
 

// The target of a loop can be empty.  
class NoBody {  



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 2 

public static void main(String args[]) {  
int i, j;  
 
i = 100; j = 200;  
 
// find midpoint between i and j  
while(++i < --j) ; // no body in this loop  
 
System.out.println("Midpoint is " + i);  

} 
} 
 

This program finds the midpoint between i and j. It generates the following output:  
 
Midpoint is 150  

 
Here is how the while loop works. The value of i is incremented, and the value of j is 
decremented. These values are then compared with one another. If the new value of i is 
still less than the new value of j, then the loop repeats. If i is equal to or greater than j, 
the loop stops.Upon exit from the loop, i will hold a value that is midway between the 
original values of i and j. (Of course, this procedure only works when i is less than j to 
begin with.) As you can see, there is no need for a loop body; all of the action occurs 
within the conditional expression, itself. In professionally written Java code, short loops 
are frequently coded without bodies when the controlling expression can handle all of 
the details itself.  
 
do-while  
 
As you just saw, if the conditional expression controlling a while loop is initially false, 
then the body of the loop will not be executed at all. However, sometimes it is desirable 
to execute the body of a while loop at least once, even if the conditional expression is 
false to begin with. In other words, there are times when you would like to test the 
termination expression at the end of the loop rather than at the beginning. Fortunately, 
Java supplies a loop that does just that: the do-while. The do-while loop always executes 
its body at least once, because its conditional expression is at the bottom of the loop. Its 
general form is  

 
do {  

// body of loop } while 
(condition);  

 
Each iteration of the do-while loop first executes the body of the loop and then evaluates 
the conditional expression. If this expression is true, the loop will repeat. Otherwise, the 
loop terminates. As with all of Java's loops, condition must be a Boolean expression. 
Here is a reworked version of the "tick" program that demonstrates the do-while loop. It 
generates the same output as before.  

 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 3 

// Demonstrate the do-while loop.  
class DoWhile {  

public static void main(String args[]) {  
int n = 10;  
 
do {  

System.out.println("tick " + n);  
n--;  

} while(n > 0);  
} 

} 
 

The loop in the preceding program, while technically correct, can be written more 
efficiently as follows:  
 
do {  

System.out.println("tick " + n);  
} while(--n > 0); 
In this example, the expression (- -n > 0) combines the decrement of n and the test for 
zero into one expression. Here is how it works. First, the - -n statement executes, 
decrementing n and returning the new value of n. This value is then compared with zero. 
If it is greater than zero, the loop continues; otherwise it terminates.  

The do-while loop is especially useful when you process a menu selection, because 
you will usually want the body of a menu loop to execute at least once. 

 
For: 

 
the for statement:  

 
for(initialization; condition; iteration) {  
// body  

} 
 

If only one statement is being repeated, there is no need for the curly braces.  
The for loop operates as follows. When the loop first starts, the initialization portion 

of the loop is executed. Generally, this is an expression that sets the value of the loop 
control variable, which acts as a counter that controls the loop. It is important to 
understand that the initialization expression is only executed once. Next, condition is 
evaluated. This must be a Boolean expression. It usually tests the loop control variable 
against a target value. If this expression is true, then the body of the loop is executed. If 
it is false, the loop terminates. Next, the iteration portion of the loop is executed. This is 
usually an expression that increments or decrements the loop control variable. The loop 
then iterates, first evaluating the conditional expression, then executing the body of the 
loop, and then executing the iteration expression with each pass. This process repeats 
until the controlling expression is false. When you declare a variable inside a for loop, 
there is one important point to remember: the scope of that variable ends when the for 
statement does. (That is, the scope of the variable is limited to the for loop.) Outside the 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 4 

for loop, the variable will cease to exist. If you need to use the loop control variable 
elsewhere in your program, you will not be able to declare it inside the for loop. When 
the loop control variable will not be needed elsewhere, most Java programmers declare 
it inside the for. For example, here is a simple program that tests for prime numbers. 
Notice that the loop control variable, i, is declared inside the for since it is not needed 
elsewhere.  

 
// Test for primes.  

class FindPrime { 
public static void main(String args[]) {  

int num;  
boolean isPrime = true;  
 
num = 14;  
for(int i=2; i <= num/2; i++) {  

if((num % i) == 0) {  
isPrime = false;  
break;  

} 
} 
if(isPrime) System.out.println("Prime");  
else System.out.println("Not Prime");  

} 
} 

 
Q3 (b) Explain break and continue statements in detail with examples. 
 
Answer   
In Java, the break statement has three uses. First, it terminates a statement sequence in a 
switch statement. Second, it can be used to exit a loop. Third, it can be used as a 
"civilized" form of goto.  
 
Using break to Exit a Loop  

 
By using break, you can force immediate termination of a loop, bypassing the 
conditional expression and any remaining code in the body of the loop. When a break 
statement is encountered inside a loop, the loop is terminated and program control 
resumes at the next statement following the loop. Here is a simple example:  

 
// Using break to exit a loop.  
class BreakLoop {  

public static void main(String args[]) {  
for(int i=0; i<100; i++) {  

if(i == 10) break; // terminate loop if i is 10  
System.out.println("i: " + i);  

} 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 5 

System.out.println("Loop complete.");  
} 

} 
 

The break statement can be used with any of Java's loops, including intentionally infinite 
loops. 
Two other points to remember about break. First, more than one break statement may 
appear in a loop. However, too many break statements have the tendency to destructure 
your code. Second, the break that terminates a switch statement affects only that 
switch statement and not any enclosing loops.  
When used inside a set of nested loops, the break statement will only break out of  
the innermost loop. For example:  
 
// Using break with nested loops.  
class BreakLoop3  
{  
   public static void main(String args[]) {  
     for(int i=0; i<3; i++)  
        {  
            System.out.print("Pass " + i + ": ");  
                for(int j=0; j<100; j++)  
                    {  
                       if(j == 10) break; // terminate loop if j is 10  
                       System.out.print(j + " ");  
                     } 
           System.out.println();  
        } 
     System.out.println("Loops complete.");  
  } 
} 
Using break as a Form of Goto : 
 
In addition to its uses with the switch statement and loops, the break statement can also 
be employed by itself to provide a "civilized" form of the goto statement. Java does not 
have a goto statement, because it provides a way to branch in an arbitrary and 
unstructured manner Java defines an expanded form of the break statement. By using 
this form of break, you can break out of one or more blocks of code. These blocks need 
not be part of a loop or a switch. They can be any block. Further, you can specify 
precisely where execution will resume, because this form of break works with a label. 
As you will see, break gives you the benefits of a goto without its problems.  

 
The general form of the labeled break statement is shown here:  
 

break label;  
 
Here, label is the name of a label that identifies a block of code. When this form of 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 6 

break executes, control is transferred out of the named block of code. The labeled block 
of code must enclose the break statement, but it does not need to be the immediately 
enclosing block. This means that you can use a labeled break statement to exit from a 
set of nested blocks. But you cannot use break to transfer control to a block of code that 
does not enclose the break statement.  
To name a block, put a label at the start of it. A label is any valid Java identifier 
followed by a colon. Once you have labeled a block, you can then use this label as the 
target of a break statement. Doing so causes execution to resume at the end of the 
labeled block. For example, the following program shows three nested blocks, each with 
its own label. The break statement causes execution to jump forward, past the end of the 
block labeled second, skipping the two println( ) statements.  
 

// Using break as a civilized form of goto.  
class Break {  

public static void main(String args[]) {  
boolean t = true;  
 
first: {  

second: {  
third: {  

System.out.println("Before the break.");  
if(t) break second; // break out of second block  
System.out.println("This won't execute");  

} 
System.out.println("This won't execute");  

} 
System.out.println("This is after second block.");  

} 
} 

} 
 

Running this program generates the following output:  
 

Before the break.  
This is after second block.  
 

Using continue: 
 

Sometimes it is useful to force an early iteration of a loop. That is, you might want to 
continue running the loop, but stop processing the remainder of the code in its body for 
this particular iteration. This is, in effect, a goto just past the body of the loop, to the 
loop's end. The continue statement performs such an action. In while and do-while 
loops, a continue statement causes control to be transferred directly to the conditional 
expression that controls the loop. In a for loop, control goes first to the iteration portion 
of the for statement and then to the conditional expression. For all three loops, any 
intermediate code is bypassed.  



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 7 

Here is an example program that uses continue to cause two numbers to be 
printed  
on each line:  
 
 

// Demonstrate continue.  
class Continue {  

public static void main(String args[]) {  
for(int i=0; i<10; i++) {  

System.out.print(i + " ");  
if (i%2 == 0) continue; 
System.out.println("");  

} 
} 

} 
 
This code uses the % operator to check if i is even. If it is, the loop continues without 
printing a newline. Here is the output from this program:  
 
       0  

   1 
2  
   3 
4 
 5 
6  
   7 
8  
   9 

 
As with the break statement, continue may specify a label to describe which enclosing 
loop to continue. 
 
Q4 (a) Design a class to represent an employee. Include following data members 

and methods: 
   Variables: 
   Name of employee 
   Age 
   Sex 
   DOB(dd/MM/yyyy) 
   Basic Salary 
   Marital status 
   Constructor: 
    to assign initial values 
   Methods:to display various details about employee 
  



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 8 

Answer 
import java.text.ParseException; 
import java.text.SimpleDateFormat; 
import java.util.Calendar; 
import java.util.Date; 
 
public class Employee { 
 
private String strEmployeeName = ""; 
private String strSex; 
private String strMaritalStatus; 
private String[] strFamilyMemberNames; 
private Date DOB; 
private float floatAge; 
private float floatBasicSalary ; 
 
private static final int PF = 50; 
private static final int HRA = 25; 
private static final int TA = 15; 
private static final float TAX = 17.5f; 
 
public Employee(String strEmployeeName, String strSex, String    
strMaritalStatus, String[] strFamilyMemberNames, Date DOB, float floatAge, 
float floatBasicSalary) 
{ 
this.strEmployeeName = strEmployeeName; 
this.strSex = strSex; 
this.strMaritalStatus = strMaritalStatus; 
this.strFamilyMemberNames = strFamilyMemberNames; 
this.DOB = DOB; 
this.floatAge = floatAge; 
this.floatBasicSalary = floatBasicSalary; 
} 
 
public float getInHandSalary() 
{ 
float inHandSalary = 0.0f; 
inHandSalary = floatBasicSalary - (floatBasicSalary*(PF/100)) - 
(floatBasicSalary*(TAX/100)) 
+ (floatBasicSalary*(HRA/100)) + (floatBasicSalary*(TA/100)); 
return inHandSalary ; 
} 
 
@SuppressWarnings("finally") 
public int getAccurateAge() 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 9 

{ 
int accurateAge = 0; 
int factor = 0; 
try 
{ 
 
SimpleDateFormat sdf = new SimpleDateFormat("dd/MM/yyyy"); 
sdf.format(new Date()); 
Date currentDate = sdf.parse(sdf.format(new Date())); 
Calendar currentDateCal = Calendar.getInstance(); 
Calendar dobCal = Calendar.getInstance(); 
currentDateCal.setTime(currentDate); 
dobCal.setTime(DOB); 
 
if(currentDateCal.get(Calendar.DAY_OF_YEAR) < 
dobCal.get(Calendar.DAY_OF_YEAR)) { 
factor = -1; 
} 
accurateAge = currentDateCal.get(Calendar.YEAR) - 
dobCal.get(Calendar.YEAR) + factor; 
 
return accurateAge; 
} 
catch (ParseException pe) 
{ 
// TODO Auto-generated catch block 
pe.printStackTrace(); 
} 
catch (Exception e) 
{ 
// TODO Auto-generated catch block 
e.printStackTrace(); 
} 
finally 
{ 
return accurateAge; 
} 
} 
 
public void showEmployeeDetail() 
{ 
System.out.println("Employee Name : "+strEmployeeName); 
System.out.println("Sex : "+strSex); 
System.out.println("Marital Status : "+strMaritalStatus); 
System.out.println("DOB : "+DOB); 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 10 

System.out.println("Age : "+floatAge); 
System.out.println("Basic Salary : "+floatBasicSalary); 
System.out.println("In Hand Salary : "+getInHandSalary()); 
System.out.println("Name of the fanily members are as follow : "); 
for(int loop = 0 ; loop < strFamilyMemberNames.length ; loop++) 
{ 
System.out.println((loop+1)+". "+strFamilyMemberNames[loop]); 
} 
} 
} 
 
Q4 (b) what is inheritance and purpose of using inheritance? What is the 
use of keyword super in inheritance? Explain with an example. 
 
Answer 
Interfaces:  
An interface in java can be considered as a contract or way of saying what a class can do 
without saying anything about how the class will do it. 
 

Interfaces are defined using keyword “interface” in java. 
Syntax for declaring syntax is as follow: 
 

public interface Test 
{ 
 public static final int PI = 3.343; 
 public abstract void doSomething(); 
} 
 

Following are the key points about interfaces: 
1. Like classes, interfaces can have public or default access. 
2. All the variables defined in the interfaces are public static final by defaul, we 

don’t need to use these keywords explicitly, in fact using these keywords are 
considered redundant.  As we know in Java final keyword is used to declare 
constants, so interface can have only constants not the instance variables. 

3. An interface can contain only method declaration not definition. All the methods 
defined inside are public and abstract by default, we don’t need to explicitly 
mention these. Using these keywords are considered redundant. 

So following interface declaration is exactly same as the previous one: 
 

public interface Test 
{ 
 int PI = 3.343; 
 void doSomething(); 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 11 

} 
4. An interface can extend another interface as follow: 

 
public  interface TestChild extends Test 
{ 
 int  X = 15; 
} 

5. A class can implement any number of interfaces as follow: 
 
public class TestInterface implements Test, Serializable 
{ 
 //class code goes here 
} 
 
Any class that implements an interface must provide implementations of all the methods 
declared inside interface. The only exception is for abstract class. Even in that case the 
first concrete class has to provide implementation of all abstract methods above itself in 
the inheritance tree.  

6. Interface can not be declared as static and can’t have constructors because they 
are not classes. 

 

Advantage of using Interface over Abstract classes:  
 
An abstract class is a class which can not be instantiated. It may or may not have abstract 
methods. An abstract method is one which is being declared not defined using keyword 
“abstract” and any class extending abstract class must provide implementation of abstract 
methods if any. 
 

And on the other hand an interface can be considered as 100% abstract class.  
The only advantage of using Interface over abstract class is that as we know java does not 
support multiple inheritance, means a class can only have one parent. So interfaces are 
useful in that situation, means if our class is already extending another class say Thread 
and we need some functionality from other class in that case we can declare interfaces 
and make class to implement that interface. 
 
Q5 (a) What is an interface in java? Differentiate between interface and abstract classes. 
 
Answer 
Inheritance and its purpose: 
Inheritance is the process by which one object acquires the properties of another object. 
This is important because it supports the concept of hierarchical classification. As 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 12 

mentioned earlier, most knowledge is made manageable by hierarchical (that is, top-
down) classifications. For example, a Golden Retriever is part of the classification dog, 
which in turn is part of the mammal class, which is under the larger class animal. 
Without the use of hierarchies, each object would need to define all of its 
characteristics explicitly. However, by use of inheritance, an object need only define 
those qualities that make it unique within its class. It can inherit its general attributes 
from its parent. Thus, it is the inheritance mechanism that makes it possible for one 
object to be a specific instance of a more general case. 
Inheritance interacts with encapsulation as well. If a given class encapsulates some 
attributes, then any subclass will have the same attributes plus any that it adds as part of 
its specialization. 
          
This is a key concept which lets object-oriented programs grow in complexity linearly 
rather than geometrically. A new subclass inherits all of the attributes of all of its 
ancestors. It does not have unpredictable interactions with the majority of the rest of the 
code in the system.  
To inherit a class, you simply incorporate the definition of one class into another by 
using the extends keyword. 

 
The general form of a class declaration that inherits a superclass is shown here:  
 
class subclass-name extends superclass-name {  
// body of class  
} 
You can only specify one superclass for any subclass that you create. Java does not 
support the inheritance of multiple superclasses into a single subclass. (This differs from 
C++, in which you can inherit multiple base classes.) You can, as stated, create a 
hierarchy of inheritance in which a subclass becomes a superclass of another subclass. 
However, no class can be a superclass of itself. 
 
Using super in inheritance: 
There will be times when you will want to create a superclass that keeps the details of its 
implementation to itself (that is, that keeps its data members private). In this case, there 
would be no way for a subclass to directly access or initialize these variables on its own. 
Since encapsulation is a primary attribute of OOP, it is not surprising that Java provides 
a solution to this problem. Whenever a subclass needs to refer to its immediate 
superclass, it can do so by use of the keyword super.  
super has two general forms. The first calls the superclass constructor. The second is 
used to access a member of the superclass that has been hidden by a member of a 
subclass.  
 
Using super to Call Superclass Constructors  
 
A subclass can call a constructor method defined by its superclass by use of the 
following form of super:  

 
super(parameter-list);  



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 13 

 
Here, parameter-list specifies any parameters needed by the constructor in the 
superclass. super( ) must always be the first statement executed inside a subclass' 
constructor.  

 
// BoxWeight uses super to initialize its Box attributes.  
class BoxWeight extends Box {  

double weight; // weight of box  
 
// initialize width, height, and depth using super()  
BoxWeight(double w, double h, double d, double m) {  

super(w, h, d); // call superclass constructor  
weight = m;  

} 
} 
 

The key concepts behind super( ) is when a subclass calls super( ), it is calling the 
constructor of its immediate superclass. Thus, super( ) always refers to the superclass 
immediately above the calling class. This is true even in a multileveled hierarchy. Also, 
super( ) must always be the first statement executed inside a subclass constructor. 
 
 
A Second Use for super  
 
The second form of super acts somewhat like this, except that it always refers to the 
superclass of the subclass in which it is used. This usage has the following general form:  

 
super.member  
 

Here, member can be either a method or an instance variable. This second form of super 
is most applicable to situations in which member names of a subclass hide members by 
the same name in the superclass. 
E.g 
 
// Using super to overcome name hiding.  
class A {  
int i;  
} 
 
// Create a subclass by extending class A.  
class B extends A {  
int i; // this i hides the i in A  
 
B(int a, int b) {  
super.i = a; // i in A  
i = b; // i in B  
} 
 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 14 

void show() {  
System.out.println("i in superclass: " + super.i);  
System.out.println("i in subclass: " + i);  
} 
} 
 
class UseSuper {  
public static void main(String args[]) {  
B subOb = new B(1, 2);  
 
subOb.show();  
} 
} 
 
This program displays the following:  

 
i in superclass: 1  
i in subclass: 2  

 
Although the instance variable i in B hides the i in A, super allows access to the i defined 
in the superclass. As you will see, super can also be used to call methods that are hidden 
by a subclass.  
 
Q5 (b) What is difference between multithreading and multitasking? Explain life 
cycle of a thread in java. 
 
Answer 
 
Multitasking and Multithreading In java: 
Multitasking: 

1. A process can be defined as a program under execution.  Multitasking can be 
defined as executing two or more programs together, simultaneously. For eg. In 
our system we are running browser, medial player and MSOffice applications 
simultaneously. 

2. A process is much more high weight then a thread. 
3. Each process requires its one resources from system 

Multithreading: 
1. A thread can be defined as an independent chunk of code written to perform some 

tasks. Executing multiple threads simultaneously is known as multithreading. Java 
supports multithreading. For eg. Threads are mostly used in gaming applications, 
while one frame is executing, some other task may be preparing next frame. 

2. A thread is much lighter than a process. 
Each thread share resources provided to the program of which they are a part. 
 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 15 

Q6 (a) What is an exception? Explain with suitable example how a 
program throws an exception explicitly? 
 
Answer 
An exception is an abnormal condition that arises in a code sequence at run time. In 
other words, an exception is a run-time error. 
A Java exception is an object that describes an exceptional (that is, error) condition that 
has occurred in a piece of code. When an exceptional condition arises, an object 
representing that exception is created and thrown in the method that caused the error. 
That method may choose to handle the exception itself, or pass it on. Either way, at 
some point, the exception is caught and processed. Exceptions can be generated by the 
Java run-time system, or they can be manually generated by your code. Exceptions 
thrown by Java relate to fundamental errors that violate the rules of the Java language or 
the constraints of the Java execution environment. Manually generated exceptions are 
typically used to report some error condition to the caller of a method.  
Java exception handling is managed via five keywords: try, catch, throw, throws,  
and finally. 
 
It is possible for your program to throw an exception explicitly, using the throw 
statement. The general form of throw is shown here:  
 
   throw ThrowableInstance;  
 
Here, ThrowableInstance must be an object of type Throwable or a subclass of 
Throwable. Simple types, such as int or char, as well as non-Throwable classes, such as 
String and Object, cannot be used as exceptions. There are two ways you can obtain a 
Throwable object: using a parameter into a catch clause, or creating one with the new 
operator. The flow of execution stops immediately after the throw statement; any 
subsequent statements are not executed. The nearest enclosing try block is inspected to 
see if it has a catch statement that matches the type of the exception. If it does find a 
match, control is transferred to that statement. If not, then the next enclosing try 
statement is inspected, and so on. If no matching catch is found, then the default 
exception handler halts the program and prints the stack trace.  
Here is a sample program that creates and throws an exception. The handler that catches 
the exception rethrows it to the outer handler.  
 
// Demonstrate throw.  
class ThrowDemo {  
static void demoproc() {  
try {  
throw new NullPointerException("demo");  
} catch(NullPointerException e) {  
System.out.println("Caught inside demoproc.");  
throw e; // rethrow the exception  
} 
} 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 16 

 
public static void main(String args[]) {  
try {  
demoproc();  
} catch(NullPointerException e) {  
System.out.println("Recaught: " + e);  
} 
} 
} 
 
This program gets two chances to deal with the same error. First, main( ) sets up an 
exception context and then calls demoproc( ). The demoproc( ) method then sets up 
another exception-handling context and immediately throws a new instance of 
NullPointerException, which is caught on the next line. The exception is then rethrown. 
Here is the resulting output:  
 

Caught inside demoproc.  
Recaught: java.lang.NullPointerException: demo  
 

The program also illustrates how to create one of Java's standard exception objects.  
 

throw new NullPointerException("demo");  
 

Here, new is used to construct an instance of NullPointerException. All of Java's built-
in run-time exceptions have at least two constructors: one with no parameter and one 
that takes a string parameter. When the second form is used, the argument specifies a 
string that describes the exception. This string is displayed when the object is used as an 
argument to print( ) or println( ). It can also be obtained by a call to getMessage( ), 
which is defined by Throwable. 
  
Q6 (b) Write a java program to determine whether a string is palindrome or not. 
 
Answer 
import java.io.BufferedReader; 
import java.io.IOException; 
import java.io.InputStreamReader; 
public class Palimdrome { 
private BufferedReader br ; 
public Palimdrome() 
 { 
  br = new BufferedReader(new InputStreamReader(System.in)); 
 } 
  
 public String readData() throws IOException 
 { 
  String enteredString = ""; 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 17 

  System.out.println("Please enter a string...."); 
  enteredString = br.readLine(); 
  System.out.println("Thanks for your Iputs!!!"); 
  System.out.println("String entered by you is : "+enteredString); 
  return enteredString ; 
 } 
  
 public void checkPalindrome(String enteredString) 
 { 
  char[] enteredStringArray = new char[enteredString.length()]; 
  if(enteredString.length() == 1) 
  { 
   System.out.println("String is Palimdrome as it contains only single 
character."); 

  } 
  else 
  { 
   for(int loop = 0 ; loop < enteredString.length() ; loop++) 
   { 
    enteredStringArray[loop] = enteredString.charAt(loop); 
   } 
   for(int loopStart = 0, loopEnd = enteredStringArray.length-1 ; loopStart < 
enteredStringArray.length ; loopStart++,loopEnd--)  

   { 
    if(loopStart <= loopEnd) 
    { 
     if(enteredStringArray[loopStart] == 
enteredStringArray[loopEnd]) 

     { 
      continue; 
     } 
     else 
     { 
      System.out.println("String is not palindrome"); 
      break; 
     } 
    } 
    else 
    { 
     System.out.println("String is Palindrome"); 
     break; 
    } 
   } 
  } 
 } 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 18 

 public static void main(String []args) 
 { 
  Palimdrome palimObj = new Palimdrome(); 
  try 
  { 
   String enteredString = palimObj.readData(); 
   palimObj.checkPalindrome(enteredString); 
  } 
  catch(IOException ie) 
  { 
   ie.printStackTrace(); 
  } 
  catch(Exception e) 
  { 
   e.printStackTrace(); 
  } 
 } 
} 
 
Q6 (c) What are streams in Java?  Explain. 
   
Answer Page Number 281, 4th edition of textbook. 
 
Q7 (a) What is HTML? Write the structure of an HTML document. 
 
Answer  
HTML is the "language" that web pages are written in - in fact, HTML stands for 
"hypertext mark-up language."  
Hyper is the opposite of linear. Old-fashioned computer programs were necessarily linear 
- that is, they had a specific order. But with a "hyper" language such as HTML, the user 
can go anywhere on the web page at any time.  
Text is just what you're looking at now - English characters used to make up ordinary 
words. 
 
Mark-up is what is done to the text to change its appearance. For instance, "marking up" 
your text with <b> before it and </b> after it will put that text in bold. 
Language is just that. HTML is the language that computers read in order to understand 
web pages. 
 
Basic structure of an HTML document 
 
An HTML document has two main parts: 
Head: The head element contains title and meta data of a web document. 
Body: The body element contains the information that you want to display on a web 
page. 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 19 

 
cxcxjj                                                                                                                                                                                                                                  
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DOCTYPE Declaration 
The DOCTYPE declaration is the first part of coding that you should enter in your 
HTML document. This is required if you wish to validate your document with the W3C's 
validation service. Web browsers need to know what version of HTML/XHTML your 
page is written in to process the code correctly.  
The HTML Tags 
All HTML documents contain a <html> and </html> pair of tags. These tags identify the 
document's contents as HTML to the browser. The <html> tag goes in the line right under 
your DOCTYPE declaration. </html> is the last line of coding in your document.  
Opening html tag: 
<html> 
The Head Tags - Opening Head Tag 
The <head> and </head> tags identify the document's head area. The information 
between these two tags is not visible on your page.  
Opening head tag: 
<head> 
Character Encoding 
The character encoding meta tag tells the browser which character set the web page uses. 
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 
Title Tag 
The title tag creates the page title that is seen in the title bar of the web page. 
<title>Title of the document</title> 
Meta Tags 
The meta tags provide information about your web page. 
<meta name="Description" content="Your description"> 
 <meta name="Keywords" content="first, second, third"> 

   <html> 
   
 <head> 
          <title>title of the web       
page</title> 
   <head> 
 
    
 
<body> 
        
   Content of the page 
 
   </body> 
 
  </html> 

<html>tag indicates that this web page 
is written in HTML 

<title> tag contains the web page title 

<head>tag contains information about 
the web 

</html> marks the end of the web page 

<body> tag contains the content of the 
web page 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 20 

 <meta name="Author" content="Author Information"> 
 <meta name="Copyright" content="Copyright Statement"> 
 <meta name="Distribution" content="Global"> 
 <meta name="Expires" content="Tue, 01 Jun 1999 19:58:02 GMT"> 
 <meta name="Robots" content="index,follow"> 
Link Tag 
The link tag is used to link other documents to this one. 
This example shows linking to an external stylesheet. 
<link rel="stylesheet" type="text/css" href="styles/stylesht.css"> 
Script Tag 
The script tag defines what type of script the browser is to execute. This tag can also be 
included in the body of your page.  
<script type="text/javascript"> 
 <!— 
 <!--Your script --> 
 --> 
 </script> 
Style Tag 
The style tag is used to set the style of your document elements. It is better to use an 
external style sheet using the link tag so if you wish to change something you only have 
to change it in one spot. 
<style type="text/css"> 
 Your style types 
 </style> 
Closing Head Tag 
The closing head tag defines the end of the document's head section. 
 
</head> 
The Body Tags 
The body tags surround the body (contents) of your web page. 
<body> 
 The body of the document 
 </body>  
Closing HTML Tag 
The closing HTML tag is the last line in your HTML document. Don't put anything after 
this tag! Your page will not validate if you do. 
</html> 
 
Q7 (b)What is web hosting and types of web hosting services? 
 
Web hosting is the service that makes your website available to be viewed by others on 
the Internet. A web host provides space on its server, so that other computers around the 
world can access your website by means of a network or modem. 
 Types of Web Hosting Services 
Internet Service Providers (ISPs) 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 21 

Many people put up their first websites through their ISPs, because it's generally easy and 
inexpensive. Most ISP service packages include a small amount of free web space, along 
with tools to create and upload websites quickly and easily. ISP websites are perfect for 
people who want to put up small sites with low amounts of traffic. However, there are 
usually rate restrictions, and most ISPs don't offer a lot of features, so they might not be 
the best choice for a thriving business website. 
Free Web Hosting 
Free web hosting is another good option for smaller, personal websites. There are many 
free hosting providers that offer all types of features; some include CGI access and more. 
The drawback to most free hosting services is that they are funded by advertising that 
appears on your site, so free web hosting so generally best for personal, rather than 
business, websites. 
Paid Hosting 
With paid hosting, you pay a fee for space and services on a web hosting provider's 
server. Monthly fees can range from a few dollars to several hundred dollars. Obviously, 
the more you pay, the more features you should have at your disposal. Services can 
include CGI access, database support, ASP, e-commerce, SSL, additional space on the 
server, extra bandwidth, and more. 
Domain Hosting 
A good option for small businesses is to pay for domain hosting. Domain hosting allows 
you to host your site anywhere you like: on an ISP, a free hosting service, or even your 
own server. You buy a domain name and have the provider forward all requests for that 
domain to the actual web location. This is often less expensive than buying both the 
domain and the hosting service, and it allows businesses to brand their URLs. 
Direct Internet Access 
Hosting your site yourself offers you the most control over your web server. Companies 
with large data centers or that require high security in every aspect of their web and 
Internet access should look into this type of hosting. 
 
Q7 (c) What is HTTP? Define purpose of any two HTTP methods. 
 
Answer 
HTTP, the Hypertext Transfer Protocol, is the application-level protocol that is used to 
transfer data on the Web. HTTP comprises the rules by which Web browsers and servers 
exchange information. Although most people think of HTTP only in the context of the 
World-Wide Web, it can be, and is, used for other purposes, such as distributed object 
management systems.  

How Does HTTP Work?  

HTTP Is a request-response protocol. For example, a Web browser initiates a request 
to a server, typically by opening a TCP/IP connection. The request itself comprises  

• a request line,  
• a set of request headers, and  



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 22 

• an entity.  

The server sends a response that comprises  

• a status line,  
• a set of response headers, and  
• an entity.  

Purpose of the following http methods 
The GET Method 
 

The GET method means retrieve whatever information (in the form of an entity) is 
identified by the Request-URI. If the Request-URI refers to a data-producing process, it 
is the produced data which shall be returned as the entity in the response and not the 
source text of the process, unless that text happens to be the output of the process. 
 

A conditional GET method requests that the identified resource be transferred only if it 
has been modified since the date given by the If-Modified-Since header. The conditional 
GET method is intended to reduce network usage by allowing cached entities to be 
refreshed without requiring multiple requests or transferring unnecessary data. 
 

The GET method can also be used to submit forms. The form data is URL-encoded and 
appended to the request URI 
 

The HEAD Method 
 

A HEAD request is just like a GET request, except it asks the server to return the 
response headers only, and not the actual resource (i.e. no message body). This is useful 
to check characteristics of a resource without actually downloading it, thus saving 
bandwidth. Use HEAD when you don't actually need a file's contents. 
 

The response to a HEAD request must never contain a message body, just the status line 
and headers.    
 

A POST request is used to send data to the server to be processed in some way, like by a 
CGI script. A POST request is different from a GET request in the following ways: 
 

There's a block of data sent with the request, in the message body. There are usually extra 
headers to describe this message body, like Content-Type: and Content-Length: 
 

The request URI is not a resource to retrieve; it's usually a program to handle the data 
you're sending. 
 

The HTTP response is normally program output, not a static file. 
 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 23 

The most common use of POST, by far, is to submit HTML form data to CGI scripts. In 
this case, the Content-Type: header is usually application/x-www-form-url encoded, and 
the Content-Length: header gives the length of the URL-encoded form data. The CGI 
script receives the message body through STDIN, and decodes it. 
 
Q8 (a) Explain briefly the border, cellpadding, cellspacing and background 
attributes of the table tag in XHTML. 
 
Answer 
Table Tag: 
 The <table> tag defines a table. Table headers, table rows, table cells and other tables 
can be put inside a <table> tag.  
 

The “align” and “bgcolor” attributes of the <table> tag in HTML have been are not 
supported in XHTML.  
 

 Attributes of Table Tag 
 

 Border  
 

Border establishes the size of the border surrounding the table. The default value is 0, 
which means there is no border at all. If border is without a value, the default is 1.  
Example 
<table border=2> </table>  
  
 Cellpadding  
 

Cellpadding sets the amount of space between the cell walls and the contents. The default 
value for cellpadding is 1. 
 Example 
<table border=2 cellpadding=4> </table>  
  
Cellspacing  
 

Cellspacing sets the amount of space between the cells of a table. If the borders are 
visible, cellspacing controls the width of internal borders.  
Example 
<table border=3 cellspacing=3> </table>  
  
Width  
 

Width sets the width of the table. It can be expressed either as an absolute value in pixels, 
or as a percentage of screen width. 
 Example 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 24 

<table border=2 width=70%> </table>  
  
Background  
 

Background sets the background image for the table.  
Example 
<table border=1 background=”myimage.gif”> </table>  
  
Bordercolor  
 

Bordercolor sets the color of all the borders of the table. 
 Example 
<table border=5 bordercolor=red> </table> 
 
Q8 (b) Explain strict, transitional and frame set DTD (document type 
definition) in XHTML validation 
 
Answer 
XHTML Validation 
 
 An XHTML document is validated against a Document Type Definition. 
 

 An XHTML document is validated against a Document Type Definition (DTD). Before 
an XHTML file can be properly validated, a correct DTD must be added as the first line 
of the file. 
 

 The Strict DTD includes elements and attributes that have not been deprecated or do not 
appear in framesets: 
 

 !DOCTYPE html PUBLIC 
 "-//W3C//DTD XHTML 1.0 Strict//EN" 
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd" 
 

 The Transitional DTD includes everything in the strict DTD plus deprecated elements 
and attributes: 
 

 !DOCTYPE html PUBLIC 
 "-//W3C//DTD XHTML 1.0 Transitional//EN" 
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" 
 

 The Frameset DTD includes everything in the transitional DTD plus frames as well: 
 

 !DOCTYPE html PUBLIC 
 "-//W3C//DTD XHTML 1.0 Frameset//EN" 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 25 

Q8 (c) Give brief overview of the steps of information architecture (IA) 
 
Answer 
The six concrete steps to Information Architecture are: 
 (1) define goals 
 (2) define audience, 
 (3) create and organize content 
 (4) formulate visual presentation concepts 
 (5) develop site map and navigation 
 (6) design and produce visual forms. 
 
Q9 (a) Give brief overview of CGI. What are the components of CGI model? 
Explain web server-handler interaction. 
 
Answer 
The Common Gateway Interface (CGI) is an essential tool for creating and managing 
comprehensive Web sites. With CGI, you can write scripts that create interactive, user-
driven applications.  

CGI is the part of the Web server that can communicate with other programs that are 
running on the server. With CGI, the Web server can invoke an external program, while 
passing user-specific data to the program (such as what host the user is connecting from, 
or input the user has supplied through an HTML form). The program then processes that 
data and the server passes the program's response back to the Web browser. 

Components of the CGI Model 

• Clients 
• Web browsers 

• Web server 
• Mediates communication between browsers and handler programs 
• CGI protocol 

• Specifies interaction between 
• Browser and handler programs 

                                       Function call syntax 
• Web server and handler programs  

• Handler programs (or CGI scripts) 
• Any executables residing on the web server 
• Can be written in any language 

 
 



DC60                        JAVA & WEB PROGRAMMING 
 

JUNE  2013 

 

© IETE                                                                                                                                 26 

Web Server - Handler Interaction 
 

• Information about a request comes from 
• Request line 
• Header line 
• Request body (POST) 

• Handler input 
• Environment variables 
• Stdin(request body) 

• Handler output 
Stdout 

 
Q9.b. Explain the use of the following array methods: 

(i)     pop() (ii)   push(....) 
 (iii)   concat(....)                               (iv)  reverse() 
 
Answer    Page Number 321 of the textbook 
 
 
 

TEXT BOOKS 
 

1. Programming with Java- Primer, E. Balagurusamy, Third Edition, TMH, 2007. 
 

2. An Introduction to Web Design + Programming, Paul S. Wang and Sanda S. 
Katila, Thomson Course Technology, India Edition, 2008. 


	Q3 (b) Explain break and continue statements in detail with examples.
	Q6 (c) What are streams in Java?  Explain.
	Q7 (c) What is HTTP? Define purpose of any two HTTP methods.
	How Does HTTP Work?

