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Q2 (a) Write the benefits of choosing a single purpose processor over a general 
purpose processor. 

Answer    
A single-purpose processor is a digital system intended to solve a specific computation 
task. The processor may be a standard one, intended for use in a wide variety of 
applications in which the same task must be performed. The manufacturer of such an off-
the-shelf processor sells the device in large quantities. On the other hand, the processor 
may be a custom one, built by a designer to implement a task specific to a particular 
application. An embedded system designer choosing to use a standard single purpose, 
rather than a general-purpose, processor to implement part of a system’s functionality 
may achieve several benefits.  
First, performance may be fast, since the processor is customized for the particular task at 
hand. Not only might the task execute in fewer clock cycles, but also those cycles 
themselves may be shorter. Fewer clock cycles may result from many data path 
components operating in parallel, from data path components passing data directly to one 
another without the need for intermediate registers (chaining), or from elimination of 
program memory fetches. Shorter cycles may result from simpler functional units, less 
multiplexors, or simpler control logic. For standard single-purpose processors, 
manufacturers may spread NRE cost over many units. Thus, the processor's clock cycle 
may be further reduced by the use of custom IC technology, leading-edge IC's, and expert 
designers, just as is the case with general-purpose processors.  
Second, size may be small. A single-purpose processor does not require a program 
memory. Also, since it does not need to support a large instruction set, it may have a 
simpler data path and controller.  

 Third, a standard single-purpose processor may have low unit cost, due to the 
manufacturer spreading NRE cost over many units. Likewise, NRE cost may be low, 
since the embedded system designer need not design a standard single-purpose processor, 
and may not even need to program it. There are of course tradeoffs. If we are already 
using a general-purpose processor, then implementing a task on an additional single-
purpose processor rather than in software may add to the system size and power 
consumption.We often refer to standard single-purpose processors as peripherals, 
because they usually exist on the periphery of the CPU. However, microcontrollers 
tightly integrate these peripherals with the CPU, often placing them on-chip, and even 
assigning peripheral registers to the CPU's own register space. The result is the common 
term "on chip peripherals," 

 
Q2 (b) List the hardware units that must be present in the embedded systems. 
Answer     
The hardware units available in an embedded systems are power source, clock oscillator 
circuit & clocking unit, real time clock & timer, reset circuit, power up reset, watchdog 
timer reset, Input, output, I/O ports, buses & interfaces, memories, DAC & ADC, 
interrupt handler, keypad/keyboard, pulse dialer, modem, transceiver, LCD & LED 
displays, GPIB link, linking and interface buses & units. In power souse we must 
oncentrate on power consumption and power dissipation. In clock circuit any one of the 
following is used that is crystal or ceramic or IC based clock. Memory is an important 
part of any embedded system design and is heavily influenced by the software design.  
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Q3 (a) Give a detailed description on the basic architecture of a general purpose 
processor. Give suitable diagrams also. 
 
Answer 
8085 consists of various units and each unit performs its own functions. The various units 
of a microprocessor are listed below 
· Accumulator 
· Arithmetic and logic Unit 
· General purpose register 
· Program counter 
· Stack pointer 
· Temporary register 
· Flags 
· Instruction register and Decoder 
· Timing and Control unit 
· Interrupt control 
· Serial Input/output control 
· Address buffer and Address-Data buffer 
· Address bus and Data bus 
Accumulator 
Accumulator is nothing but a register which can hold 8-bit data. Accumulator aids in 
storing two quantities.The data to be processed by arithmetic and logic unit is stored in 
accumulator.It also stores the result of the operation carried out by the Arithmetic and 
Logic unit. 
The accumulator is also called an 8-bit register. The accumulator is connected to Internal 
Data bus and ALU (arithmetic and logic unit). The accumulator can be used to send or 
receive data from the Internal Data bus. 
Arithmetic and Logic Unit 
There is always a need to perform arithmetic operations like +, -, *, / and to perform 
logical operations like AND, OR, NOT etc. So there is a necessity for creating a separate 
unit which can perform such types of operations. These operations are performed by the 
Arithmetic and Logic Unit (ALU). ALU performs these operations on 8-bit data. 
But these operations cannot be performed unless we have an input (or) data on which the 
desired operation is to be performed. So from where do these inputs reach the ALU? For 
this purpose accumulator is used. ALU gets its Input from accumulator and temporary 
register. After processing the necessary operations, the result is stored back in 
accumulator. 
General Purpose Registers 
Apart from accumulator 8085 consists of six special types of registers called General 
Purpose Registers.These general purpose registers are used to hold data like any other 
registers. The general purpose registers in 8085 processors are B, C, D, E, H and L. Each 
register can hold 8-bit data. Apart from the above function these registers can also be 
used to work in pairs to hold 16-bit data.They can work in pairs such as B-C, D-E and H-
L to store 16-bit data. The H-L pair works as a memory pointer.A memory pointer holds 
the address of a particular memory location. They can store 16-bit address as they work 
in pair. 
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Program Counter and Stack Pointer 
Program counter is a special purpose register. 
Consider that an instruction is being executed by processor. As soon as the ALU finished 
executing the instruction, the processor looks for the next instruction to be executed. So, 
there is a necessity for holding the address of the next instruction to be executed in order 
to save time. This is taken care by the program counter. 
A program counter stores the address of the next instruction to be executed. In other 
words the program counter keeps track of the memory address of the instructions that are 
being executed by the microprocessor and the memory address of the next instruction that 
is going to be executed. 
Microprocessor increments the program whenever an instruction is being executed, so 
that the program counter points to the memory address of the next instruction that is 
going to be executed. Program counter is a 16-bit register. 
 
Stack pointer is also a 16-bit register which is used as a memory pointer. A stack is 
nothing but the portion of RAM (Random access memory). 
Stack pointer maintains the address of the last byte that is entered into stack. 
Each time when the data is loaded into stack, Stack pointer gets decremented. Conversely 
it is incremented when data is retrieved from stack. 
 
Temporary Register 
As the name suggests this register acts as a temporary memory during the arithmetic and 
logical operations. Unlike other registers, this temporary register can only be accessed by 
the microprocessor and it is completely inaccessible to programmers. Temporary register 
is an 8-bit register. 
 
Q3   (b) Explain the following terms:- 
   (i)   SOC  
   (ii)  Device programmer  
   (iii) ASIP 
 
Answer    
(i) System-on-a-chip or system on chip (SoC or SOC) refers to integrating all 
components of a computer or other electronic system into a single integrated circuit 
(chip). It may contain digital, analog, mixed-signal, and often radio-frequency functions – 
all on a single chip substrate. A typical application is in the area of embedded systems. 
The contrast with a microcontroller is one of degree. Microcontrollers typically have 
under 100K of RAM (often just a few KBytes) and often really are single-chip-systems; 
whereas the term SoC is typically used with more powerful processors, capable of 
running software such as Windows or Linux, which need external memory chips (flash, 
RAM) to be useful, and which are used with various external peripherals. In short, for 
larger systems System-on-a-chip is hyperbole, indicating technical direction more than 
reality: increasing chip integration to reduce manufacturing costs and to enable smaller 
systems. Many interesting systems are too complex to fit on just one chip built with a 
process optimized for just one of the system's tasks. 
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When it is not feasible to construct an SoC for a particular application, an alternative is a 
system in package (SiP) comprising a number of chips in a single package. In large 
volumes, SoC is believed to be more cost effective than SiP since it increases the yield of 
the fabrication and because its packaging is simpler. 
 
Another option, as seen for example in higher end cell phones and on the Beagle Board, 
is package on package stacking during board assembly. The SoC chip includes processors 
and numerous digital peripherals, and comes in a ball grid package with lower and upper 
connections. The lower balls connect to the board and various peripherals, with the upper 
balls in a ring holding the memory busses used to access NAND flash and DDR2 RAM. 
Memory packages could come from multiple vendors. 
 
A SoC consists of both the hardware and the software that controls the microcontroller, 
microprocessor or DSP cores, peripherals and interfaces. The design flow for an SoC 
aims to develop this hardware and software in parallel. 
 
Most SoCs are developed from pre-qualified hardware blocks for the hardware elements 
described above, together with the software drivers that control their operation. Of 
particular importance are the protocol stacks that drive industry-standard interfaces like 
USB. The hardware blocks are put together using CAD tools; the software modules are 
integrated using a software development environment. 
 
A key step in the design flow is emulation: the hardware is mapped onto an emulation 
platform based on a field programmable gate array (FPGA) that mimics the behavior of 
the SoC, and the software modules are loaded into the memory of the emulation platform. 
Once programmed, the emulation platform enables the hardware and software of the SoC 
to be tested and debugged at close to its full operational speed. 
 
After emulation the hardware of the SoC follows the place and route phase of the design 
of an integrated circuit before it is fabricated. 
 
Chips are verified for logical correctness before being sent to foundry. This process is 
called functional verification, and it accounts for a significant portion of the time and 
energy expended in the chip design life cycle. Verilog and VHDL are typical hardware 
description languages used for verification. With the growing complexity of chips, 
hardware verification languages like System Verilog, SystemC, e, and OpenVera are also 
being used. Bugs found in the verification stage are reported to the designer. 
 
(ii) For programming a circuit, it is either inserted into a socket on top of the 
programmer, or the programmer is directly connected by an adapter to the circuit board 
(In-System Programming). Afterwards the data is transferred into the circuit by applying 
signals to the connecting pins. Some circuits have a serial interface for receiving the 
programming data (JTAG interface). Other circuits require the data on parallel pins, 
followed by a programming pulse with a higher voltage for programming the data into 
the circuit. 
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Usually device programmers are connected to a personal computer through a printer 
connector, USB port or LAN interface. A software program on the computer then 
transfers the data to the programmer, selects the circuit and interface type, and starts the 
programming process. 

There are four general types of device programmers: Gang programmers for mass 
production, development programmers for development and small-series production, 
pocket programmers for development and field service, and specialized programmers for 
certain circuit types only, f.i. EPROM programmers. Early device programmers had the 
size of a shoe box and a weight of up to 4 kg; the latest generation device programmers 
are pocket sized, weigh less than 200 g and require no external power supply. These 
types of programmers can be used in field service for maintenance or setup of machinery 
that contains programmable circuits. 

A challenge for device programmer manufacturers is the design of the pin drivers that are 
directly connected to the circuit to be programmed. Due to the many different 
programmable circuits, every pin driver must be able to apply different voltages in a 
range of 0-25 Volts, clock rates of up to 40 MHz, and logic inputs with adjustable 
threshold. Modern programmers use a dedicated integrated circuit for the pin drivers. 

In the early days of computing, before terminal and graphical display devices, a 
programmer was a device used to configure a program for a computer. It usually 
consisted of switches and LEDs, where instructions had to be entered one by one by 
setting the switches in a series of "on" and "off" positions. The positions of the switches 
corresponded to computer instructions, similar to how assembly language is used today. 
Such hardware programmers are almost never seen or used today. 

(iii) An application-specific instruction-set processor (ASIP) is a component used in 
system-on-a-chip design. The instruction set of an ASIP is tailored to benefit a specific 
application. This specialization of the core provides a tradeoff between the flexibility of a 
general purpose CPU and the performance of an ASIC. 
 
Some ASIPs have a configurable instruction set. Usually, these cores are divided into two 
parts: static logic which defines a minimum ISA and configurable logic which can be 
used to design new instructions. The configurable logic can be programmed either in the 
field in a similar fashion to an FPGA or during the chip synthesis. 
 
Field programmable gate array (FPGA) is a programmable logic array in which internal 
connections of logic blocks can be programmed in the field to realize the desired digital 
circuit. FPGA provides the system designer with a great deal of flexibility and is an 
excellent alternative to standard SSI, MSI, and VLSI logic devices. 
 
They combine the flexibility of mask programmable gate arrays with the convenience of 
field programmability.These features make it possible to combine many portions of 
discrete logic, otherwise available on multichips, in to a single FPGA device. The user 
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programmable feature makes it possible to develop application specific instruction 
processor (ASIP) with comfortable ease. 
 
The complexity and sophistication of data handling and control of ASIP execution make 
tools that can analyse sequential applications and derive user specific design 
implementations extremely desirable. A complier and synthesis system is used to analyse 
the input sequential code and partition of the data and computation among FPGA 
architectural blocks for ASIP execution. The compiler analyses the set of design stages 
and schedules them on to the target architecture, respecting the original data 
dependencies and the target architecture's FPGA and memory capacity constraints. 
 
Q3 (c) Explain briefly pipelining. 
 
Answer Page Number 60 of Text Book I 
 
Q4  (a) Tabulate the uses of Timer device with applications and explanations. 
 
Answer   
An on-delay timer will wait for a set time after a line of ladder logic has been true before 
turning on, but it will turn off immediately. An off-delay timer will turn on immediately 
when a line of ladder logic is true, but it will delay before turning off. Consider the 
example of an old car. If you turn the key in the ignition and the car does not start 
immediately, that is an on-delay. If you turn the key to stop the engine but the engine 
doesn’t stop for a few seconds that is an off delay. An on-delay timer can be used to 
allow an oven to reach temperature before starting production. An off delay timer can 
keep cooling fans on for a set time after the oven has been turned off. A retentive timer 
will sum all of the on or off time for a timer, even if the timer never finished. A no 
retentive timer will start timing the delay from zero each time. Typical applications for 
retentive timers include tracking the time before maintenance is needed. A non retentive 
timer can be used for a start button to give a short delay before a conveyor begins 
moving. 
A timer with automatic reload capability will have a latch register to hold the count 
written by the processor. When the processor writes to the latch, the count register is 
written as well. When the timer later overflows, it first generates an output signal. Then, 
it automatically reloads the contents of the latch into the count register. Since the latch 
still holds the value written by the processor, the counter will begin counting again from 
the same initial value.  
Such a timer will produce a regular output with the same accuracy as the input clock. 
This output could be used to generate a periodic interrupt like a real-time operating 
system (RTOS) timer tick, provide a baud rate clock to a UART, or drive any device that 
requires a regular pulse.  
A variation of this feature found in some timers uses the value written by the processor as 
the endpoint rather than the initial count. In this case, the processor writes into a terminal 
count register that is constantly compared with the value in the count register. The count 
register is always reset to zero and counts up. When it equals the value in the terminal 
count register, the output signal is asserted. Then the count register is reset to zero and the 
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process repeats. The terminal count remains the same. The overall effect is the same as an 
overflow counter. A periodic signal of a pre-determined length will then be produced.  
 
If a timer supports automatic reloading, it will often make this a software-selectable 

feature. To distinguish between a count that will not repeat automatically and 
one that will, the hardware is said to be in one of two modes: one-shot or 
periodic. The mode is generally controlled by a field in the timer's control 
register. An input capture timer, has a latch connected to the timer's count 
register. The timer is run at a constant clock rate (usually a derivative of the 
processor clock), so that the count register is constantly incrementing (or 
decrementing, for a down counter). An external signal latches the value of 
the free-running timer into the processor-visible register and generates an 
output signal (typically an interrupt). One use for an input capture timer is to 
measure the time between the leading edge of two pulses. By reading the 
value currently in the latch and comparing it with a previous reading, the 
software can determine how many clock cycles elapsed between the two 
pulses. In some cases, the timer's count register might be automatically reset 
just after its value is latched. If so, the software can directly interpret the 
value it reads as the number of clock ticks elapsed. An input capture pin can 
usually be programmed to capture on either the rising or falling edge of the 
input signal. 

  
Q4 (b) How will you set watchdog timer to restart the processor at every 2 ms? 
 
Answer    
main(void) 
{ 
    hwinit(); 
 
    for (;;) 
    { 
        *pWatchdog = 200; 
        read_sensors(); 
        control_motor(); 
        display_status(); 
    } 
} 
//This is according to 2 msec logic to be created. 
 
Q4 (c) Explain the principle and working of UART with a suitable diagram. 
 
Answer   
The Universal Asynchronous Receiver/Transmitter (UART) takes bytes of data and 
transmits the individual bits in a sequential fashion. At the destination, a second UART 
re-assembles the bits into complete bytes. Each UART contains a shift register which is 
the fundamental method of conversion between serial and parallel forms. Serial 
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transmission of digital information (bits) through a single wire or other medium is much 
more cost effective than parallel transmission through multiple wires. 
The UART usually does not directly generate or receive the external signals used 
between different items of equipment. Separate interface devices are used to convert the 
logic level signals of the UART to and from the external signaling levels. External 
signals may be of many different forms. Examples of standards for voltage signaling are 
RS-232, RS-422 and RS-485 from the EIA. Historically, the presence or absence of 
current (in current loops) was used in telegraph circuits. Some signaling schemes do not 
use electrical wires. Examples of such are optical fiber, IrDA (infrared), and (wireless) 
Bluetooth in its Serial Port Profile (SPP). Some signaling schemes use modulation of a 
carrier signal (with or without wires). Examples are modulation of audio signals with 
phone line modems, RF modulation with data radios, and the DC-LIN for power line 
communication. 
Communication may be "full duplex" (both send and receive at the same time) or "half 
duplex" (devices take turns transmitting and receiving). 
Receiver:  
All operations of the UART hardware are controlled by a clock signal which runs at a 
multiple (say, 16) of the data rate - each data bit is as long as 16 clock pulses. The 
receiver tests the state of the incoming signal on each clock pulse, looking for the 
beginning of the start bit. If the apparent start bit lasts at least one-half of the bit time, it is 
valid and signals the start of a new character. If not, the spurious pulse is ignored. After 
waiting a further bit time, the state of the line is again sampled and the resulting level 
clocked into a shift register. After the required number of bit periods for the character 
length (5 to 8 bits, typically) have elapsed, the contents of the shift register is made 
available (in parallel fashion) to the receiving system. The UART will set a flag 
indicating new data is available, and may also generate a processor interrupt to request 
that the host processor transfers the received data. In some common types of UART, a 
small first-in, first-out FIFO buffer memory is inserted between the receiver shift register 
and the host system interface. This allows the host processor more time to handle an 
interrupt from the UART and prevents loss of received data at high rates. 
Transmitter: 
Transmission operation is simpler since it is under the control of the transmitting system. 
As soon as data is deposited in the shift register after completion of the previous 
character, the UART hardware generates a start bit, shifts the required number of data 
bits out to the line, generates and appends the parity bit (if used), and appends the stop 
bits. Since transmission of a single character may take a long time relative to CPU 
speeds, the UART will maintain a flag showing busy status so that the host system does 
not deposit a new character for transmission until the previous one has been completed; 
this may also be done with an interrupt. Since full-duplex operation requires characters to 
be sent and received at the same time, practical UARTs use two different shift registers 
for transmitted characters and received characters. 
Application Transmitting and receiving UARTs must be set for the same bit speed, 
character length, parity, and stop bits for proper operation. The receiving UART may 
detect some mismatched settings and set a "framing error" flag bit for the host system; in 
exceptional cases the receiving UART will produce an erratic stream of mutilated 
characters and transfer them to the host system. 
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Typical serial ports used with personal computers connected to modems use eight data 
bits, no parity, and one stop bit; for this configuration the number of ASCII character per 
second equals the bit rate divided by 10. 
Some very low-cost home computers or embedded systems dispensed with a UART and 

used the CPU to sample the state of an input port or directly manipulate an 
output port for data transmission. While very CPU-intensive, since the CPU 
timing was critical, these schemes avoided the purchase of a costly UART 
chip. The technique was known as a bit-banging serial port. 

 
Q5 (a) Explain the memory allocation schemes in an embedded system. Also give a short  
   note on extended memory. 
Answer   
Whether you're using only static memory, a simple stack, or dynamic allocation on a 
heap, you have to proceed cautiously. Embedded programmers cannot afford to ignore 
the risks inherent in memory utilization.  
Every program uses random access memory (RAM), but the ways in which that memory 
is divided among the needy parts of the system varies widely. This article surveys the 
options available in hopes that the reader will be better equipped to choose an approach 
for a given project.  
The mechanisms include statically allocating all memory, using one or more stacks, and 
using a heap. We will examine how the heap implementation can impact fragmentation 
and real-time performance.  
Static memory allocation  
If all memory is allocated statically, then exactly how each byte of RAM will be used 
during the running of the program can be established at compile time. The advantage of 
this in embedded systems is that the whole issue of memory-related bugs—due to leaks, 
failures, and dangling pointers—simply does not exist. Many compilers for 8-bit 
processors such as the 8051 or PIC are designed to perform static allocation. All data is 
either global, file static or function static, or local to a function. The global and static data 
is allocated in a fixed location, since it must remain valid for the life of the program.  
The local data is stored in a block set aside for each function. This means that if a 
function has a local variable x, then x is stored in the same place for every invocation of 
that function. When the function is not running, that location is usually not used. This 
approach is used in C compilers when the hardware is not capable of providing suitable 
support for a stack.  
This approach prohibits the use of recursion or any other mechanism that requires 
reentrant code. For example, an interrupt routine can't call a function that may also be 
called by the main flow of execution. In return for this loss of flexibility, the programmer 
is guaranteed no run-time memory allocation issues. It might be useful if all compilers 
gave the programmer the option of not using the stack. By statically defining all of the 
space, the programmer sacrifices some flexibility and efficiency, in exchange for extra 
robustness.  
Some clever compilers may establish that two particular functions can't be 
simultaneously active and, so, allow the memory blocks associated with those two 
functions to overlap. This approach puts an extra restriction on the code that function 
pointers can't be used.  
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To benefit from the inherent memory safety of a completely static environment, it's 
important that the programmer avoid introducing dangers by trying to implement 
dynamic memory (such as reusing global data for different purposes) on top of the static 
environment.  
For large systems, completely static allocation is not feasible since an enormous amount 
of RAM would eventually be required to satisfy every possible execution path of the 
program.  
Stack-based memory management  
The next step up in complexity is to add a stack. Now a block of memory is required for 
every call of a function, and not just a single block for each function in existence. The 
blocks are stored on a stack, and are usually called stack frames.  
The stack grows and shrinks as the program executes, and for many programs, it isn't 
possible to predict, at compile time, what the worst case stack size will be. A multitasking 
system will have one stack per task (plus possibly an extra one for interrupts). Some 
judgment must be exercised to make sure that each stack is big enough for all of its 
activities. It's an awful shame to suffer from an untimely stack overflow especially if one 
of the other stacks has a reserve of space that it never uses. Unfortunately, most 
embedded systems do not support any kind of virtual memory management that would 
allow the tasks to draw from a common pool as the need arises.  
One rule of thumb is to make each stack 50% bigger than the worst case seen during 
testing. In order to apply this rule, the programmer must know how big the stack, or 
stacks, became during testing. One simple technique is to "paint" the stack space with a 
simple pattern. As the stack grows and shrinks it will overwrite the area with its data. At 
a later time, a simple loop can run through the stack's predefined area to detect the 
furthest extent of the stack. Figure 2 shows an example of the life of a simple stack. The 
simple pattern written to the stack should be non-zero, since it is quite common to have 
data on the stack which has been assigned to zero. It would be difficult to distinguish this 
data from unused stack space.  
Many RTOSes offer a stack size tracing feature. If yours does not, or if you are not using 
an RTOS, it's not difficult to implement it yourself, though it is likely to be non-portable. 
The technique can be used during the testing phase to refine the stack sizes, and it can 
also be used on a production system to give early warning of a stack that exceeds a 
watermark that the designers did not expect to be reached. In this case, the watermark 
level on the stack is checked to see if the pattern has been overwritten. An expensive 
measurement of the exact extent of the stack is unnecessary. Checking the watermark on 
every write to the stack would be difficult and expensive, but it can be checked easily on 
a timed basis. This may not catch a stack overrun due to infinite recursion, which would 
overflow the stack very quickly, but it would catch a case where the stack grew a small 
amount bigger than the designers expected.  
The previously described technique fails in one scenario. Consider a large local array 
which extends beyond the top of the stack. If the program does not write any data to the 
array, the pattern will not get overwritten. The highest legal piece of stack space will 
contain the pattern, and so it will look as if the stack did not overflow. Data pushed onto 
the stack will overwrite some other area of memory, but checking the stack will indicate 
no problem. If you guess that this is what has happened then the easiest way to check is 
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to make the stack size much bigger, and check the size again. Now that the array is within 
the bounds of the bigger stack, the true worst case stack size will be found.  
Heap-based memory management  
Many objects, structures, or buffers require a lifetime that does not match the invocation 
of any one function. This is particularly true in event-driven programs, which is typical of 
many embedded systems. One event may cause an item to be created, and that item will 
remain in use until some other event leads to its demise. In C programs, heap 
management is carried out by the malloc () and free () functions. The malloc () function 
allows the programmer to acquire a pointer to an available block of memory of a 
specified size. The free () function allows the programmer to return a piece of memory to 
the heap when the application has finished with it.  
While stack management is handled by your compiler, heap management requires care by 
the programmer. A number of particularly devious bugs can creep into your program by 
way of the heap.  
At a certain point in the code, you may be unsure if a particular block is no longer 
needed. If you free () this piece of memory, but continue to access it (probably via a 
second pointer to the same memory), your program may function perfectly until that 
particular piece of memory is reallocated to another part of the program. Then two 
different parts of the program will proceed to write over each other's data. If you decide 
to not free the memory on the grounds that it may still be in use, then you may not get 
another opportunity to free it (since all pointers to the block may have gone out of scope 
or been reassigned to point elsewhere). In this case, the program logic will not be 
affected. But if the piece of code that leaks memory is visited on a regular basis, the leak 
will tend towards infinity, as the execution time of the program increases.  
Ultimately, the amount of physical memory will decide how long the program can 
execute. On many desktop applications, a small leak is acceptable, say a compiler which 
leaks 100 bytes for every 1,000 lines compiled. Such a program can still happily compile 
a 100,000-line file on a modern PC, since on exit of the program all allocated memory 
will be recovered. However, on many embedded systems, no upper limit on the life of the 
program is acceptable. Any memory leak is a bug and should be rectified by correcting 
the logic of the application program.  
In addition to leaks, there is another problem called fragmentation, which can't be 
corrected at the application level. This problem is inherent in most implementations of 
malloc (). It is caused by the blocks of memory available being broken down into smaller 
pieces as many allocations and frees are performed.  
The heap is a large block of memory that is made up of smaller blocks of memory 
allocated to the application and blocks that are free. Each block, allocated or freed, 
contains a header. The Free List pointer always points to the first available block. When 
an allocation is requested, this list is iterated, searching for a block to return. Ideally, a 
block of exactly the right size is available. If not, some larger block is broken into two. In 
this way, an initial heap of one large block can become a heap containing a linked list of 
many small blocks that are free, interspersed with many blocks that have been allocated 
to the application.  
The danger of fragmentation has been overestimated by academic experiments that 
focused on randomly sized allocations. In practice, allocations tend to come in a limited 
number of sizes. In a survey of a number of Unix applications, it was found that 90% of 
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allocations were covered by six sizes, and 99.9% of allocations were covered by 141 
sizes. This means that the probability of finding a block that exactly matches the size of 
any given request is far higher than would be estimated given a random distribution of 
allocation sizes.  
Fragmentation can also be reduced by using the appropriate policy when allocating and 
freeing blocks. Possible allocation policies include:  

• First Fit: allocate (and possibly split) the first block found that is large enough to 
fulfill the request  

• Best Fit: allocate the best fit after an exhaustive search  
Possible free list management policies include:  
Address Order: Sort the free list in order of address, to simplify merging of adjacent free 
blocks  
Recently-Used Order: Maintain the list in most recently used order, to match patterns of 

use where similar sizes are allocated and freed in bursts 
 
Q5 (b) Consider a byte - addressable computer with 16 - bit addresses a cache 

capable of storing a total of 4 K bytes of data and blocks of 16 bytes. 
Show the format (including field names and sizes) of memory address 
for:  

   (i)   Direct mapped  (ii) Fully associative  
   (iii) 4 - way set associative 
 
Answer    
i. 16K = 24 * 210 = 2 14  
    214/ 25 = 29 blocks in cache, so 9 bits are needed for the block field.  
    5 bits are needed for the word field, leaving 2 for the tag. 
 
ii. Again, 5 bits are needed for the word field, leaving 11 for the tag. 
 
iii. There are 29/24= 32 sets in cache, so 5 bits are needed for the set field.  
    We still need 5 bits for the word field, leaving 6 for the tag field. 
 
Q5 (c) Draw the external block diagram of a ROM and describe it. 
 
Answer  
The 8031 chip is a ROM less version of the 8051. In other words, it is exactly like any 
member of the 8051 family such as the 8751 or 89C51 as far as executing the instructions 
and features are concerned, but it has no on-chip ROM. Therefore, to make the 8031 
execute 8051 code, it must be connected to external ROM memory containing the 
program code. In many systems where the on-chip ROM of the 8051 is not sufficient, the 
use of an 8031 is ideal since it allows the program size to be as large as 64K bytes.  
Although the 8031 chip itself is much cheaper than other family members, an 8031-based 
system is much more expensive since the ROM containing the program code is connected 
externally and requires more supporting circuitry. First, we review some of the pins of the 
8031/51 used in external memory interfacing. Since the PC (program counter) of the 
8031/51 is 16-bit, it is capable of accessing up to 64K bytes of program code. In the 
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8031/51, port 0 and port 2 provide the 16-bit address to access external memory. Of these 
two ports, PO provides the lower 8 bit addresses AO - A7, and P2 provides the upper 8 
bit addresses A8 - A15. More importantly, PO is also used to provide the 8-bit data bus 
DO - D7. In other words, pins PO.O - P0.7 are used for both the address and data paths. 
This is called address/data multiplexing in chip design. Of course the reason Intel used 
address/data multiplexing in the 8031/51 is to save pins. How do we know when PO is 
used for the data path and when it is used for the address path? This is the job of the ALE 
(address latch enable) pin.  
ALE is an output pin for the 8031/51 microcontroller. Therefore, when ALE = 0 the 8031 
uses PO for the data path, and when ALE = 1, it uses it for the address path. As a result, 
to extract the addresses from the PO pins we connect PO to a 74LS373 latch and use the 
ALE pin to latch the address. This extracting of addresses from PO is called address/data 
demultiplexing. 
It is important to note that normally ALE = 0, and PO is used as a data bus, sending data 

out or bringing data in. Whenever the 8031/51 wants to use PO as an address 
bus, it puts the addresses AO - A7 on the PO pins and activates ALE = 1 to 
indicate that PO has the addresses 

 
Q6 (a) What are the characteristics taken into consideration when interfacing a 

device and a port? 
Answer  
Start Bits and Stop Bits  
In asynchronous communication, at least two extra bits are transmitted with the data 
word; a start bit and a stop bit. Therefore, if the transmitter is using an 8-bit system, the 
actual number of bits transmitted per word is ten.  
In most protocols the start bit is a logic 0 while the stop bit is logic 1.  
Therefore, when no data is being sent the data line is continuously HIGH.   
The receiver waits for a 1 to 0 transition. In other words, it awaits a transition from the 
stop bit (no data) to the start bit (logic 0). Once this transition occurs the receiver knows a 
data byte will follow.   
Since it knows the data rate (because it is defined in the protocol) it uses the same clock 
as frequency as that used by the transmitter and reads the correct number of bits and 
stores them in a register. For example, if the protocol determines the word size as eight 
bits, once the receiver sees a start bit it reads the next eight bits and places them in a 
buffer.  
Once the data word has been read the receiver checks to see if the next bit is a stop bit, 
signifying the end of the data. If the next bit is not a logic 1 then something went wrong 
with the transmission and the receiver dumps the data.  
If the stop bit was received the receiver waits for the next data word, ie; it waits for a 1 to 
0 transition.  
The 8051 Serial Port  
The 8051 includes an on-chip serial port that can be programmed to operate in one of 
four different modes and at a range of frequencies. In serial communication the data is 
rate is known as the baud rate, which simply means the number of bits transmitted per 
second. In the serial port modes that allow variable baud rates, this baud rate is set by 
timer 1.  
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The 8051 serial port is full duplex. In other words, it can transmit and receive data at the 
same time. The block diagram above shows how this is achieved. If you look at the 
memory map you will notice at location 99H the serial buffer special function register 
(SBUF). Unlike any other register in the 8051, SBUF is in fact two distinct registers - the 
write-only register and the read-only register. Transmitted data is sent out from the write-
only register while received data is stored in the read-only register. There are two 
separate data lines, one for transmission (TXD) and one for reception (RXD). Therefore, 
the serial port can be transmitting data down the TXD line while it is at the same time 
receiving data on the RXD line. 
 The TXD line is pin 11 of the microcontroller (P3.1) while the RXD line is on pin 10 
(P3.0). Therefore, external access to the serial port is achieved by connecting to these 
pins. For example, if you wanted to connect a keyboard to the serial port you would 
connect the transmit line of the keyboard to pin 10 of the 8051. If you wanted to connect 
a display to the serial port you would connect the receive line of the display to pin 11 of 
the 8051. This is detailed in the diagram below.  
Transmitting and Receiving Data  
Essentially, the job of the serial port is to change parallel data into serial data for 
transmission and to change received serial data into parallel data for use within the 
microcontroller.  
Serial transmission is changing parallel data to serial data.  
Serial reception is changing serial data into parallel data.  
Both are achieved through the use of shift registers.  
As discussed earlier, synchronous communication requires the clock signal to be sent 
along with the data while asynchronous communication requires the use of stop bits and 
start bits. However, the programmer wishing to use the 8051 need not worry about such 
things. To transmit data along the serial line you simply write to the serial buffer and to 
access data received on the serial port you simply read data from the serial buffer.  
For example:  
MOV SBUF, #45H - this sends the byte 45H down the serial line  
MOV A, SBUF - this takes whatever data was received by the serial port and puts it in 
the accumulator.  
How do we know when the complete data byte has been sent?  
As mentioned earlier, it takes a certain length of time for a data byte to be transmitted 
down the serial line (determined by the baud rate). If we send data to SBUF and then 
immediately send more data to SBUF, as shown below, the initial character will be 
overwritten before it was completely shifted down the line.  
MOV SBUF, #23H  
MOV SBUF, #56H  
Therefore, we must wait for the entire byte to be sent before we send another. The serial 
port control register (SCON) contains a bit which alerts us to the fact that a byte has been 
transmitted; ie; the transmit interrupt flag (TI) is set by hardware once an entire byte has 
been transmitted down the line. Since SCON is bit-addressable we can test this bit and 
wait until it is set, as shown below:  
     
MOV SBUF, #23H; send the first byte down the serial line 
JNB TI, $; wait for the entire byte to be sent 
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CLR TI; the transmit interrupt flag is set by hardware but must be cleared by software 
MOV SBUF, #56H; send the second byte down the serial line  
Similarly, we need to know when an entire byte has been received by the serial port. 
Another bit in SCON, the receive interrupt flag (RI) is set by hardware when an entire 
byte is received by the serial port. The code below shows how you would program the 
controller to wait for data to be received and to then move that data into the accumulator.      
JNB RI, $; wait for an entire byte to be received 
CLR RI; the receive interrupt flag is set by hardware but must be cleared by software 
MOV A, SBUF; move the data stored in the read-only buffer to the accumulator 
 
Q6 (b) List the features of synchronous, iso-synchronous and asynchronous serial 

communication? 
Answer   
Asynchronous serial communication describes an asynchronous, serial transmission 
protocol in which a start signal is sent prior to each byte, character or code word and a 
stop signal is sent after each code word. The start signal serves to prepare the receiving 
mechanism for the reception and registration of a symbol and the stop signal serves to 
bring the receiving mechanism to rest in preparation for the reception of the next symbol. 
A common kind of start-stop transmission is ASCII over RS-232, for example for use in 
teletypewriter operation. 
In the diagram, two bytes are sent, each consisting of a start bit, followed by seven data 
bits (bits 0-6), a parity bit (bit 7), and one stop bit, for a 10-bit character frame. The 
number of data and formatting bits, the order of data bits, and the transmission speed 
must be pre-agreed by the communicating parties. 
The "stop bit" is actually a "stop period"; the stop period of the transmitter may be 
arbitrarily long. It cannot be shorter than a specified amount, usually 1 to 2 bit times. The 
receiver requires a shorter stop period than the transmitter. At the end of each character, 
the receiver stops briefly to wait for the next start bit. It is this difference which keeps the 
transmitter and receiver synchroized. 
When devices exchange data, there is a flow or stream of information between the two. In 
any data transmission, the sender and receiver must have a way to extract individual 
characters or blocks (frames) of information. Imagine standing at the end of a data pipe. 
Characters arrive in a continuous stream of bits, so you need a way to separate one block 
of bits from another. In asynchronous communications, each character is separated by the 
equivalent of a flag so you know exactly where characters are located. In synchronous 
communications, both the sender and receiver are synchronized with a clock or a signal 
encoded into the data stream. 
In synchronous communications, the sender and receiver must synchronize with one 
another before data is sent. To maintain clock synchronization over long periods, a 
special bit-transition pattern is embedded in the digital signal that assists in maintaining 
the timing between sender and receiver. In this method, the bit stream pictured at the top 
is meshed with the clock pulse pictured in the middle to produce the transmission signal 
shown at the bottom. 
Synchronous communications are either character oriented or bit oriented. Character-
oriented transmissions are used to send blocks of characters such as those found in ASCII 
(American Standard Code for Information Interchange) files. Each block must have a 
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starting flag similar to asynchronous communications so the receiving system can 
initially synchronize with the bit stream and locate the beginning of the characters. Two 
or more control characters, known as SYN (synchronous idle) characters, are inserted at 
the beginning of the bit stream by the sender. These characters are used to synchronize a 
block of information. Once correct synchronization has been established between sender 
and receiver, the receiver places the block it receives as characters in a memory buffer. 
Bit-oriented synchronous communication is used primarily for the transmission of binary 
data. It is not tied to any particular character set, and the frame contents don't need to 
include multiples of eight bits. A unique 8-bit pattern (01111110) is used as a flag to start 
the frame. 
An entirely different form of synchronous communications can be seen in the form of 

chat and instant messaging. Like a voice telephone call, a chat or instant 
messaging session is live and each user responds to the other in real time. In 
contrast, discussion forums and electronic mail are asynchronous 
communications. Some amount of time may pass before a person responds to 
a message. In a discussion forum, a message sits in a message queue for 
other people to read and respond to at any time, or until the message falls out 
of the queue. These two forms of communication, which are accessible to 
any Internet user from just about any Web-attached system, may be the most 
profound aspect of the Internet. They promote a new form of instant global 
communication and collaboration. In the case of discussion forums and e-
mail, delayed communication gives respondents time to think about their 
response and gather information from other sources before responding. 

 
Q6 (c) What is the advantage of Direct Memory Access? Give a diagram to explain 

it. 
Answer  
DMA is an essential feature of all modern computers, as it allows devices to transfer data 
without subjecting the CPU to a heavy overhead. Otherwise, the CPU would have to copy 
each piece of data from the source to the destination, making itself unavailable for other 
tasks. This situation is aggravated because access to I/O devices over a peripheral bus is 
generally slower than normal system RAM. With DMA, the CPU gets freed from this 
overhead and can do useful tasks during data transfer (though the CPU bus would be 
partly blocked by DMA). In the same way, a DMA engine in an embedded processor 
allows its processing element to issue a data transfer and carries on its own task while the 
data transfer is being performed. 
A DMA transfer copies a block of memory from one device to another. While the CPU 
initiates the transfer by issuing a DMA command, it does not execute it. For so-called 
"third party" DMA, as is normally used with the ISA bus, the transfer is performed by a 
DMA controller which is typically part of the motherboard chipset. More advanced bus 
designs such as PCI typically use bus mastering DMA, where the device takes control of 
the bus and performs the transfer itself. In an embedded processor or multiprocessor 
system-on-chip, it is a DMA engine connected to the on-chip bus that actually 
administers the transfer of the data, in coordination with the flow control mechanisms of 
the on-chip bus. 
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A typical usage of DMA is copying a block of memory from system RAM to a buffer on 
the device or vice versa. Such an operation usually does not stall the processor, which as 
a result can be scheduled to perform other tasks unless those tasks include a read from or 
write to memory. DMA is essential to high performance embedded systems. It is also 
essential in providing so-called zero-copy implementations of peripheral device drivers as 
well as functionalities such as network packet routing, audio playback and streaming 
video. Multicore embedded processors (in the form of multiprocessor system-on-chip) 
often use one or more DMA engines in combination with scratchpad memories for both 
increased efficiency and lower power consumption. In computer clusters for high-
performance computing, DMA among multiple computing nodes is often used under the 
name of remote DMA. There are two control signal used to request and acknowledge a 
DMA transfer in microprocess-based system. The HOLD pin is used to request a DMA 
action and the HLDA pin is an output acknowledges the DMA action. 
DMA can lead to cache coherency problems. Imagine a CPU equipped with a cache and 
an external memory that can be accessed directly by devices using DMA. When the CPU 
accesses location X in the memory, the current value will be stored in the cache. 
Subsequent operations on X will update the cached copy of X, but not the external 
memory version of X. If the cache is not flushed to the memory before the next time a 
device tries to access X, the device will receive a stale value of X. 
Similarly, if the cached copy of X is not invalidated when a device writes a new value to 
the memory, then the CPU will operate on a stale value of X. 
This issue can be addressed in one of two ways in system design: Cache-coherent 
systems implement a method in hardware whereby external writes are signaled to the 
cache controller which then performs a cache invalidation for DMA writes or cache flush 
for DMA reads. Non-coherent systems leave this to software, where the OS must then 
ensure that the cache lines are flushed before an outgoing DMA transfer is started and 
invalidated before a memory range affected by an incoming DMA transfer is accessed. 
The OS must make sure that the memory range is not accessed by any running threads in 
the meantime. The latter approach introduces some overhead to the DMA operation, as 
most hardware requires a loop to invalidate each cache line individually. 
Hybrids also exist, where the secondary L2 cache is coherent while the L1 cache 
(typically on-CPU) is managed by software. 
 
Q7 (a) Explain the various RTOS task scheduling models. Why is priority inversion 

problem? When does it occur? 
 
Answer  
In typical designs, a task has three states: 1) running (executing on the CPU), 2) 
ready (ready to be executed), 3) blocked (waiting for input/output). Most tasks are 
blocked or ready most of the time because generally only one task can run at a 
time per CPU. The number of items in the ready queue can greatly vary, 
depending on the number of tasks the system needs to perform and the type of 
scheduler that the system uses. On simpler non-preemptive but still multitasking 
systems, a task has to give up its time on the CPU to other tasks, which can cause 
the ready queue to have a greater number of overall tasks in the ready to be 
executed state (see: Resource Starvation) 
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Usually the data structure of the ready list in the scheduler is designed to 
minimize the worst-case length of time spent in the scheduler's critical section, 
during which preemption is inhibited, and, in some cases, all interrupts are 
disabled. But the choice of data structure depends also on the maximum number 
of tasks that can be on the ready list. 
If there are never more than a few tasks on the ready list, then a doubly linked list 
of ready tasks is likely optimal. If the ready list usually contains only a few tasks 
but occasionally contains more, then the list should be sorted by priority. That 
way, finding the highest priority task to run does not require iterating through the 
entire list. Inserting a task then requires walking the ready list until reaching either 
the end of the list, or a task of lower priority than that of the task being inserted. 
Care must be taken not to inhibit preemption during this search. Longer critical 
sections should be divided into small pieces. If an interrupt occurs that makes a 
high priority task ready during the insertion of a low priority task, that high 
priority task can be inserted and run immediately before the low priority task is 
inserted. 
The critical response time, sometimes called the flyback time, is the time it takes 
to queue a new ready task and restore the state of the highest priority task to 
running. In a well-designed RTOS, readying a new task will take 3 to 20 
instructions per ready-queue entry, and restoration of the highest-priority ready 
task will take 5 to 30 instructions. 
In more advanced systems, real-time tasks share computing resources with many 
non-real-time tasks, and the ready list can be arbitrarily long. In such systems, a 
scheduler ready list implemented as a linked list would be inadequate. 
Algorithms 
Some commonly used RTOS scheduling algorithms are: 

• Cooperative scheduling  
• Preemptive scheduling  
• Rate-monotonic scheduling  
• Round-robin scheduling  
• Fixed priority pre-emptive scheduling, an implementation of preemptive 

time slicing  
• Fixed-Priority Scheduling with Deferred Preemption  
• Fixed-Priority Non-preemptive Scheduling  
• Critical section preemptive scheduling  
• Static time scheduling  
• Earliest Deadline First approach  
• Advanced scheduling using the stochastic and MTG  

Intertask communication and resource sharing Multitasking systems must manage 
sharing data and hardware resources among multiple tasks. It is usually "unsafe" 
for two tasks to access the same specific data or hardware resource 
simultaneously. "Unsafe" means the results are inconsistent or unpredictable. 
There are three common approaches to resolve this problem: 
Temporarily masking/disabling interrupts General-purpose operating systems 
usually do not allow user programs to mask (disable) interrupts, because the user 
program could control the CPU for as long as it wishes. Modern CPUs don't allow 
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user mode code to disable interrupts as such control is considered a key operating 
system resource. Many embedded systems and RTOSs, however, allow the 
application itself to run in kernel mode for greater system call efficiency and also 
to permit the application to have greater control of the operating environment 
without requiring OS intervention. 

On single-processor systems, if the application runs in kernel mode and can mask 
interrupts, often interrupt disablement is the best (lowest overhead) solution 
to prevent simultaneous access to a shared resource. While interrupts are 
masked, the current task has exclusive use of the CPU since no other task or 
interrupt can take control, so the critical section is protected. When the task 
exits its critical section, it must unmask interrupts; pending interrupts, if any, 
will then execute. Temporarily masking interrupts should only be done when 
the longest path through the critical section is shorter than the desired 
maximum interrupt latency, or else this method increases the system's 
maximum interrupt latency. Typically this method of protection is used only 
when the critical section is just a few instructions and contains no loops. This 
method is ideal for protecting hardware bit-mapped registers when the bits 
are controlled by different tasks. 

 
Q7 (b) List the ways in which an RTOS handles the ISR in a multitasking 

environment. 
Answer   
Since an interrupt handler blocks the highest priority task from running, and since real 

time operating systems are designed to keep thread latency to a minimum, 
interrupt handlers are typically kept as short as possible. The interrupt 
handler defers all interaction with the hardware as long as possible; typically 
all that is necessary is to acknowledge or disable the interrupt (so that it 
won't occur again when the interrupt handler returns). The interrupt handler 
then queues work to be done at a lower priority level, such as unblocking a 
driver task through releasing a semaphore or sending a message. A scheduler 
often provides the ability to unblock a task from interrupt handler context. 

An OS maintains catalogs of objects it manages such as threads, mutexes, memory, and 
so on. Updates to this catalog must be strictly controlled. For this reason it 
can be problematic when an interrupt handler calls an OS function while the 
application is in the act of also doing so. The OS function called from an 
interrupt handler could find the object database to be in an inconsistent state 
because of the application's update. There are two major approaches to deal 
with this problem: the unified architecture and the segmented architecture. 
RTOSs implementing the unified architecture solve the problem by simply 
disabling interrupts while the internal catalog is updated. The downside of 
this is that interrupt latency increases, potentially losing interrupts. The 
segmented architecture does not make direct OS calls but delegates the OS 
related work to a separate handler. This handler runs at a higher priority than 
any thread but lower than the interrupt handlers. The advantage of this 
architecture is that it adds very few cycles to interrupt latency. As a result, 
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OSes which implement the segmented architecture are more predictable and 
can deal with higher interrupt rates compared to the unified architecture. 

    
Q7 (c) Discuss with a diagram Task synchronization model for a specific 

application. 
Answer   
(Kernel-level threading) 
Threads created by the user are in 1-1 correspondence with schedulable entities in the 
kernel. This is the simplest possible threading implementation. Win32 used this approach 
from the start. On Linux, the usual C library implements this approach. The same 
approach is used by Solaris, NetBSD and FreeBSD. 
N: 1 (User-level threading) 
An N: 1 model implies that all application-level threads map to a single kernel-level 
scheduled entity; the kernel has no knowledge of the application threads. With this 
approach, context switching can be done very fast and, in addition, it can be implemented 
even on simple kernels which do not support threading. One of the major drawbacks 
however is that it cannot benefit from the hardware acceleration on multi-threaded 
processors or multi-processor computers: there is never more than one thread being 
scheduled at the same time. It is used by GNU Portable Threads. 
N:M (Hybrid threading) 
N: M maps some N number of application threads onto some M number of kernel 
entities, or "virtual processors." This is a compromise between kernel-level ("1:1") and 
user-level ("N:1") threading. In general, "N: M" threading systems are more complex to 
implement than either kernel or user threads, because changes to both kernel and user-
space code are required. In the N: M implementation, the threading library is responsible 
for scheduling user threads on the available schedulable entities; this makes context 
switching of threads very fast, as it avoids system calls. However, this increases 
complexity and the likelihood of priority inversion, as well as suboptimal scheduling 
without extensive coordination between the user land scheduler and the kernel scheduler. 
 
Q8  (a) Enlist the standard features of events and compare the methods of intertask 

communication. 
Answer   
There are several ways of implementing the scheduler -- preemptive or cooperative, 
round robin or with priority. In a cooperative or non-preemptive system, tasks cooperate 
with one another and relinquish control of the CPU themselves. In a preemptive system, a 
task may be preempted or suspended by different task, either because the latter has a 
higher priority or the time slice of the former one is used up. Round robin scheduler 
switches in one task after another in a round robin manner whereas a system with priority 
will switch in the highest priority task. 
For many small microcontroller based embedded systems, a cooperative (or non-
preemptive), round robin scheduler is adequate. This is the simplest to implement and it 
does not take up much memory. Ravindra Karnad has implemented such a scheduler for 
8051 and other microcontrollers. In his implementation, all tasks must behave 
cooperatively. A task waiting for an input event thus cannot have infinite waiting loop 
such as the following: 
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While (TRUE) 
{ 
  Check input 
  ... 
 } 
 
This will hog processor time and reprieve others of running. Instead, it may be written as: 
 
 If (input TRUE) 
 { 
  ... 
 } 
 Else (timer[i]=100ms) 
 
In this case, task i will check the input condition every 100 ms, set in the associated 
timer$[$i$]$. When the condition of input is false, other tasks will have a chance to run. 
 
The job of the scheduler is thus rather simple. When there is clock interrupt, all task 

timers are decremented. The task whose timer reaches 0 will be run. The 
greatest virtue of the simple task scheduler ready lies in the smallness of the 
code, which is of course very important in the case of microcontrollers. The 
code size ranges from 200 to 400 byes. 
 

Page Number 212 of Text-Book -II 
 
Q8  (b) Give a short note on the working of mail boxes and pipes in an embedded 

system. 
Answer    
Pipes depend on the convention that every program has initially available to it (at least) 

two I/O data streams; standard input and standard output (numeric file 
descriptors 0 and 1 respectively). Many programs can be written as filters, 
which read sequentially from standard input and write only to standard 
output. 

Normally these streams are connected to the user's keyboard and display, respectively. 
But Unix shells universally support redirection operations which connect 
these standard input and output streams to files. Thus, typing 

ls >foo 

sends the output of the directory lister ls(1) to a file named ‘foo’. On the other hand, 
typing: 

wc <foo 

causes the word-count utility wc(1) to take its standard input from the file ‘foo’, and 
deliver a character/word/line count to standard output. 
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The pipe operation connects the standard output of one program to the standard input of 
another. A chain of programs connected in this way is called a pipeline. If we write 

ls | wc 
Pipes may have ends that may be moved around and bound to different peers at different 
times. Point-to-point and propagate pipes may be supported. Pipes may connect peers that 
have a direct physical link and peers that do not have a direct link. Peers may 
communicate through pipes without knowing on which peer a pipe endpoint is bound. A 
message is sent to all peer endpoints currently connected (listening) to the pipe. The set 
of connected endpoints may be obtained from a pipe service using a pipe binding 
protocol. 
 
Q8(c) What are queue related functions?  
 
Answer   
 
A task has three states: 1) running (executing on the CPU), 2) ready (ready to be 
executed), 3) blocked (waiting for input/output). Most tasks are blocked or ready most of 
the time because generally only one task can run at a time per CPU. The number of items 
in the ready queue can greatly vary, depending on the number of tasks the system needs 
to perform and the type of scheduler that the system uses. On simpler non-preemptive but 
still multitasking systems, a task has to give up its time on the CPU to other tasks, which 
can cause the ready queue to have a greater number of overall tasks in the ready to be 
executed state. 
Usually the data structure of the ready list in the scheduler is designed to minimize the 
worst-case length of time spent in the scheduler's critical section, during which 
preemption is inhibited, and, in some cases, all interrupts are disabled. But the choice of 
data structure depends also on the maximum number of tasks that can be on the ready list. 
If there are never more than a few tasks on the ready list, then a doubly linked list of 
ready tasks is likely optimal. If the ready list usually contains only a few tasks but 
occasionally contains more, then the list should be sorted by priority. That way, finding 
the highest priority task to run does not require iterating through the entire list. Inserting a 
task then requires walking the ready list until reaching either the end of the list, or a task 
of lower priority than that of the task being inserted. 
Care must be taken not to inhibit preemption during this search. Longer critical sections 
should be divided into small pieces. If an interrupt occurs that makes a high priority task 
ready during the insertion of a low priority task, that high priority task can be inserted 
and run immediately before the low priority task is inserted. 
The critical response time, sometimes called the flyback time, is the time it takes to queue 
a new ready task and restore the state of the highest priority task to running. In a well-
designed RTOS, readying a new task will take 3 to 20 instructions per ready-queue entry, 
and restoration of the highest-priority ready task will take 5 to 30 instructions. 

 In more advanced systems, real-time tasks share computing resources with many non-
real-time tasks, and the ready list can be arbitrarily long. In such systems, a scheduler 
ready list implemented as a linked list would be inadequate. 
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Q9 (a) Explain the need of tasks for priority and encapsulation in real-time 
operating system. 

 
Answer    
import curses as c 
 
def doKeyEvent(key): 
    if key == '\x00' or key == '\xe0': # non ASCII key 
       key = screen.getch() # fetch second character 
    screen.addstr(str(key)+' ') 
 
def doQuitEvent(key): 
    raise SystemExit 
 
# clear the screen of clutter, stop characters auto  
# echoing to screen and then tell user what to do to quit 
 
screen = c.initscr() 
c.noecho() 
screen.addstr("Hit space to end...\n") 
 
# Now mainloop runs "forever" 
while True: 
     ky = screen.getch() 
     if ky != -1: 
       # send events to event handling functions 
       if ky == ord(" "): # check for quit event 
  doQuitEvent(ky) 
       else:  
  doKeyEvent(ky) 
 
c.endwin() 
 
Page Number 244 of Text-Book-II 
 
Q9 (b) What are the efficient memory management techniques for saving memory 
space and power? 
 
Answer    
All too often, programs written for embedded systems grow and grow until they exceed 
the available program space. There are a variety of techniques for dealing with the out-of-
memory problem: 

• re-compile with the "-Os" (optimize for size) option 
• find and comment-out "dead code" 
• "refactor" repeated sections into a common subroutine 
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• trade RAM space for program space. 
• put a small interpreter in "internal program memory" that loads and interprets 

"instructions".  
1. use "instructions" -- perhaps p-code or threaded code -- that are more 

compact than directly coding it in assembly language. Or 
2. place these "instructions" can be placed in EEPROM or external serial 

Flash that couldn't otherwise be used as program memory. Or 
3. Both. This technique is often used in "stamp" style CPU modules. 

• add more memory (perhaps using a paging or banking scheme) 

Most CPUs used in desktop machines have a "memory management unit" (MMU). The 
MMU handles virtual memory, protects regions of memory used by the OS from 
untrusted programs. 

Most embedded systems do not have a MMU. We discuss the two versions of Linux that 
can run on a system that does not have a MMU in Embedded Systems/Linux. 
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