Q2 (a) Write the differential equation describing the dynamics of the system shown in Fig.1 and find $\frac{x_2(s)}{F(s)}$

Fig.1

Answer

Free body diagrams for mass M₁ and M₂ are

For M₂ For M₁

$$F(t) = M_1 \frac{d^2 x_1}{dt^2} + K_1 (x_1 - x_2)$$

$$K_1 (x_1 - x_2) = K_2 x_2 + M_2 \frac{d^2 x_1}{dt^2}$$
(2)

Take Laplace transform of eq. (1) & eq. (2) under initial conditions as zero.

$$F(s) = M_{1}s^{2}x_{1}(s) + K_{1}x_{1}(s) - K_{2}x_{2}(s) + M_{2}s^{2}x_{2}(s)$$

$$K_{1}x_{1}(s) - K_{1}x_{2}(s) = K_{2}x_{2}(s) + M_{2}s^{2}x_{2}(s)$$

$$Solving (3) & (4) we get x_{1}(s) = \frac{x_{2}(s)}{K_{1}}(s^{2}M_{2} + K_{1} + K_{2})$$

$$F(s) = \frac{x_{2}(s)}{K_{1}}(s^{2}M_{2} + K_{1} + K_{2})(s^{2}M_{1} + K_{1}x_{2}(s)$$

$$or \frac{x_{2}(s)}{f(s)} = \frac{K_{1}}{(s^{2}M_{2} + K_{1} + K_{2})(K_{1} + s^{2}M_{1}) - K_{1}^{2}}$$

Q2 (b) Obtain the F-I and F-V analogy of (a).

Answer Page Number 49 of Textbook

Q3 (a) In the Fig.4, identify the set of state variables and draw the signal flow graph of the circuit.

Also, determine transfer function from signal flow graph.

Answer

The Circuit of Fig.4 has two storage elements, so these shall be two state variables $V_{\rm iz}\ i_L$ and $e_c.$

The signal flow graph is conflicted by KCL equation at node and KVL equation round the loop. There are

$$\iota_{L} = \frac{e_{c}}{R_{2}} + i_{c} \text{ or } \iota_{L} = i_{L} \frac{e_{c}}{R_{2}}$$
 (1)
and $e = R_{1}i_{L} + e_{L} + e_{c} \text{ or } e_{L} = e - R_{1}i_{L} - e_{c}$ (2)

The signal flow graph is drawn

From signal flow graph, the two state variable equations be written as

$$\frac{di_{L}}{dt} = \frac{1}{L}e_{L} = \frac{1}{L}(-e_{c} - R_{1}i_{L} + e) = \frac{-R_{1}}{L}i_{L} - \frac{1}{L}e_{c} + \frac{1}{L}e_{...} - \frac{1}{L}e_{...} + \frac{1}{L}e_{...}$$
and
$$\frac{de_{c}}{dt} = \frac{1}{C}i_{L} = \frac{1}{C}(i_{L} + \frac{e_{c}}{R_{2}}) = \frac{1}{C}i_{L} - \frac{1}{R_{2}C}e_{c}$$
(4)
eq. (3) & (4) in the matrix from

$$\begin{bmatrix} \frac{d\mathbf{i}_{L}}{d\mathbf{t}} \\ \frac{d\mathbf{i}_{c}}{d\mathbf{t}} \end{bmatrix} = \begin{bmatrix} \frac{-\mathbf{R}_{1}}{\mathbf{L}} & \frac{1}{\mathbf{L}} \\ \frac{1}{\mathbf{C}} & \frac{1}{\mathbf{R}_{2}\mathbf{e}} \end{bmatrix} \begin{bmatrix} \mathbf{i}_{L} \\ \mathbf{e}_{c} \end{bmatrix} + \begin{bmatrix} \frac{1}{\mathbf{L}} \\ \mathbf{0} \end{bmatrix} \mathbf{e}$$

Forward path
$$P_1 = \frac{1}{sL} \times \frac{1}{sC} = \frac{1}{s^2LC}, \Delta_1 = 1$$

Single loop.
$$P_{11} - \frac{1}{sL}$$
, $P21 = -\frac{1}{sR_2C}$, $P_{31} = -\frac{1}{s^2LC}$

$$\Delta = 1 + \frac{R_1}{sL} + \frac{1}{sR_2C} + \frac{1}{s^2LC}$$

Hence
$$\frac{E_{C}(s)}{E(s)} = \frac{P_{1}}{\Delta} = \frac{\frac{1}{sR_{2}C}}{1 + \frac{1}{sR_{2}C} + \frac{1}{s^{2}LC}}$$

$$=\frac{1}{1+s\left(R_1C+\frac{L}{R_2}\right)}+s^2LC$$

Q3 (b) Find the overall transfer function of the system in Fig.5.

Answer

Step1: Shift the pick off point beyond the block $\frac{1}{sC_2}$

Step2: Two blocks are in cascade

Step3:

Step4:

Step6:

Step7:

Step8:

$$\mathbf{R(s)} \longrightarrow \frac{1}{1 + R_1 R_2 C_1 C_2 s^2 + (R_1 C_1 + R_2 C_2 + R_1 C_2) s} \longrightarrow \mathbf{C(s)}$$

$$\frac{C(s)}{R(s)} = \frac{1}{1 + R_1 R_2 C_1 C_2 s^2 + (R_1 C_1 + R_2 C_2 + R_1 C_2) s}$$

Q4 (a) Explain how the parameter variation is reduced by the use of feedback.

Answer Page Number 93 of Textbook

Q4 (b) What are different controller components? Explain in brief.

Answer Page Number 134 of Textbook

Q5 (a) A second order system with ξ = 0.5 and ω_n = 6 rad /sec is subjected to a unit step input. Determine the rise time, peak time, settling time and peak overshoot.

Answer

Given that
$$\xi=0.5$$
 and $w_n=6$ rad/sec
Rise time $t_r=\frac{\pi-ten^{-1}\sqrt{1-\xi^2}}{w_n\sqrt{1-\xi^2}}=0.403$ sec

Peak time
$$t_p = \frac{\pi}{w_n \sqrt{1-\xi^2}} = 0.605 \text{ sec}$$

Settling time
$$t_s = \frac{4}{\xi w_n} = 1.00 \text{ sec}$$

$$Maximum/Peak \ overshoot = M_{p} = e - \frac{\pi \xi}{\sqrt{1 - \xi^2}} \times 100 = 1.63\%$$

Q5 (b) The transfer function of a unity feedback system is $G(s) = \frac{10}{s(s+1)}$.

Find the dynamic error coefficient and steady state error to the input $\mathbf{r}(\mathbf{t}) = P_0 + P_1 \mathbf{t} + P_2 \mathbf{t}^2$

Answer

Answer
$$G(s) = \frac{10}{s(s+1)}, H(s) = 1$$

$$\frac{E(s)}{R(s)} = \frac{1}{1+G(s)H(s)} = \frac{s+s^2}{10+s+s^2}$$

$$= 0.1s + 0.09 s^2 - 0.019 s^3$$

$$\therefore E(s) = 0.1s R(s) + 0.09 s^2 R(s) - 0.019 s^3 R(s)$$
Take inverse Laplace
$$e(t) = 0.1 r(t) + 0.09 r(t) - 0.019 r(t)$$

$$(2)$$

$$r(t) = P_0 + P_1 t + P_2 t^2$$

$$\mathbf{r}(\mathbf{t}) = \mathbf{P}_1 + 2 \; \mathbf{P}_2 \, \mathbf{t}$$

$$r(t) = 2P_2$$

$$r(t) = 0$$

eq. (2) becomes

$$e(t) = 0.1(P_1 + 2P_2t) + 0.18 P_2$$

The steady state error is

$$\lim_{t \to \infty} e(t) = \lim_{t \to \infty} 0.1 (P_1 + 2P_2 t) + 0.18 P_2$$

The dynamic error coefficients from eq. (2)

$$K_1 = \frac{1}{01} = 10, K_2 = \frac{1}{0.09} = 11.1, K_3 = \frac{1}{-0.019} = -52.63$$

Q5 (c) A unity negative feedback control system has open loop transfer function is $G(s) = \frac{K(s+1)(s+2)}{(s+0.1)(s-1)}$ using Routh stability criterion, determine the range

of values of K for which the closed loop system has 0,1 or 2 poles in the right – half of S plane.

Answer

The characteristics equation is
$$1 + G(s) = 0$$

 $(s + 0.1)(s - 1) + K(s + 1)(s + 2) = 0$
or $(1+K)s^2 + (3K-0.9)s + (2K-0.1) = 0$
Apply Routt criterion
$$s^2 \qquad 1 + K \qquad 2K-0.1$$

$$s^1 \qquad 3K-0.9$$

$$s^0 \qquad 2K - 0.1$$

(i) No Pole in right half S plane

- (ii) 1 Pole in right half s Plane (= No sign change in first column terms) -1 < K < 0.05
- (iii) 2 Poles in right half s plane = (two change in sign in first column terms) 0.05 < K < 0.3
- Q6 (a) The open loop transfer function of feedback system is $\frac{K}{s(s+4)(s^2+4s+20)}.$ Draw root locus for this system.

Answer

Step1: plot poles & zeros

Poles are at $s=0, s=-4, s^2+4s+20=0$

$$S=-2 \pm y4$$

Step2: Segment between s=0 and s=-4 is the part of roots focus.

Step3: No of root loci N=p=4

Step4: Centroid of asymptote

Step5: Angle of asymptote

K=0	$\varphi_1 = 45^{\circ}$
K=1	$\varphi_2 = 135^\circ$
K=2	$\varphi_2 = 225^\circ$
K=3	$\varphi_4 = 315^\circ$

Step6: Break point characteristic is 1+G(s)H(s)=0

$$s^{4} + 8s^{3} + 36s^{2} + 80s + k = 0$$
or
$$k = -(s^{4} + 8s^{3} + 36s^{2} + 80s)$$

$$\frac{dk}{ds} = -(4B^{3} + 24s^{2} + 72s + 80) = 0$$

 \therefore Break even point s = -2s

two complex break even points are - $2 \pm j2.45$ step7: point of intersection

s ⁴	1	36	K
s^3	8	80	
s^2	26	K	
s^1	80-0.307k		
s^0	k		

Maximum/Peak overshoot =
$$M_P = e^{-\frac{\pi}{\sqrt{1-\epsilon}}} \times 100 = 16.3\%$$

Q6 (b) Explain the sensitivity of the roots of the characteristics equation.

Answer

$$a(s) = \frac{10}{s(s+1)}, H(s) = 1$$

$$\frac{E(s)}{R(s)} = \frac{1}{1 + a(s)H(s)} = \frac{s + s^2}{10 + s + s^2}....(1)$$

$$= 0.1s + 0.09s^2 \cdot 0.019s^3 \dots$$

$$\therefore E(s) = 0.1sR(s) + 0.09s^2R(s) - 0.019s^3R(s).....$$

Take inverse laplace

$$e(t) = 0.1r(t) + 0.09r(t) - 0.019r(t)...(2)$$

Now

$$\mathbf{r}(\mathbf{t}) = \mathbf{P}_0 + P_1 t + P_2 t^2$$

$$r(t) = P_1 + 2P_2t$$

$$r(t) = 2P_2$$

$$r(t) = 0$$

∴ eg...(2)becomes

$$e(t) = 0.1(P_1 + 2P_2t) + 0.18P_2$$

The steady state error is

$$\lim_{t \to \infty} e(t) = \lim_{t \to \infty} 0.1(P_1 + 2P_2t) + 0.18P_2$$

The dysnanaic error coefficients ep(2)

$$k_1 = \frac{1}{0.1} = 10, k_2 = \frac{1}{0.09} = 11.1, k_3 = \frac{1}{-0.019} = -52.63$$

The characteristics equation is 1+G(s)=0

$$(s+0.1)(s-1)+k(s+1)(s+2)=0$$

or

$$(1+k)$$
 $s^2 + (3k-0.9)$ s+ $(2k-0.1)=0$

Apply Routh criterion

s^2	1+k	2k-0.1
s^1	3k-0.9	
s ⁰	2k-0.1	

For stability k>0

80-0.307k>0 or k<260

at k=260, the auxiliary efn A(s)= $26 s^2 + k$

$$26 s^2 + 260 = 0 - \Rightarrow s = \pm 3.16i$$

Step8: Angle of departure

$$\phi d = 180^{\circ} - (117^{\circ} + 90^{\circ} + 63^{\circ}) = -90^{\circ}$$

Q7 (a) Why logarithmic scale is used for Bode plot ? Sketch the Bode plot for the transfer function $H(s) = \frac{1000}{(1+0.1s)(1+0.001s)}$ determine (i) Phase margin (ii) Gain margin.

Answer

put s=jw

$$H (jw) = \frac{1000}{(1+jo.1w)(1+jo.01w)}$$

Starting point is

$$20\log 10 \,\mathrm{k} = 20\log_{10} 1000 = 60 \,db$$

Corner frequency $w_1 = \frac{1}{01} = 10 red / sec$

$$W_2 = \frac{1}{0.001} = 1000 red / \sec$$

Magnitude plot

- (i) Make starting point 60db on y axis & drown a line stop of adb/decade
- (ii) Draw a line with stop (0-20=-20 db/decade) from 1^{st} corner frequency w_1
- (iii) Draw a line of stop -20+(-20)=-40 db/decade from 2^{nd} corner frequency w_2

Phase plot

W	-Arg(1+j0.1w)	-arg(1+j0.001w	Resulant
50	-76.6	-2.86	-81.46
100	-84.2	-5.7	-90
150	-86.2	-8.5	-94
200	87.13	-11.3	-98
500	88.85	-26.56	-115.4
800	-88.85	-38.65	-127.93
1000	-89.28	-450	-134.42
2000	89.72	-63.43	-153.15
5000	-89.88	-71.56	-161.36
8000	-89.92	-78.69	-168.57
		-82.87	-172.79

Phase Margin:-

→ Throw point of integration of magnitude curve with 0 db draw a line on phase curve. This line into phase curve at -154°

$$\therefore$$
 Phase margin $154^{\circ} - (-180^{\circ}) = +26^{\circ}$

 \rightarrow Gain margin = ∞

Since phase margin is $+26^{\circ}c$ and gain margin is ∞ , the system is inherently stable.

Q7 (b) The forward path transfer function of a unity feedback control system is $G(s) = \frac{100}{(s+6.54)}$ find the (i) resonance peak (ii) resonance frequency and (iii) bandwidth.

Answer

$$G(s) = \frac{100}{s(s+6.54)}, H(s) = 1$$

$$\frac{c(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)} = \frac{\frac{100}{s(s+6.54)}}{1 + \frac{100}{s(s+6.54)}} = \frac{100}{s^2 + 6.54s + 100}$$

$$Compare \text{ with } \frac{\omega^2 n}{s^2 + 2Ew_n s + w^2 n}$$

Compare with
$$\frac{\omega^2 n}{s^2 + 2Ew_n s + w^2 n}$$

$$w^2 n = 100 \implies w_n = 10 rad / \sec$$

(i) Re sonent frequncy

$$w_r = w_n \sqrt{1 - 2E^2} = 8.86 rad / sec$$

(ii) Re sonant peak =
$$\frac{1}{2E\sqrt{1-E^2}}$$
 = 1.618

(iii) Bandwidth =
$$w_n \sqrt{1 - 2E^2 + (2 - 4E^2 + 4E^4)1/2}$$

= 14.34rad / sec

O8 (a) What is the necessity of compensating network? Explain phase lead compensator and give its comparison with phase lag compensator.

Answer Page Number 460 and 475 of TextBook

Q8 (b) Design a lead compensator for the system shown in Fig. 6. Given that ω_n = 4 rad / sec and ξ = 0.5 for compensated system.

Answer

$$G(s)H(s) = \frac{4}{s(s+2)}$$
....(1)

Draw root focus of equation (1) it is shown in fig x.

R=0.5, and $w_n = 4rad / \sec$

Sd =E
$$w_n \pm jwn\sqrt{1 - E^2} = -2 \pm j3.46$$

The angle deficiency
$$\angle \frac{4}{s(s+2)}|_{s=-2\pm 3.46f} = -210^{\circ}$$

Or

$$180^{0} - (90 + 120) = 30^{0}$$

Thus load compensator contribute $\phi = 30^{\circ}$ atthispo int

From plot Zero at s=-2.96
$$\therefore$$
 = 2.96 $\frac{1}{LT}$ = 5.5 α = 0.538

Pole at
$$s=-5.5$$
 T=0.337

The open loop COMPENSATED transfer function of compensated system is

$$Gc(s)G(s) = k_c \frac{s+2.96}{s+5.5} \cdot \frac{4}{s(s+2)} = \frac{k^1(s+2.96)}{s(s+2)(s+5.5)}$$
....(2)

$$k^{1} = \frac{k^{1}(s+2.96)}{s(s+2)(s+5.5)}|_{sd=-2\pm3.46j} = 1 = k^{1} = 18.7 \text{ k}_{c} = \frac{18.7}{4} = 4.675$$

$$Ked = 4.675 \times 0.538 = 2.52.$$

transfer function of load compensation = $2.52.\frac{1+0.337s}{1+0.182s}$

or

$$Gc(s) = 4.675 \frac{s + 2.96}{s + 5.5}$$

open loop compensated trsfer function of compensated system

$$Gc(s)G(s) = \frac{18.7(s+2.96)}{s(s+2)(s+5.5)}$$

the velocity error constent $k_v = \lim_{s \to 0} sGc(s)G(s) = \lim_{s \to 0} \frac{s18.5(s+2.96)}{s(s+2)(s+5.5)}$ = $k_v = 5.02 \,\text{sec}^{-1}$

Q9 (a) A system with state model is
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \mathbf{u}$$

Where u (t) is unit step occurring at t = 0 and $x^{T}(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}$. Obtain the time response of the system and compute state transition matrix.

Answer

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

State transitions matrix $\phi(t) = 1 + At + \frac{1}{2!}A^2t^2 + \frac{1}{3!}A^3t^3$

Substituting values of a, we get

$$\begin{split} e^{At} &= \begin{bmatrix} 1 + t + 0.5t^2 + \dots & 0 \\ t + t^2 + \dots & 1 + t + 0.5t^2 + \dots \end{bmatrix} = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix} \\ \phi(t) &= \begin{bmatrix} e^t & 0 \\ te^t & e^t \end{bmatrix} \end{split}$$

Time response of the system is

$$x(t) = \begin{bmatrix} \phi(t) = \begin{bmatrix} x_0 + \int_0^t \phi(-t) B u dt \end{bmatrix} \\ \phi(-t) B u = \begin{bmatrix} e^{-t} & 0 \\ t e^{-t} & e^{-t} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} e^{-t} \\ e^{-t} 91 - t \end{bmatrix} \end{bmatrix}$$
$$x(t) = \begin{bmatrix} e^t & 0 \\ t e^t & e^t \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 & -e^{-t} \\ t & e^{-t} \end{bmatrix} = \begin{bmatrix} 2e^t - 1 \\ 2e^t \end{bmatrix}$$

Q9 (b) Test the following system for controllability and observability.

$$\dot{\mathbf{x}} = \begin{bmatrix} -3 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 2 & 1 \end{bmatrix} \mathbf{u} \text{ and } \mathbf{y} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \mathbf{x}.$$

Answer

$$\mathbf{A} = \begin{bmatrix} -3 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 2 & 1 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} A & B \end{bmatrix} = \begin{bmatrix} 2 & -3+1 \\ 2 & -1+1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ 2 & 0 \\ 2 & 1 \end{bmatrix}$$
$$\begin{bmatrix} A^{2}B \end{bmatrix} = \begin{bmatrix} -3 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ 2 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 7 \\ 0 & 3 \\ 2 & 1 \end{bmatrix}$$

$$Q_c = \begin{bmatrix} B & AB & A^2B \end{bmatrix}$$

$$= \begin{bmatrix} 012 & -2-27 \\ 002 & 003 \\ 212 & 121 \end{bmatrix}$$
 Qc has Rank=3, thus system is controllable

Test for Observability:-

$$A = \begin{bmatrix} -3 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$C^{T} = \begin{bmatrix} 0 & -4 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}, A^{T} = \begin{bmatrix} -3 & -1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A^{T}C^{T} = \begin{bmatrix} 0 & -4 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}, (A^{T})^{2}C^{T} = \begin{bmatrix} 0 & 11 \\ 0 & -4 \\ 1 & 1 \end{bmatrix}$$

$$Qo = [C^{T}: A^{T}C^{T}: (A^{T})^{2}C^{T}] = \begin{bmatrix} 010 & -40 & 11 \\ 010 & 10 & -4 \\ 101 & 21 & -1 \end{bmatrix}$$

$$Check for Rank = \begin{bmatrix} -4 & 0 & 11 \\ 1 & 0 & -4 \\ 2 & 1 & -1 \end{bmatrix} = -5 \text{ is not equal to } 0$$

Rank of Qo = 3, Thus System is completely Observable

Text Book

Control Systems Engineering, I.J. Nagrath and M. Gopal, Fifth Edition (2007 New Age International Pvt. Ltd.