Q2 (a) Show that every analytic function $f(z)=u(x, y)+i v(x, y)$ defines two families of curves $u(x, y)=C_{1}$ and $v(x, y)=C_{2}$ which form an orthogonal system.

Answer

Since $f(z)=u(x, y)+i v(x, y)$ is an analytic function
$\therefore \frac{\partial y}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial x}{\partial y}=-\frac{\partial v}{\partial x}$...
staping enreg $\mathrm{u}(\mathrm{x}, \mathrm{y}) x$ is given by $\mathrm{m}_{1}=\frac{d y}{d x}=-\frac{\partial 4 / \partial x}{\partial 4 / \partial y}$.
""""""""""""""" $v(x, y) x$ is given by $\mathrm{m}_{2}=\frac{d y}{d v}=-\frac{\partial v / \partial x}{\partial v / \partial y}$.
product of stapes of two curves $=\mathrm{m}_{1} \times \mathrm{m}_{2}=\frac{\partial 4 / \partial x}{\partial 4 / \partial y} \times \frac{\partial v / \partial x}{\partial v / \partial y}=-1$, using (1)
Aemer two farmily of curves $\mathrm{u}=\mathrm{c}_{1}$ and $\mathrm{v}=\mathrm{c}_{2}$ formorthaonalsystem
Q2 (b) Find the bilinear transformation which maps the points $1, i,-1$ into the points $0,1, \infty$.

Answer

Let bilinear transformation be $w=\frac{a z+b}{e z+d}$.
B_{1} Bilinear transformation preserves the cross rotational four points

$$
\begin{align*}
& \frac{\left(z_{1}+z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{3}-z_{2}\right)}=\frac{\left(w_{1}-w_{2}\right)\left(w_{3}-w_{4}\right)}{\left(w_{1}-w_{4}\right)\left(w_{3}-w_{2}\right)} \ldots \ldots . . . \tag{2}\\
& (1, i,-1, z) \text { map } \sin \text { to } \\
& 0,1, \infty, w \\
& \therefore \frac{(1-i)(-1-z)}{(1-z)(-1-i)}=\frac{(0-1)(\infty-w)}{(0-w)(\infty-1)}=\text { to } \\
& \therefore w=\frac{(1-z)(1+i)}{(z+1)(1-i)}=\frac{1-z}{z+1}=\frac{1-1+2 i}{1+1}=i \frac{1-z}{1+z}
\end{align*}
$$

n real transformation
Q3 (b) Find the Laurent's series expansion of $\frac{Z^{2}-6 Z-1}{(Z-1)(Z-3)(Z+2)}$ in the region $3<|Z+2|<5$

Answer

$\frac{Z^{2}-6 Z-1}{(Z-1)(Z-3)(Z+2)}=\frac{1}{z-1}-\frac{1}{z-3}+\frac{1}{z+2}$
$=\frac{1}{z+2-3}-\frac{1}{z+2-5}+\frac{1}{z+2}=\frac{1}{z+2}\left(1-\frac{3}{z+2}\right)^{-1}+\frac{1}{5}\left(1-\frac{z+2}{5}\right)^{-1}$
$=\frac{1}{z+2}\left[1+\frac{3}{z+2}+\frac{3^{2}}{(z+2)^{2}}+\frac{3^{3}}{(z+2)^{3}}+\ldots \ldots \ldots.\right]+\frac{1}{5}\left[1+\frac{z+2}{5}+\frac{(z+2)^{2}}{5^{2}}+\left(\frac{z+2}{5}\right)^{3}+\ldots \ldots \ldots ..\right]$
$=\frac{2}{z+2}+\frac{3}{(z+2)^{2}}+\frac{3^{2}}{(z+2)^{3}}+\ldots \ldots \ldots .+\frac{1}{5}\left[1+\frac{z+2}{5}+\left(\frac{z+2}{5}\right)^{2}+\ldots \ldots \ldots \ldots \ldots \ldots.\right]$

Q4 (a) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $Z=x^{2}+y^{2}-3$ at the point

$$
(2,-1,2)
$$

Answer

Vector normal to surface $\begin{aligned} & \varphi_{1}=x^{2}+y^{2}+z^{2} \ldots \ldots \ldots . \\ & \nabla \varphi_{1}=2 x i+2 y f+2 z k .\end{aligned}$ isgivenby

$$
\begin{equation*}
\nabla \varphi_{1}=2 x i+2 y f+2 z k . . \tag{1}
\end{equation*}
$$

Vector normal to surface $\begin{gathered}\varphi_{2}=-z+x^{2}+y^{2}+3 \ldots \ldots i s g i v e n b y ~ \\ \nabla \varphi_{2}=+2 x i+2 y f-k\end{gathered}$

At the point (2,-1, 2),

$$
\begin{align*}
& \nabla \varphi_{1}=4 i-2 f+4 k \tag{2}\\
& \nabla \varphi_{2}=+4 i-2 j-k
\end{align*}
$$

$\therefore \quad$ if φ line angle between two surfaces,

$$
\begin{aligned}
& \cos \varphi=\frac{\nabla \varphi_{1} \cdot \nabla \varphi_{2}}{\left|\nabla \varphi_{1}\right|\left|\nabla \varphi_{2}\right|}=\frac{+16+4-4}{\sqrt{16+4+16} \sqrt{16+4+1}}=\frac{16}{6 \sqrt{21}} \\
& =3 / 3 \sqrt{21}
\end{aligned}
$$

hence

$$
\varphi=\cos ^{-1}\left(\frac{3}{3 \sqrt{21}}\right)
$$

Q5 (a) Apply Green's theorem to evaluate $\int[(y-\sin x) d x+\cos x d y]$ where C is the plane triangle enclosed by the lines $\mathbf{y}=\mathbf{0}, \mathrm{y}=\frac{2}{\Pi} \mathrm{x}$ and $\mathrm{x}=\frac{\Pi}{2}$.

Answer

By Green`s theorem,
$\int[(y-\sin x) d x+\cos x d y]=\iint\left[\frac{\partial}{\partial x}(\cos x)-\frac{\partial}{\partial y}(y-\sin x) d x / d y\right]$
$=\iint(-\sin x-1) d x / d y$

Where E is create but creat by closed curve c

$$
\begin{aligned}
& \int_{x=0}^{x=\frac{\pi}{2}}-\int_{y=0}^{y=2 / \pi x}(1+\sin x) d y / d x \\
& =-\int_{0}^{\pi / 2}(1+\sin x) \frac{2 x}{\pi} d x \\
& =-\frac{2}{\pi}\left[\left.\frac{x^{2}}{2}\right|_{0} ^{\pi / 2}+\left.x(-\cos x)\right|_{0} ^{\pi / 2}+\int_{0}^{\pi / 2} j \cdot \cos x d x\right] \\
& =-\frac{2}{\pi}\left[\frac{\pi^{2}}{8}+1\right]=-\left(\frac{\pi}{4}+\frac{2}{\pi}\right)
\end{aligned}
$$

Q5 (b) For any closed surface S, use Divergence theorem to evaluate $\int_{S}[x(y-z) i+y(z-x) j+z(x-y) k] . d s$

Answer

By Divergence theorem,

$$
\begin{aligned}
& \int_{s}[x(y-z) i+y(z-x) j+z(x-y / k] \cdot d s \\
& =\iiint_{V} \operatorname{Div}[x(y-z) i+y(z-x) j+z(x-y) k] d k \\
& =\iiint_{V}(y-z+z-x+x-y) d x=0
\end{aligned}
$$

Q6 (a) Find an approximate value of $\log _{\mathrm{e}} 5$ by calculating to 4 decimal places by

$$
\text { Simpson's } \frac{1}{3^{\mathrm{rd}}} \text { rule. } \int_{0}^{5} \frac{\mathrm{dx}}{4 \mathrm{x}+5} \text { dividing the range into ten equal parts. }
$$

Answer

Here $\mathrm{f}(\mathrm{x})=\frac{1}{4 x+5}$ and range n from $\mathrm{x}=0$ to $\mathrm{x}=5$. Dividing range into ten equal parts, we have

X	$\mathbf{0}$	$1 / 2$	$\mathbf{1}$	$3 / 2$	2	$5 / 2$	3	$7 / 2$	4	$9 / 2$	10
$\mathrm{~F}(\mathrm{X})$	$1 / 5$	$1 / 7$	$\mathbf{1 / 9}$	$1 / 11$	$1 / 13$	$\mathbf{1 / 1 5}$	$\mathbf{1 / 1 7}$	$1 / 19$	$1 / 21$	$\mathbf{1 / 2 3}$	$1 / 25$

is by Simpson's $1 / 3$ rd rules

$$
\begin{aligned}
& \int_{0}^{5} \frac{d x}{4 x+5}=\frac{\frac{1}{2}}{3}\left[\left(\frac{1}{5}+\frac{1}{25}\right)+4\left(\frac{1}{7}+\frac{1}{11}+\frac{1}{15}+\frac{1}{19}+\frac{1}{23}\right)+2\left(\frac{1}{9}+\frac{1}{13}+\frac{1}{17}+\frac{1}{21}\right)\right] \\
& =0.4025
\end{aligned}
$$

By exact integration,

$$
\begin{aligned}
& \int_{0}^{5} \frac{1}{4 x+5} d x=\left.\frac{1}{4} \log (4 x+5)\right|_{0} ^{5}=\frac{1}{4}[\log 25-\log 5] \\
& =\frac{1}{4} \log 5
\end{aligned}
$$

Hence $\frac{1}{4} \log _{e} 5=0.4025$
or
$\log _{e} 5=4 \times 0.4025=1.622$
Q6 (b) Given the values

X	5	7	11	13	17
$\mathbf{f (x)}$	150	392	1452	2366	5202

Evaluate f(9), using
(i) Lagrange's formula
(ii)Newton's divided difference formula

Answer

(i) Using Lagrange's formula

$$
\begin{aligned}
& f(a)=\frac{(a-1)(a-11)(a-17)}{(5-7)(5-11)(5-13)(5-17)} \times 15 U+\frac{(a-5)(a-7)(a-11)(a-17)}{(13-5)(13-7)(13-11)(13-1)} \times 2366 \\
& +\frac{(a-5)(a-7)(a-B)(a-17)}{(11-5)(11-7)(11-13)(11-17)} \times 1452+\frac{(a-5)(a-7)(a-11)(a-17)}{(13-5)(13-7)(13-11)(13-1)} \times 2366 \\
& +\frac{(a-5)(a-7)(a-11)(a-13)}{(17-5)(17-7)(17-11)(17-13)} \times 5202=810
\end{aligned}
$$

(ii) Using divided differences table

Divided Difference table h

X	$\mathrm{F}(\mathrm{x})$	$14 . \mathrm{DD}$	$2^{\text {nd }} \mathrm{DD}$	$3^{\text {rd }} \mathrm{DD}$	$4^{\text {th }} \mathrm{DD}$
5	150				
		121			
7	392				
			24		
11	1452	265		1	0
13	2366	454	32		
17	5202	709	42	1	

By Newton Divided formula
$F(a)=150+(9-5) 121+(9-5)(9-7) 24+(9-5)(9-7)(9-11) * 1=810$

Q7 (a) Use Charpit's method to solve pxy +pq +qy = yz

Answer

Here $f(x, y, z, p, q)=p x y+p q+q y-y z=0$
Charpit's Subsiquary equation are
$\frac{d x}{-(x y+q)}=\frac{d y}{-(p+y)}=\frac{d z}{-x y p-p q-p q-y q}=\frac{d p}{p y-p y}=\frac{d q}{p y+q-z-q y}$
$\therefore a p=0$
or
$p=c$.
solving(i)and(ii),
$v=\frac{y z-c x y}{c+y}$
subsitituting p and q in $d z=p d x+q d y$, we get
$d z=c d x+\frac{y z-c x y}{c+y} d y=c d x+\frac{y(z-c x)}{c+y} d y$
or
$\frac{d z-c d x}{z-c x}=\frac{y}{c+y} d y=\left(1-\frac{c}{c+y}\right) d y$
Integratary
$\log (z-c n)=y-c \log (c+y)+b$
or
$(z-c n)(c+y)^{e}=B e^{y}$
Q7 (b) Use method of separation of variables to solve $3 \frac{\partial U}{\partial x}+2 \frac{\partial U}{\partial y}=0$, given that

$$
\mathrm{U}(\mathrm{x}, 0)=4 \mathrm{e}^{-\mathrm{x}}
$$

Answer

Let $\mathrm{U}=\mathrm{X}(\mathrm{x}) \mathrm{Y}(\mathrm{y})$
\therefore Given equation becomes
$3 X^{1} Y+2 X Y^{1}=0$
OR
$3 \frac{X^{1}}{X}=K$
OR
$X=e_{1} e^{\frac{K}{3} X}$
and $-2 \frac{Y^{1}}{Y}=K$
OR
$Y=e_{2} e^{-k / 2 y}$
Hence
$U=e_{1} e^{\frac{k}{3} y} \cdot e_{2} e^{-\frac{k}{2} y}=e e^{k / 3 y-k / 2 y}$
$u \sin g$ equation
$U(x, 0)=4 e^{-x}$, we get $c=4, k=-3$
hence reqd solution " $U=4 e^{-x+3 / 2 y}$

Q8 (a) Two persons ' A ' and ' B ' toss an unbiased coin alternately on the understanding that the first who gets the head wins. If ' A ' starts the game, compare their chances of winning.

Answer

Probability of throwing head with an unbiased coin $=1 / 2=\mathrm{p}$

If A starts the game, he wins of he throws head or if he does not throw head then B gets his turn and he also does not get start A get again his turn and he throws head or again A does not throw head, B does not those head A does not turn head, B does not throw head and then A throw head and so on
\therefore prob of A's winning $=\mathrm{p}+\mathrm{qqp}+\mathrm{qqqqpe}$
$=1 / 2+1 / 21 / 21 / 2+1 / 21 / 21 / 21 / 21 / 2+$.
$=1 / 2 / 1-4=2 / 3$
Since either y the two has to win, so chances of B's winning $=1-1 / 3=1 / 3$
$\therefore \quad$ Their enhence of winning are 2/3:1/3
or
2:1
Q8 (b) An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probability of accident is $0.01,0.03$ and 0.15 respectively. One of the insured person meets an accident. What is the probability that he is a scooter driver?

Answer

Let $\mathrm{P}\left(B_{1}\right)=$ prob. of insured person be scooter driver $=2000 / 12000=2 / 12$

P $\left(B_{3}\right)=---------------$ "">----------------Truck driver $=6000 / 12000=6 / 12$
$\mathrm{P}\left(\mathrm{A} / B_{1}\right)=$ polar of accident of scooter driver $=.01=1 / 10 \mathrm{v}$
P(A/ B_{2})=------------"""--------------------- car driver =.03=3/100
P(A/ $\left.B_{3}\right)=-----------$-"ल""------------------truck driver ... $15=15 / 100$
. \therefore By Bays theorem,
$\mathrm{P}\left(B_{1} / \mathrm{A}\right)=$ Prob. of unshared person to the car driver

$$
\begin{aligned}
& \frac{P\left(B_{1}\right) P\left(A / B_{1}\right)}{P\left(B_{1}\right) P\left(A / B_{1}\right)+P\left(B_{2}\right) P\left(A / B_{2}\right)+P\left(B_{3}\right) P\left(A / B_{2}\right)} \\
& =\frac{\frac{2}{12} \times}{\frac{2}{12} \cdot \frac{1}{100}+\frac{4}{12} \cdot \frac{3}{100}+\frac{6}{12} \cdot \frac{15}{100}}=\frac{2}{104}=\frac{1}{52}
\end{aligned}
$$

Q9 (a) The diameter of an electric cable is assumed to be a continuous variate with probability density function given by $f(x)=K x(1-x), 0 \leq x \leq 1$. Find the number K. Also find the mean and the variance.

Answer
Since $f(x)=k x(1-x), 0 \leq x \leq 1$ is a probability density function,
$\therefore \int_{0}^{1} f(x) d x=1=\int_{0}^{1} k x(1-x) d x=k\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}$
$\therefore K=6$
mean $=\bar{X}=\int_{0}^{1} x f(x) d x=\int_{0}^{1} x .6 x(1-x) d x=\frac{1}{2}$
variance $=\int_{0}^{1}(x-\bar{x})^{2} f(x) d x=6 \int_{0}^{1}(x-\bar{x})^{2} x(1-x) d x=\frac{1}{20}$

Text Book

1. Higher Engineering Mathematics -Dr. B.S.Grewal, 40th Edition 2007, Khanna Publishers, Delhi.
2. A Text book of engineering Mathematics - N.P. Bali and Manish Goyal , 7th Edition 2007, Laxmi Publication(P) Ltd.
