Q2 (a) Classify ICs on the basis of applications, devices used and chip complexity.
Answer Article 1.2-1.3 of Text Book I

Q2 (b) In the differential amplifier circuit shown below, the transistors have identical characteristics and their $\beta=100$. Determine the
(i) Output voltage
(ii) The base currents and
(iii) The base voltages taking into account the effect of the R_{B} and $V_{B E}$.

Assume $\mathrm{V}_{\mathrm{BE}}=0.7$ Volts, $\mathrm{R}_{\mathrm{B}}=25 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{C}}=12 \mathrm{~K} \Omega$ and $\mathrm{R}_{\mathrm{E}}=8 \mathrm{~K} \Omega$.
$\mathrm{V}_{\mathrm{EE}}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V}$

Answer

Ans:
Tail current, $I_{T}=\frac{V_{E E}}{R_{E}}=\frac{12 v}{8 k}=1.5 \mathrm{~mA}$
The collector current in transistor Q2 is half thus tail current (i.e. 0.75 mA) because each transistor gets half the tail current.
$\therefore \quad V_{\text {out }}=V_{c c}-I_{c} . \quad R c=12-(0.75)(10 k)$
$V_{\text {out }}=4.5 \mathrm{v}$
Tail current $I_{T}=\frac{V_{E E}-V_{B E}}{R_{E}}=\frac{12-0.7}{8 k}$
$I_{T}=1.41 \mathrm{~mA}$
$V_{\text {out }}=V_{c c}-\frac{I_{T}}{2} X R c=12-\frac{1.41 \mathrm{~m}}{2} \times 12 \mathrm{k}$
$V_{\text {out }}=3.54$

And Tail current, $I_{T}=\frac{V_{E E}-V_{B E}}{R_{E}+\frac{R_{n}}{2 \beta d c}}$

$$
\begin{aligned}
& I_{T}=\frac{12-0.7}{8 k+\frac{25 k}{2 \times 100}} \\
& I_{T}=1.390 \mathrm{~mA}
\end{aligned}
$$

And output voltage,
$V_{\text {out }}=V_{c c}-\frac{1}{2} I_{T} \cdot R_{c}$
$=12-\frac{1}{2}\left(\frac{1.390}{2} m\right)(12 k)$
$V_{\text {out }}=3.66 \mathrm{v}$
If the results obtained are compared, we find that the results obtained improve with each refinement, but the improvement is not significant.
\therefore The ideal tail current is 1.41 mA
$\therefore \quad I_{B}=\frac{I_{c}}{\beta}=\frac{0.75 \mathrm{~m}}{100}=7.5 \mu \mathrm{~A}$
$\therefore \quad V_{B}=-I_{B} \cdot R_{B}=-(7.5 \mu)(25 k)$
$V_{B}=-0.1875 v$

Q3 (a) Explain what you understand by 'offset voltage' and 'offset current' of opamp. Discuss with a neat circuit diagram the technique used for minimizing offset voltage and offset current in an inverting amplifier.

Answer Article 3.2 - 3.4 of Text Book I
Q3 (b) Calculate the output voltage ' V_{0} ' for the following non-inverting op-amp summer with $V_{1}=2 V$ and $V_{2}=-1 V$

Fig. 2

Answer

Ans:
$\mathrm{V}_{\mathrm{O}}=\left(\left[\mathrm{R}_{2} \mathrm{~V}_{1}+\mathrm{R}_{1} \mathrm{~V}_{2}\right] /\left[\mathrm{R}_{1}+\mathrm{R}_{2}\right]\right)^{*}\left(\left[\mathrm{R}+\mathrm{R}_{\mathrm{f}}\right] / \mathrm{R}\right)$
If in the summer circuit the value of resistance are selected as $R_{1}=R_{2}=R$ and

$$
\mathrm{R}_{\mathrm{f}}=2 \mathrm{R} . \text { Then }
$$

$V_{O}=-\left[(2 R) V_{1} / R+(2 R) V_{2} / R\right]$

$$
=-\left[2\left(\mathrm{~V}_{1}+\mathrm{V}_{2}\right)\right]
$$

$$
=-[2(2-1)]=-2 \mathrm{~V}
$$

Q4 (a) Explain Schmitt trigger with the help of transfer characteristics. Also obtain the expression of hysteresis voltage V_{H} and output waveform for sinusoidal input signal.

Answer Article 5.3 of Text Book I
Q4 (b) The input to an op-amp differentiator circuit is a sinusoidal voltage of peak value $10 \mu \mathrm{~V}$ and frequency of 2 kHz . If the values of differentiating components are given as $R=40 \mathrm{k} \Omega$ and $C=3 \mu \mathrm{~F}$, determine the output voltage of differentiator circuit.

Answer

$$
\begin{aligned}
& \text { Ans: } \\
& V_{\text {in }}=V_{\max } \sin 2 \pi f t=10 \times 10^{-6} \sin 2 \pi .2000 . t \\
& V_{\text {in }}=10 \sin 4000 \pi t \mu v \\
& \text { Scale factor }=C R=3 \times 10^{-6} \times 40 \times 10^{3}=0.12 \\
& \therefore V_{\text {out }}=-C R \frac{d V_{c}}{d t}=-0.12 \frac{d}{d t}(10 \sin 4000 \pi t) \mu v \\
& V_{\text {out }}=-0.12 \times 10 \times \frac{d}{d t}(\sin 4000 \pi t) \mu v \\
& V_{\text {out }}=1.2(4000 \pi \cdot \cos 4000 \pi t) \mu v \\
& V_{\text {out }}=15.0816(\cos 4000 \pi t) \mu v
\end{aligned}
$$

Q5 (a) Explain the working of R-2R Ladder Digital to Analog Converter.
Answer Article 10.2 of Text Book I
Q5 (b) Explain Monostable multivibrator circuit operation using 555 timers. Also, determine the frequency of output signal.

Answer Article 8.3 of Text Book I
Q5 (c) Explain the working of Series Op-Amp Regulator
Answer Article 6.2 of Text Book I

Q6 (a) Differentiate between analog and digital signals.
Answer Article 1.1 of Text Book II
Q6 (b) Explain the concept of Parity bits with reference to error detection.
Answer Article 2.10 of Text Book II
Q6(c) Convert the following:
(i) $(5 \mathrm{~A} 34 \mathrm{~F})_{16}$ to binary
(ii) (56) $)_{10}$ to Gray Code
(iii) $(93)_{10}$ to Excess-3 Code

Answer

(i) $(0101101000110100111$ 1) 2
(ii) $56=(111000)_{2}=(100100)$
(iii) Ex-3 representation of 93 is 11000110

Q7(a) Simplify the Boolean function ' F ' together with don't care conditions ' d ' in sum of Products

$$
\begin{aligned}
& \mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,1,2,3,7,8,10) \\
& \mathrm{d}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(5,6,11,15)
\end{aligned}
$$

Answer

Sum of products

	$y^{\prime} x^{\prime} \quad y^{\prime}$		$\mathbf{y z} \quad \mathrm{yz}^{\prime}$	
	1	1	1	1
		X	1	x
wx			X	
w \mathbf{x}^{\prime}	1		X	1

$$
\mathbf{F}=\mathbf{w}^{\prime} \mathbf{z}+\mathbf{x}^{\prime} \mathbf{z}^{\prime}
$$

Q7 (b) State and prove De Morgan's theorem using truth table.
Answer Article 3.11 of Text Book II
Q7 (c) Show that NAND gate is a Universal gate.
Answer Article 3.12 of Text Book II
Q8 (a) Explain the 4-bit parallel binary adder.
Answer Article 6.10 of Text Book II
Q8 (b) Write a short note on 8: 1 Multiplexers
Answer Article 9.5 of Text Book II

Q9 (a) Draw and explain the working of NAND-gate latch.
Answer Article 6.1 of Text Book II
Q9 (b) Distinguish between synchronous and asynchronous counters. Design a 3bit UP-DOWN synchronous counter.

Answer

Difference between synchronous and asynchronous counter:

1. In synchronous counters synchronized at the same time. But in the case of asynchronous counter the output of first flip-flop is given as the clock input of the next flip-flop.
2. In synchronous counter the output occurs after nth clock pulse if number of bits are N. But in asynchronous counter the output is derived by previous one that's why $\mathrm{n}+1$ step or clock pulse will be required.

Design of 3 bit UP DOWN counter:-

For $\mathrm{M}=0$, it acts as an UP counter and for $\mathrm{M}=1$ as a DOWN counter. The number of flip-flop required is 3 . The input of the flip-flops are determined in a manner similar to the following table.

Truth Tables

Direction	Present State								
Required FlipFlop									
M	Q_{3}	Q_{1}	Q_{0}	$\mathrm{~J}_{0}$	$\mathrm{~K}_{0}$	$\mathrm{~J}_{1}$	$\mathrm{~K}_{1}$	$\mathrm{~J}_{2}$	$\mathrm{~K}_{2}$
0	0	0	0	1	X	0	X	0	X
0	0	0	1	X	1	1	X	0	X
0	0	1	0	1	X	X	0	0	X
0	0	1	1	X	1	X	1	1	X
0	1	0	0	1	X	0	X	X	0
0	1	0	1	X	1	1	X	X	0
0	1	1	0	1	X	X	0	X	0
0	1	1	1	X	1	X	1	X	1
1	0	0	0	1	X	0	X	1	X
1	1	1	1	X	1	1	X	X	0
1	1	1	0	1	X	X	0	X	0
1	1	0	1	X	1	X	1	X	0
1	1	0	0	1	X	0	X	X	1
1	0	1	1	X	1	1	X	0	X
1	0	1	0	1	X	X	0	0	X
1	0	0	1	X	1	X	1	0	X

From truth table
The $J_{0}=K_{0}=1$
$J_{1}=K_{1}=Q_{0} \bar{M}+\overline{Q_{0}} M$
$J_{2}=K_{2}=\bar{M} Q_{1} Q_{0}+M \overline{Q_{1}} \overline{Q_{0}}$
Connecting the equations of all the flip-flops into NAND realization circuit

$$
\begin{aligned}
J_{1}=K_{1} & =Q_{0} \bar{M}+\overline{Q_{0}} M \\
& =\overline{Q_{0} \bar{M}}+\overline{Q_{0}} M \\
& =\overline{Q_{0} \bar{M}} \cdot \overline{Q_{0} M} \\
J_{2}=K_{2} & =\bar{M} Q_{1} Q_{0}+M \overline{Q_{1}} \overline{Q_{0}} \\
& =\overline{\bar{M} Q_{1} Q_{0}+M \overline{Q_{1}} \overline{Q_{0}}} \\
& =\overline{\bar{M} Q_{1} Q_{0} M \overline{Q_{1}} \overline{Q_{0}}}
\end{aligned}
$$

Text Book

1. Linear Integrated Circuits, Revised Second Edition, D Roy Choudhury, Shail B. Jain, New Age International Publishers.
2. Digital Systems - Principles and Applications, Ninth Edition, Ronald J Tocci, Neal S Widmer and Gregory L. Moss, Pearson Education, 2008.
