
AE52/AC52/AT52 C & DATA STRUCTURES JUNE 2013

© IETE 1

Q2 (a) Explain the following operators in C
 (i) Increment and decrement operator

(ii) Bitwise operator
(iii) Size of operator

Answer
(i) The increment operator is a unary operator that increases the value of its operand by
1. Similarly, the decrement operator decreases the value of its operand by 1. For example,
--x is equivalent to writing x = x - 1.

(ii) Bitwise AND The bitwise AND operator (&) is a small version of the Boolean AND
(&&) as it performs operation on bits instead of bytes, chars, integers, etc. When we use
the bitwise AND operator, the bit in the first operand is ANDed with the corresponding
bit in the second operand. The bitwise AND operator compares each bit of its first
operand with the corresponding bit of its second operand. If both bits are 1, the
corresponding bit in the result is 1 and 0 otherwise. For example,
10101010 & 01010101 = 00000000
Bitwise OR The bitwise OR operator (│) is a small version of the boolean OR (║) as it
performs operation on bits instead of bytes, chars, integers, etc. When we use the bitwise
OR operator, the bit in the first operand is ORed with the corresponding bit in the second
operand. The bitwise-OR operator compares each bit of its first operand with the
corresponding bit of its second operand. If one or both bits are 1, the corresponding bit in
the result is 1 and 0 otherwise. For example,
10101010 & 01010101 = 11111111

(iii) The operator sizeof is a unary operator used to calculate the size of data types. This
operator can be applied to all data types. When using this operator, the keyword sizeof is
followed by a type name, variable, or expression. The operator returns the size of the
variable, data type, or expression in bytes, i.e., the sizeof operator is used to determine
the amount of memory space that the variable/expression/data type will take.

Q2 (b) What are the basic data types that C language supports? Give the size, range
and use of each of them.

Answer Basic data types in C

Data type Keyword
used

Size in
bytes

Range Use

Character char 1 -128 to 127 To store characters
Integer int 2 -32768 to 32767 To store integer

numbers
Floating Point float 4 3.4E-38 to

3.4E+38
To store floating
point numbers

Double double 8 1.7E-308 to
1.7E+308

To store big
floating point

numbers
Valueless void 0 Valueless ---

AE52/AC52/AT52 C & DATA STRUCTURES JUNE 2013

© IETE 2

Q3 (a) Write a program to find whether a given year is a leap year or not.

Answer
 #include <stdio.h>
 #include <conio.h>
 int main ()
 {
 int year;
 clrscr ();
 printf(“\n Enter any year: “);
 scanf (“%d”, &year);
 if (year %4 = = 0) && ((year%100 !=0) ║
 (year%400 = =)))
 printf (“\n Leap Year”);
 else
 print f (“\n Not A Leap Year”);
 return 0;
 }
 Output
 Enter any year: 1996
 Leap Year

Q3 (b) Write a program to read the numbers until -1 is encountered. Also count

the number of prime numbers and composite numbers entered by the
user.

Answer
Write a program using do-while loop to read the numbers until -1 is encountered. Also
count the number of prime numbers and composite numbers entered by the user
#include <stdio.h>
#include <conio.h>
int main ()
{
int num, i;
int primes=0, composites=0, flag=0;
clrscr ();
printf (“\n Enter -1 to exit… .”);
printf (“\n\n enter any number :) ;
scanf (“%d”, &num);
do
{
 for (i=2; i<=num%2;i++)
 {
 if (num% i ==0)
 {
 flag=1;

AE52/AC52/AT52 C & DATA STRUCTURES JUNE 2013

© IETE 3

 break;
 }
 }
if (flag ==0)
 primes++;
else
 composites++:

flag = 0;
print f (“\n\n Enter any number : “);
scanf (“%d”, &num);
} while (num != -1);
print f (“\n count of prime numbers entered = %d”, primes);
print f (“\n Count of composite numbers entered = %d”, composites);
return 0;
}

Q4 (a) What are the advantages and disadvantages of using call-by reference

technique of passing arguments?

Answer
Advantages
The advantages of using call-by-reference technique of passing arguments are as follows:

• Since arguments are not copied into new variables, it provides greater time-and
space-efficiency.

• The function can change the value of the argument and the change is reflected in
the caller.

• A function can return only one value. In case we need to return multiple values,
pass those arguments by reference so that modified values are visible in the
calling function.

Disadvantages
However, the side-effect of using the technique is that when an argument is passed

using call by address, it becomes difficult to tell whether that argument is
meant for input, output, or both.

Q4 (b) Write a program / algorithm to merge two integer arrays. Also display the

merged array in reverse order.

Answer
 # include <stdio.h>
 # include <conio.h>
 void read_array (int my_array[], int);
 void display_array (int my_array[], int);
 void merge_array (int my_array3 [], int, int
 my_array1[], int, int my_array2[], int);
 void reverse_array (int my_array [], int);

AE52/AC52/AT52 C & DATA STRUCTURES JUNE 2013

© IETE 4

 int main ()
 {
 int arr1[10], arr2 [10], arr3 [20], n, m, t;
 clrscr ();

 printf (“\n Enter the number of elements in the first array: “);
 scanf (“%d”, &m);
 read_array (arr1, m);
 printf (“\n Enter the number of elements in the second array: “);
 scanf (“%d”, &n);
 read_array (arr2, n);
 t = m + n;
 merge_array (arr3, t, arr1, m, arr2, n);

 print f (“\n The merged array in reverse order is :”);
 reverse_array (arr3, t);
 getch ();
 return 0;
 }
 void read_array (in my_array [10], int n)
 {
 int i;
 for (i=0; i<n;i++)
 scanf (“%d”, &my_array [i]);
 }
 void merge_array (int my_array3 [], int t, int my_array1[], int m, int
my_array2[], int n)
 {
 int i, j=0;
 for (i=0; i<m; i++)
 {
 my_array3[j] = my_array1 [i];
 j++;
 }
 }
 void display_array (int my_array[], int m)
 {
 int i;
 for (i = 0; i<n; i++)
 printf (“\n arr[%d] = %d’, j,
 my_array [i]);
 }
 void reverse_array (int my_array[], int m)
 {
 int I, j;
 for (i=m-1, j=0; i>=0; i--, j++)

AE52/AC52/AT52 C & DATA STRUCTURES JUNE 2013

© IETE 5

 printf (“\n arr [%d] = %d”, J,
 my_array [i]);
 }

Q5 (a) Explain the following string manipulation functions:

 (i) strcat function
 (ii) strcmp function

(iii) strcpy function

Answer
(i) The strcat function appends the string pointed to by str2 to the end of the string
pointed to by str1. The terminating null character of str1 is overwritten. The process
stops when the terminating null character of str2 is copied. The argument str1 is
returned.

(ii) The strcmp compares the string pointed to by str1 to the string pointed to by str2.
The function returns zero if the strings are equal. Otherwise, it returns a value less than
zero or greater than zero if str1 is less than or greater than str2 respectively.

(iii) This function copies the string pointed to by str2. It returns the argument str1. Here
str1 should be big enough to store the contents of str2.

Q5 (b) Write a program to count the number of lower case numbers, upper case
numbers and special characters present in the contents of a file. (Assume that the
file contains the following data: 1. Hello, How are you?

Answer
 #include <stdio.h>
 #include <conio.h>
 int main (int arg c, char *argv [])
 {
 File *fp;
 int ch, upper_case = 0, lower_case = 0.
 numbers = 0, special_chars = 0;
 clrscr ();
 if (argc ! = 2)
 {
 printf (“\n Full information is not provided”);
 return 0;
 }
 fp = fopen (argv [1], “r”);
 if (fp = = NULL)
 {

 printf (“\n File Opening Error”);

AE52/AC52/AT52 C & DATA STRUCTURES JUNE 2013

© IETE 6

 return 0;
}
i = 0;
while (feof(fp) = = 0)
{
 fscanf (fp, “%c”, &ch);
 if (ch >=’A’ && ch <= ‘Z’)
 upper_case++;
 if (ch >= ‘a’ && ch <=’z’)
 lowe_case++;
 if (ch >= ‘0’ && ch <= ‘9’)
 numbers++;
 else
 special_chars++;
 }
fclose (fp);
printf (“\n Number of upper case
characters = %d”, upper_case);
printf (“\n Number of lower case
characters = %d”, lower_case);
printf (“\n Number of digits = %d”, numbers);
printf (“\n Number of special characters
 =%d”, special_chars);
getch();
return 0;
}
Output
 Number of upper case characters = 2
 Number of lower case characters = 2
 Number of digits = 1
 Number of special characters = 2

Q6 (a) Explain Bubble sort. Write an algorithm to sort an array A with N

elements.

Answer
In bubble sort, each element is compared with its adjacent element. If the first element is
larger than the second one then the position of the elements are interchanged, otherwise it
is not changed. Then next element is compared with its adjacent element and the same
process is repeated for all the elements in the array. During the pass, the second largest
element occupies the second last position. During the next pass, the same process is
repeated leaving the largest element. During this pass, the largest element occupies the n-
1 position. The same process is repeated until no more elements are left for comparison.
Finally the array is sorted one.
This algorithm sorts the Array A with N elements

AE52/AC52/AT52 C & DATA STRUCTURES JUNE 2013

© IETE 7

1. Initialisation
Set I = 0

2. Repeat steps 3 to 5 until I < N
3. Set J = 0
4. Repeat step 5 until J < N – i – 1
5. If A [J] > A [J + 1] then

 Set temp= A[J]
 Set A [J] = A[J +1]
 Set A[J + 1] = temp
End If

6. Exit

Q6 (b) Write a program in C that finds transpose of an input matrix.

Answer Page Number 185 of Text-Book

Q7 (a) Write an algorithm to insert a new node at the end of a singly linked list.

Answer
 Step 1 : IF AVAIL = NULL, then
 Write OVERFLOW
 Go to Step 10
 [END OF IF]
 Step 2 : SET New_Node = AVAIL
 Step 3 : SET AVAIL = AVAIL: ->NEXT
 Step 4 : SET New_Node-> DATA = VAL
 Step 5 :SET New_Node->Next = NULL
 Step 6 ;SET PTR = START
 Step 7 : Repeat Step 8 while PTR->NEXT ! = NULL
 Step 8 : SET PTR = PTR->NEXT
 [END OF LOOP]
 Step 9 : SET PTR->NEXT = New_Node
 Step 10 : EXIT

Q7 (b) Convert the following infix expression into prefix expression.
 (A+B) / C(C+D) – (D*E)

Answer
 Infix expression : (A + B)/ (C + D) – (D * E)
 [+AB] / [+CD] – [*DE]
 [/ +AB+CD] – (*DE]
 –/+AB+CD*DE

Q7 (c) When an element is added to the deque with n memory cells, what happens
to LEFT or RIGHT?

Answer

AE52/AC52/AT52 C & DATA STRUCTURES JUNE 2013

© IETE 8

If the element is added on the left, then LEFT is decreased by 1 (mod n). On the other
hand, if the element is added on the right, then RIGHT is increased by 1 (mod n).

Q8 (a) Suppose a binary tree T is in memory. Write a recursive procedure which
finds the depth DEP of T.

Answer

The depth DEP of T is 1 more than the maximum of the depths of the left and right
subtrees of T. Accordingly:
 DEPTH (LEFT, RIGHT, ROOT, DEP)
This procedure finds the depth DEP of a binary tree T in memory.

1. If ROOT = NULL, then: Set DEP := 0, and Return.
2. Call DEPTH (LEFT, RIGHT, LEFT[ROOT], DEPL).
3. Call DEPTH (LEFT, RIGHT, RIGHT[ROOT], DEPR).
4. If DEPL ≥ DEPR, then:

Set DEP := DEPL + 1.
 Else:
 Set DEP := DEPR + 1.
[End of If structure.]

5. Return.

Q8 (b) Write an algorithm for post order traversal of a binary tree.

Answer

A binary tree T is in memory. This algorithm does a post order traversal of TR,

applying an operation PRO to each of its nodes. An array STK is used to
temporarily hold the address of nodes.
1. [Path NULL onto STK and initialize NEXT.]

Set Top := 1, STK [1] : = NULL, and NEXT := ROOT

2. [Push left-most path onto STK.]
Repeat Steps 3 to 5 while NEXT … NULL:

3. Set TOP : = TOP + 1 and STACK[TOP] : = NEXT
[Pushes NEXT on STK.]

4. If RIGHT [NEXT] ≠NULL, then [Push on STK.]
Set Top : = TOP + 1 and STK [TOP] : = - RCHILD [NEXT].
[End of If structure.]

1. Set NEXT : = LEFT [NEXT]. [Updates pointer NEXT.]

[End of Step 2 loop.]

2. Set NEXT : = STACK [TOP] and TOP : = TOP – 1.
[Pops node from STACK.]

AE52/AC52/AT52 C & DATA STRUCTURES JUNE 2013

© IETE 9

3. Repeat while NEXT > 0:

Apply PROCESS to INFO[NEXT].
Set NEXT : = STACK[TOP] and TOP : = TOP – 1.
[Pops node from STACK.]

4. If NEXT < 0, then:
Set PTR : = -NEXT.
Go to Step 2.
[End of If structure.]

Exit.

Q9 (a) List and explain any four applications of graphs.

Answer
Graphs are constructed for various types of applications such as

• In circuit networks where points of connection are drawn as vertices and
component wires become the edges of the graph.

• In transport networks where stations are drawn as vertices and routes become the
edges of the graph.

• In maps that draw cities/states/regions as vertices and adjacency relation as edges.
• In program flow analyses, where procedures or modules are treated as vertices

and calls to these procedures are drawn as edges of the graph.
Once we have a graph of a particular concept, they can be easily used for finding

shortest paths, project planning, etc

Q9 (b) What do you mean by spanning tree and minimum spanning tree?

Explain giving a suitable example.

Answer Page Number 413 of Text-Book

Q9 (c) Write an algorithm for DFS traversal. Give an example to justify.

Answer Page Number 396 of Text-Book

Text Book
C & Data Structures, P.S. Deshpande and O.G. Kakde, Dreamtech Press, 2005

	Answer

