Q2 (a) Use mathematical induction to prove that for all positive integers n, $n\left(n^{2}+5\right)$ is an integer multiple of 6 .

Answer

Base $n=1,1(1+5)=6$ is an integer multiple of 6 .
Hypothesis: let us assume that it is true for n induction step: we need to prove that it is true for $\mathrm{n}+1$.
Consider $\left.(\mathrm{n}+1)(n+1)^{2}+5\right)=(n+1)\left(n^{2}+1+2 n+5\right)=n\left(n^{2}+5\right)+\left(n^{2}+2 n^{2}+3 n+6\right)$
$=n\left(n^{2}+5\right)+6\left(\frac{n^{2}}{2} \frac{n}{2}+1\right)=n\left(n^{2}+5\right)+6\left(\frac{n(n+1}{2}+1\right)$
By hypothesis we know that $n\left(n^{2}+5\right)$ is divisible by 6 . Clearly the last expression is divisible by 6 . Therefore for all $n, n\left(n^{2}+5\right)$ is an integer multiple of 6 .

Q2 (b) Define the terms - alphabet, power of alphabet, string and language. Provide one example for each.

Answer The state table can be represented by the state diagram as:

q0	[q0,q1]	[q0]
[q0,q1]	[q0,q1,q2]	[q0,q2]
[q0,q2]	[q0,q1,q3]	[q0]
[q0,q1,q2]	[q0,q1,q2,q3]	[q0,q2]
[q0,q1,q3]	[q0,q1,q2,q3]	[q0,q2,q3]
[q0,q1,q2,q3]	[q0,q1,q2,q3]	[q0,q2,q3]
[q0,q2,q3]	[q0,q1,q3]	[q0,q3]
[q0,q3]	[q0,q1,q3]	[q0,q3]

Q3 (a) For the following NFA, find the equivalent DF(A)

	$\mathbf{0}$	$\mathbf{1}$
$\rightarrow \mathrm{q}_{0}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{0}\right\}$
q_{1}	$\left\{\mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{2}\right\}$
q_{2}	$\left\{\mathrm{q}_{3}\right\}$	$\left\{\mathrm{q}_{3}\right\}$
q_{3}	ϕ	ϕ

Answer

q0	[q0,q1]	[q0]
[q0,q1]	[q0,q1,q2]	[q0,q2]
[q0,q2]	[q0,q1,q3]	[q0,q3]
[q0,q1,q2]	[q0,q1,q2,q3]	[q0,q2,q3]
[q0,q1,q3]	[q0,q1,q2,q3]	[q0,q2]
[q0,q3]	[q0,q1]	[q0]
[q0,q1,q2,q3]	[q0,q1,q2,q3]	[q0,q2,q3]
[q0,q2,q3]	[q0,q1,q3]	[q0,q3]

Q3 (b) Write regular expression for the language defined over alphabet $\{a, b\}$ as "The set of strings having at most one pair of consecutive a's and at most one pair of consecutive b's.

Answer

One pair of a's but no pair of b's $B_{1}=(a+\epsilon)(a b) * a a(b a) *(b+\epsilon)$
One pair of b's but no pair of a's $B_{2}=(a+\in)(b a) * b b(a b) *(a+\epsilon)$
$B=B_{1}+B_{2}$
Aa occurring before
$C=(b+\in)(a b) * a a(b a) * b b(a b) *(a+\in)$
bb accruing before aa
$D=(a+\in)(b a) * b b(a b) * a a(b a) *(a+\in)$
No pair of a's \& b's
$E=(b+\epsilon)(b a) *(a+\epsilon)$
Required regular expression is $\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}$.
Q4 (a) Describe the languages accepted by the following DFAs

Answer

(i)

(ii)

(i)
$L_{1}=\left\{(a b)^{n} \mid n \geq 0\right\}$
(ii)
$L_{2}=$ setofstringin $(a, b)^{n}$ whoselengthisdivisible by3.

Q4 (b) Show that concatenation of two regular expression is a regular expression.

Answer

L_{1} is not regular suppose L_{1} is regular . Lets n be the constant of pumping Lemme, consider $O^{n} \| O^{n}$, The pump will occure in the first n o's. So we shall get $O^{n} \| O^{n} \in L, m \neq n$ Which is contradiction
(ii) L_{2} is regular .

$$
\begin{aligned}
& L_{2} \quad \text { can be represented by regular expression . } \\
& 0(0+1)+0+1(0+1)+1
\end{aligned}
$$

Q5 (a) Prove following is not a regular language:

$$
L=\left\{x x^{R} \mid x \in\{0,1\}^{+}\right\}
$$

Answer

$L=\left\{O^{i} 1^{j} \mid \operatorname{ged}(i, j)=1\right\}$ is not regular .
Suppose L is regular, consider the sets of primer $\{p 1, p 2$,$\} .$
This is an infinity set, consider the set of strings $O^{p 1}, O^{p 2}, O^{p 3}, \ldots$. . by my fill Nerode theorem, all of them can't be in different equivalence classes, for some Pi and $\mathrm{pi}, O^{p i}$ and $O^{p j}$ must be in same equivalence class.
$O^{P_{i}} \approx O^{P_{i}}$
$\left.O^{p^{i} \mid p^{j}} O^{p j}\right|^{p i}$
$\left.O^{p i}\right|^{p j} \in L$
Wherease
$\left.O^{p i}\right|^{p j} \notin L$.

Hence we have a contradiction .L is not regular .
Q5 (b)If L is a Regular language then show that reverse of L i.e. L^{R} is also regular.

Answer

$\mathrm{M}=(\{\mathrm{q} 0, \mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3, \mathrm{q} 4\}\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \$\}, \delta, \mathrm{q} 0, \$,\{\mathrm{q} 4\})$
Transitions are:
$\delta(\mathrm{q} 0, \mathrm{a}, \varphi)$ contains ($\mathrm{q} 0, \mathrm{a} \$$)
$\delta(\mathrm{q} 0, \mathrm{a}, \mathrm{a})$ contains ($\mathrm{q} 0, \mathrm{aa}$)
δ (q0,b,a)contains (q1, \in)
$\delta(\mathrm{q} 1, \mathrm{~b}, \mathrm{a})$ contains $(\mathrm{q} 2, \in)$
δ (q1,c,\$)contains (q2,c\$)
$\delta(\mathrm{q} 2, \mathrm{c}, \mathrm{c})$ contains ($\mathrm{q} 2, \mathrm{cc}$)
$\delta(\mathrm{q} 2, \mathrm{~d}, \mathrm{c})$ contains $(\mathrm{q} 3, \in)$
$\delta(\mathrm{q} 3, \mathrm{~d}, \mathrm{c})$ contains ($\mathrm{q} 3, \in$)
$\delta(\mathrm{q} 3, \in, \$)$ contains ($\mathrm{q} 4, \in$)
This m/c accepts L by empty stack, taking $9 / 4$ as the final state L is accepted by final also,

Q6 (a)Let $\mathbf{L}=\left\{a^{n} b^{n} c^{m} d^{m} \mid n, m \geq 1\right\}$. Draw a PDA that accepts \mathbf{L}.

Answer

$\mathrm{M}=(\{\mathrm{q} 0, \mathrm{q} 1, \mathrm{q} 2\},\{0,13,\{\mathrm{x}, \$ 3, \delta, \mathrm{q} 0, \$, \phi)$
Where δ is given by
$\delta(\mathrm{q} 0,0, \$)$ contains ($\mathrm{q} 0, \mathrm{x} \$$)
$\delta(\mathrm{q} 0, \mathrm{o}, \mathrm{x})$ contains $(\mathrm{q} 0, \mathrm{x}, \mathrm{x})$
$\delta(\mathrm{q} 0,1, \$)$ contains ($\mathrm{q} 0, \mathrm{x}, \$$)
δ (q0,1,x) contains(q0,xx)
$\delta(\mathrm{q} 0,0, \$)$ contains(q1,\$)
$\delta(\mathrm{q} 0, \mathrm{o}, \mathrm{x})$ contains($\mathrm{q} 1, \mathrm{x}$)
$\delta(\mathrm{q} 1, \mathrm{o}, \mathrm{x})$ contains $(\mathrm{q} 1, \in)$
$\delta(\mathrm{q} 1,1, \mathrm{x})$ contains ($\mathrm{q} 1, \in$)
$\delta(\mathrm{q}, 1, \$)$ contains $(\mathrm{q} 2, \in)$
Acceptance is by empty stack. We can also look at it as acceptance by final state by taking q2 as the final state,

Q6 (b) Define a Context Free Grammar that generates the language: $L=\left\{a^{i} b^{j} c^{k} d^{\ell} \mid i, j, k, \ell \geq 1, i=\ell, j=k\right\}$ Draw a PDA that accepts \mathbf{L}.

Answer

(i) L_{2} is CFL generated by :
$\mathrm{s} \rightarrow \mathrm{asd}, \mathrm{S} \rightarrow \mathrm{a} \mathrm{Ad}, \mathrm{A} \rightarrow \mathrm{bAc}, \mathrm{A} \rightarrow \mathrm{bc}$
(ii) L_{3} is not context free. Then since the family of CFL is closed under intersection with regular sets
$L_{3} \cap a * b^{*} c^{*}$ is regular.
This is $\left\{a^{n} b^{n} c^{n} \mid n \geq 03\right\}$
We have shown that tis is not context free. So L_{3} is not context free.

Q7 (a) Prove that the following language is not context free,

$$
\mathrm{L}_{1}=\left\{\mathrm{a}^{\mathrm{p}} \mid \mathrm{p} \text { is a prime }\right\}
$$

Answer

Suppose L_{1} is context free, Then by pumping Lexma there exits K such that for all $Z \in L$, and $|\mathbf{Z}| \geq \mathrm{k}$. Z can be written in the form uvxyz such that $u v^{2} x y^{2} z \in L$ for all $i \geq 0$ consider $p>k, a^{p} \in L_{1} a^{p}=\mathrm{uvxyz}$

Now $u, v, x, y, z \in a^{*}$, therefore by pumping lemma;
$\operatorname{Uxyz}(v y)^{2} \in L_{1}$ for all $\mathrm{i} \geq 0$
let
$|v y|=r$
$\operatorname{uxz}\left(a^{r}\right)^{i} \in L_{1}$, for all $\mathrm{i} \geq 0$
or
$\mathrm{z}\left(\mathrm{a}^{\mathrm{r}}\right)^{z-1} \in L_{1}$, for all $\mathrm{i} \geq 0$
$\mathrm{a}^{\mathrm{p}+(\mathrm{i}-1)} \in L_{1}$, for all $\mathrm{i} \geq 0$
Choose I such that $\mathrm{p}+\mathrm{r}(\mathrm{I}-1)$ is not a prime. Select $\mathrm{I}-1=\mathrm{p}$, Therefore, $\mathrm{I}=\mathrm{p}+1$.
$a^{p+r p} \in L_{1}$
but
$a^{p+r p}=a^{p(r+1)} ; p(r+1)$
is not a prime. so we come to conclusion that a^{s} where s is not a prime belong to L_{1}, This is contradiction, therefore L_{1} is not CF.

Q7 (b) What is Chomsky Normal form? Explain how a grammar can be put in CNF. Use an example to illustrate.

> Answer
> $q_{0} 111100011$
> $0 q_{1} 11100011$
> $01 q_{1} 1100011$
> $0111 q_{1} 00011$
> $01111 q_{2} 0011$
> $0111 q_{3} 10011$
> $q_{3} 01110011$
> $0001111 q_{2} 11$

No more for $\left(q_{2}, 1\right)$, m/o halls with o/ps.... 0001111111.
The first block of 1 's is shiffed feb by step to the right till it become adjacent to the second block of 1 's.

Q8 (a) Consider the following TM M' with transitions as follows:

$$
\begin{aligned}
& \delta\left(q_{0}, 1\right)=\left(q_{1}, 0, R\right) \\
& \delta\left(\mathrm{q}_{1}, 1\right)=\left(\mathrm{q}_{1}, 1, \mathrm{R}\right) \\
& \delta\left(\mathrm{q}_{1}, 0\right)=\left(\mathrm{q}_{2}, 1, \mathrm{R}\right) \\
& \delta\left(\mathrm{q}_{2}, 0\right)=\left(\mathrm{q}_{3}, 0, \mathrm{~L}\right) \\
& \delta\left(\mathrm{q}_{3}, 0\right)=\left(\mathrm{q}_{0}, 0, \mathrm{R}\right) \\
& \delta\left(\mathrm{q}_{3}, 1\right)=\left(\mathrm{q}_{3}, 1, \mathrm{~L}\right)
\end{aligned}
$$

q_{0} is the initial state and $\mathbf{0}$ is taken as blank symbol. Trace the sequence of moves when the machine scan starts on ... 001111000 11 00...
Answer

	$\mathbf{0}$	\mathbf{L}	$\#$
q_{0}	$\left(q_{0}, 0, \mathrm{R}\right)$	$\left(q_{0}, 1, \mathrm{R}\right)$	$\left(q_{1}, \#, \mathrm{R}\right)$
q_{1}	$\left(q_{1}, \mathrm{o}, \mathrm{R}\right)$	$\left(q_{2}, 1, \mathrm{R}\right)$	-
q_{2}	$\left(q_{3}, 0, \mathrm{~L}\right)$	-	-
q_{3}	-	-	-

Q8 (b) Construct a TM with three character 0 , 1, and \# which locates a '1'under the following conditions. There is only one \# on the tape and somewhere to the right of it is a ' l '. The rest of the tape is blank. The head starts at or to the left of the \#. When the TM halts, the tape is unchanged and head stops at the ' 1 '. Zero is taken as the blank symbol.

Answer

This is not RE.
Let $\mathrm{S}=\left\{L_{1}, L_{2}, \ldots . ..\right\}$ each L in S is infinite.
$L_{s}=\{<M>\mid T(M)=L$ and $L \in \mathrm{~S}\}$
if L_{s} is RE, it should satisfy the there conditions of Rice .theorem for recursively enumerable index sets. But condition 2 is violated, L_{s} is not RE.

Q9 (a) Define a Recursively Enumerable language. Give an example of it. Give an example of a language that is not recursively enumerable.

Answer

f is a non total function and π^{2} is a total function. Any algorithm to solve the problem with $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3} should have two subroutines one computing $\mathrm{f}\left(\mathrm{x}_{1}\right)$ and another computing $\pi^{2}\left(x_{2}, x_{3}\right)$. since f is non total for some arguments, the algorithm will not come out of the subroutine for computing $\mathrm{f}\left(\mathrm{x}_{1}\right)$ and will not be able to half . Hence the problem is un decidable.

Q9 (b) Show that the following problem is undecidable.
"Given $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3} determine whether $\mathrm{f}\left(\mathrm{x}_{1}\right)=\pi^{2}\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right)$, where f is a fixed non total recursive function and π^{2} is cantor numbering function".

Answer

The grammar $\mathrm{G}=(\mathrm{N}, \mathrm{T}, \mathrm{P}, \mathrm{S}), \mathrm{N}=\{\mathrm{S}, \mathrm{A}\}, \mathrm{T}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} . \mathrm{P}$ is given as:
$\mathrm{S} \rightarrow \mathrm{aSc}, \mathrm{S} \rightarrow \mathrm{aAc}, \mathrm{A} \rightarrow \mathrm{bA}, \mathrm{A} \rightarrow \mathrm{b}$

Rule 1 \& 2 general equal no, of a’s and c’s; note 2 makes sure at least one a and one c are generated, Rule 3 and 4 generate b's in the middle , Rule 4 makes sure at least . One b is generated, It is to be noted that a’s and c’s are generated first \& b’s after wards.

Text Books

Introduction to Automata Theory, Languages and Computation, Jhon E Hopcroft, Rajeev Motwani, Jeffery D. Ullman, Pearson Education, Third Edition, 2006

