Q. 2 a. What is power loss in an ideal switch? Explain the conduction losses in a bipolar junction transistor with the help of circuit diagram.
 (8)

Answer:

1.5 Power Losses in Real Switches

An ideal switch is shown in Figure 1.5. The power loss generated in the switch is the product of the current through the switch and the voltage across the switch. When the switch is off, there is no current through it (although there is a volage V_{s} across it), and therefore there is no power dissipation. When the switch is on, it has a current $\left(V_{\mathrm{S}} / R_{\mathrm{t}}\right)$ through it, but there is no voltage drop across it, so again there is no power loss. We also assume that for an ideal switch the rise and fall time of the current is zero. That is, the ideal switch changes from the off state to the on state (and vice versa) instantaneously. The power loss during switching is therefore zero.
figure 1.5
Power losses in an ideal switch

Unlike an ideal switch, an actual switch, such as a bipolar junction transistor, has two major sources of power loss: conduction loss and switching loss.

1.5.1 Conduction Loss

When the transistor in Figure $1.6(a)$, is off, it carries a leakage current $\left(J_{\text {LEAK }}\right)$. The power ioss associated with leakage current is $P_{\text {OFP }}=V_{\mathrm{S}} * I_{\text {IEAK }}$. However, since the leakage current is quite small and does not vary significantly with voltage, it is usually neglected and thus the transistor power loss is essentially zero. When the transistor is on, as in Figure 1.6(b), it has a small voltage drop across it. This voltage is called the saturation voltage ($V_{\text {Cesat }}$). The transistor's power dissipation or conduction loss due to the saturation voltage is:

$$
P_{\text {ON }}=V_{\text {CESAN }} \cdot I_{\mathrm{C}}
$$

1.1
where

$$
L_{\mathrm{C}}=\frac{V_{\mathrm{S}}-V_{\mathrm{CPSAD}}}{R_{\mathrm{L}}} \approx \frac{V_{\mathrm{S}}}{R_{\mathrm{L}}}
$$

Equation 1.1 gives the power loss due to conduction if the switch remains on indefinitely. However, to control the power for a given application, the switch is turned on and off in a periodic manner. Therefore, to find the average power loss we must consider the duty cycle:

$$
P_{\text {ONONE }}=V_{\mathrm{CB}(S A D} \cdot L_{\mathrm{C}} \cdot \frac{t_{\mathrm{ON}}}{T}=V_{\mathrm{CE}(\mathrm{SNT}} \cdot I_{\mathrm{C}} \cdot d
$$

Similarly,

$$
P_{\text {OPF(avB) }}=V_{\mathrm{S}} * I_{\text {UEAK }} * \frac{t_{\text {OFP }}}{T}
$$

Here, the duty cycle d is defined as the percentage of the cycle in which the switch is on:

$$
d=\frac{t_{\mathrm{ON}}}{t_{\mathrm{ON}}+t_{\mathrm{OFF}}}=\frac{t_{\mathrm{ON}}}{T}
$$

(a) Transistor off

(b) Transistor on
losses in a switch
b. Explain, how the power diode must be protected against the following:-(8)
(i) Overvoltage
(ii) Overcurrent
(iii) Transients

Answer:

2.9 Diode Protection

A power diode must be protected against overvoltage, overcurrent and transients.

2.9.1 Overvoltage

When a diode is forward-biased, the voltage across it is low and poses no problems. A reverse-biased diode acts like an open circuit. If the voltage across the diode exceeds its breakover voltage, it breaks down, resulting in a large current flow. With this high current and large voltage across the diode, it is quite likely that the power dissipation at the junction will exceed its maximum value, destroying the diode. It is a common practice to select a diode with a peak reverse voltage rating that is 1.2 times higher than the expected voltage during normal operating conditions.

2.9.2 Overcurrent

Manufacturer's data sheets provide current ratings based on the maximum junction temperatures produced by conduction losses in diodes. In a given circuit, it is recommended that the diode current be kept below this rated value. Overcurrent protection is then accomplished by using a fuse to ensure that the diode
current does not exceed a level that will increase the operating temperature beyond the maximum value.

2.9.3 Transients

Translents can lead to higher-than-normal voltages across a diode. Protection against transients usually takes the form.of an RC series circuit connected across the diode. This arrangement, shown in Figure 2.11 ; snubs.or reduces the rate \mathcal{C} change of voltage and is commonly called a snubber cincuit.

Figure 2.11
A snubber circuit

Q. 3 a. How does a Power Bipolar Junction Transistor used as a switch? Draw its VI characteristics and explain the significance of saturation, active and cut-off regions.

Answer:

3.2 Power Bipolar Junction Transistors (BJTs)

Power transistors ate available in both NPN and PNP types. However, we will concentrate on the NPN device, since it has a higher current and voltage rating than the PNP device. The structure and symbol of an NPN transistor are shown in Figure 3.1. This type of transistor is called a bipolar function transistor (BJI). BJT is usually referred to as a transistor.

A transistor has three terminals: the base (B), the collector (C) and the emitter (E). The collector and the emitter in a transistor are not reversible. In fact the transistor's characteristics and ratings change significantly when these two terminals are reversed. If the arrowhead on the emitter points toward the base, the transistor is a PNP transistor. If the arrow points away from the base, it is an NPN transistor.

When a transistor is used as a switch to control power from the source to the load, terminals C and E are connected in series with the main power circuit, while terminals B and E are connected to a driving circuit that controls the on and off action. A small current through the base-emitter junctions turns on the collector-to-emitter path. This path may carry many times more current than the base-emitter junction.

Figure 3.1 An NPN transistor and lits symbol

(a) Structure

(b) Circuitsymbot

3.2.1 BJT V-I Characteristics

Since most applications of power transistors have a common emitter connection, the characteristic will be explained for that conflguration. Figure 3.2 shows the V-I characteristic of a transistor. There s of operation, the cutoff, saturation, and active regions, If the base current I_{B} is zero, the collector current I_{C} is negligibly small and the transistor is in the cutoff region, which is the off state, of the tre--tor. In this region $\mathrm{BO}_{\mathrm{F}}^{\mathrm{F}} \mathrm{h}$ the collector-base and baseemitter junctions are reverse-biased and the transistor behaves as an open switch. On the other hand, if the base current I_{B} is sufficient to drive the transistor into saturation the collector current is very.high and $V_{C E}$ is approximately zero), then the transistor behaves as a closed swicch. In the saturation region, both junctions are forward-biased. In the active region of operation, the baseemitter junction $1 s$ forward-biased while the collector-base junction is reversebiased. The active region is used for aplification and is avoided in switching applications,

Note that the V-I characteristic does not show any weverse region. A BJT cannot block more than about 20 V in the reverse direction. Therefore BJTs are not used to control AC power, unless a reverse shunting diode is connected between the emitter and the collector to protect the transistor from reverse voltages.

Figure

BJ V-f characteristic

Since transistors are used mainly as switches, the idealized transistor characteristic is of prime importance. Figure-3:3 shows the. V-I characteristic of a BJT

Figure 3.3
Idealized characteristic of a transistor

operating as a switch. When the transistor is off, there is no collector current no matter what the value of $V_{C E}$ is. When the transistor is on, the voltage $V_{C E}$ is zero no matter what the value of the collector current is. A transistor has excellent characteristics as an ideal switch.

3.2.2 Biasing a Transistor

When a transistor is used as a controlled switch, the base current is provided by the control circuit connected between the base and the emitter. The collector and the emitter form the power terminals of the switch. Figure 3.4 shows how an NPN transistor is biased. The input base current I_{B} determines whether the transistor switch will be off (with no current to the load R_{C}) or on (allowing current to flow).

Figure 3.4
Biasing a transistor

Figure 3.5 shows the DC load line, which represents all possible operating points. Point P_{1} is the ideal operating point for the switch when it is on. Here the collector current I_{C} is equal to $V_{\mathrm{CO}} / R_{\mathrm{C}}$, and the voltage across the collectoremitter is zero.

Point P_{4} is the ideal operating point for the switch when it is off. Here the collector current I_{C} is zero and the voltage across the collector-emitter is equal to the supply voltage V_{CC}.

The line drawn between points P_{1} and P_{4} is the load line. The intersection of the load line with the base current is the operating point of the transistor. The operating point is determined by the circuit that is external to the transistor, i.e., V_{CC} and R_{C}.

Point P_{2}, where the load line intersects the $I_{\mathrm{B}}=0$ curve, is the actual operating point at cutoff. At this point, the collector current is the leakage current. The voltage across the collector-emitter terminal can be found-by applying Kirchoff's voltage law (KVL) around the output loop:

$$
\begin{aligned}
& V_{\mathrm{CC}}-I_{\mathrm{C}} R_{\mathrm{C}}-V_{\mathrm{CE}}=0 \\
& V_{\mathrm{CE}}=V_{\mathrm{CC}}-I_{\mathrm{C}} R_{\mathrm{C}}
\end{aligned}
$$

Point \bar{P}_{3}, where the load line intersects the $I_{B}=I_{B S \text { sae }}$ curve, is the actual operating point when the BJT is on. Point P_{3} is called the saturation point. An on transistor has a small voltage drop across its collect-emitter terminals; this voltage is called the saturation voltage $V_{\text {caismo. The collector current. Is at a max- }}$ imum here and is given by

$$
I_{\mathrm{Csav}}=\frac{V_{\mathrm{CC}}-V_{\mathrm{CE}(\mathrm{sal})}}{R_{\mathrm{C}}} \fallingdotseq \frac{V_{\mathrm{CC}}}{R_{\mathrm{C}}}
$$

The minimum base current required to ensure satisfactory operation is given by

$$
I_{\mathrm{B}}=\frac{I_{\mathrm{C}}(\mathrm{sa)}}{\beta}=\frac{V_{\mathrm{CC}}}{\beta R_{\mathrm{C}}}
$$

where β is the DC current gain given by I_{C} / I_{B}.
Any value of I_{B} higher than the value calculated using Equation 3.3 will ensure a saturated on state. In fact, to accommodate any changes in I_{C} above the required value, it is desirable to use a little higher value of base current than is obtained by the above formula. A high base current also reduces the turn-on time and therefore reduces power dissipation.

Figure 3.5
DC load line

All operating points between cutoff and saturation are in the active regions of a transistor. In this region, both I_{C} and $V_{C E}$ are relatively high, resulting in high power dissipation in the transistor.
b. A Power MOSFET has $I_{D S S}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=0.3 \Omega$, duty cycle $\mathrm{d}=50 \%$, $I_{D}=6 \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=100 \mathrm{~V}, \mathrm{t}_{\mathbf{r}}=100 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{f}}=200 \mathrm{~ns}$. If the frequency of switching is 40 KHz , then find
(i) on-state loss
(ii) off-state loss
(iii) turn-on switching loss
(iv) turn-off switching loss

Answer:
Given Data $\mathrm{I}_{\mathrm{DSS}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{DS}(O \mathrm{O})}=0.3 \Omega$, duty cycle $(\mathrm{d})=50 \%, \mathrm{I}_{\mathrm{D}}=6 \mathrm{~A}$,
$\mathrm{VDS}=100 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=100 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=200 \mathrm{~ns}$ and frequency of switching(f) $=40 \mathrm{kHz}$
The Time Period $(T)=\frac{1}{f}=\frac{1}{40\left(10^{3}\right)}=25 \mu \mathrm{~S}$
Therefore, $\mathrm{t}_{\mathrm{ON}}=\mathrm{t}_{\mathrm{OFF}}=\frac{T}{2}=12.5 \mu \mathrm{~S}$
(i) On-State Loss (P_{ON}) $=\mathrm{I}_{\mathrm{D}}{ }^{2} \mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \frac{t_{\mathrm{ON}}}{T}=\frac{6^{2} X 0.3 X 12.5\left(10^{-6}\right)}{25\left(10^{-6}\right)}=5.4 \mathrm{~W}$.
(ii) Off-State Loss $\left(\mathrm{P}_{\mathrm{OFF}}\right)=\mathrm{V}_{\mathrm{DS}(\max)} I_{D S S} \frac{t_{\text {OFF }}}{T}=\frac{100 \times 2\left(10^{-3)} \mathrm{X} 12.5\left(10^{-6}\right)\right.}{25\left(10^{-6}\right)}=0.1 \mathrm{~W}$
(iii) Turn-on Switching Loss $\left(\mathrm{P}_{\mathrm{Sw}(\mathrm{ON})}\right)=$

$$
\frac{V_{D S(\max)} I_{D} t_{r}}{6} \times f=\frac{100 \times 6 \times 100\left(10^{-9}\right)}{6} \times 40\left(10^{3}\right)=0.4 \mathrm{~W} .
$$

(iv) Turn-off Switching Loss $\left(\mathrm{P}_{\text {Sw(OFF) }}\right)=$

$$
\frac{V_{D S(\max)} I_{D} t_{f}}{6} \times f=\frac{100 \times 6 \times 200\left(10^{-9}\right)}{6} \times 40\left(10^{3}\right)=0.8 \mathrm{~W} .
$$

Q. 4 a. What is the necessity of connecting two SCRs in parallel? Draw the circuit of connecting two SCRs in parallel and explain its operation with the help of onstate characteristics.

Abstract

Answer: The maximum power that can be controlled by a single SCR is determined by its rated forward current and rated forward blocking voltage. To maximize one of these two ratings, the other has to be reduced. Although SCRs are currently available with very high voltage ratings, in many applications, such as transmission lines, the required voltage rating exceeds the voltage that can be provided by a single SCR. Then it is necessary to connect two or more SCRs in series. Similarly, for very high current applications, SCRs have to be connected in parallel. For high-voltage, high-current applications, series-parallel combinations of SCRs are used.

4.8.2 SCRs in Parallel

When the load current exceeds the rating of a single SCR, SCRs are connected in parallel to increase their common current capability. If SCRs are not perfectly matched, this results in an unequal sharing of current between them. Figure 4.17 shows the $V-I$ characteristics of two $\mathrm{SCRs}, \mathrm{SCR}_{1}$ and SCR_{2}. The ratings of the SCRs are the same. When these SCRs are connected in parallel, they will have equal voltage drops $V_{S C R}$ across them. However, due to their mismatch in characteristics, SCR_{2} is carrying the rated current $\left(I_{2}\right)$, while SCR_{1} is carrying a current I_{1}, which is much less than its rated value. The total rated current of the parallel connection is only $I_{1}+I_{2}$ instead of $2 I_{2}$.

Figure 4.17
Current sharing between two parallel SCRs (a) two SCRs in parallel (b) on-state characteristics

(a)

(b)

Matched-pair SCRs are generally available for parallel connection, but they are very expensive. With unmatched SCRs, equal current sharing is enforced by adding a low-value resistor or inductor in series with each SCR. Forced current sharing using equal-value resistors is shown in Figure 4.18. The basic requirement is to make current I_{1} close to I_{2}; a maximum difference of 20% is acceptable. If we assume the voltage V_{1} across SCR_{1} to be greater than the voltage V_{2} across SCR_{2}, the value of R can be obtained from

$$
\begin{align*}
& I_{1} R+V_{1}=I_{2} R+V_{2} \\
& R=\frac{V_{1}-V_{2}}{I_{2}-I_{1}}
\end{align*}
$$

Figure 4.18
Forced current sharing using resistors

b. What are the most common methods of achieving commutation? Explain the commutation method by external source and explain its operation with the help of waveforms.

Answer:

If an $\$ C R$ is forward-biased and a gate signal is applied, the device turns on. However, once the anode current I_{A} is above the holding current, the gate loses control. The only way to turn the SCR off is to reduce the anode current below the holding current value a to make the anode negative with respect to the cathode. The process of turnoff is known as commutation. In AC applications, the required condition for turnoff is achjeved when the source reverses during the negative half-cycle. This method is called natural cr line commutation. For DC applications, additional circuitry must be used to turn the SCR off. These circults first force a reverse current through the SCR for a short period to reduce the anode current to zero, They then maintain the reverse bias fir the necessary time to complete the turnoff. This process ie called forced commutation.

It should be noted that $\mathbb{\#}$ a forward voltage is applied instantly after the anode current is decreased to zero; the SCR will not block'the forward voltage and will start conducting again, event though it is not triggered by a gate pulse. It is therefore important to keep the device reverse-biased fir a finite time, called the turnoff time (t_{OPF}), before a forward anode voltage can be applied. The turnoff time of an. SCR is specified as the minimum period between the instant the anode current becomes zero and the instant the device is able to block the forward voltage,

SCR turnoff can be accomplished in the following ways:

1. diverting the anode current to an alternate path
2. shorting the SCR from anode to cathode
3. applying a reverse voltage (by making the cathode positive with respect to the anode) across the SCR
4. forcing the anode current to zero for a brief period
5. opening the external path from its anode supply voltage
6. momentarily reducing the supply voltage to zero

The most common methods of achieving commutation are discussed briefly in the following subsections.

1. Capacitor Commutation
2. Commutation by Resonance
3. AC Line Commutation

4.14.2 Commutation by External Source

In this type of commutation circuit, the commutation energy is obtained from an external source in the form of a pulse. A simple circuit is shown in Figure 4.29. The pulse generator reverse-biases the SCR and thus turns it off. The pulse width must be such that the SCR is reverse-biased for a period greater than the turnoff time of the SCR.

Figure 4.29
Commutation by external source (a) circuit (b) waveforms

When the SCR is triggered by applying a gate signal, current flows through the SCR, the secondary of the pulse transformer, and the load. To turn the SCR off, a positive pulse from the pulse transformer is applied to the cathode of the SCR. The capacitor is charged to only about 1 V and can be considered a short circuit for the duration of commutation.

Q. 5 a. Draw a neat diagram for Single Phase Full Wave Controlled Bridge Rectifier with a resistive load and explain its operation with the help of waveforms.

Answer:

6.4.1 In Circuits With a Resistive Load

Figure 6.15 shows a full-wave controlled bridge rectifier circuit with a resistive load. In this circuit, diagonally opposite pairs of SCRs turn on and off together. The circuit operation is similar to that of the full-wave center-tap circuit discussed in Section 63. The average DC output voltage can be controlled finm zero to its maximum positive value by varying the firing angle. The average value of the DC voltage is

$$
V_{\text {o(ayg) }}=\frac{V_{\mathrm{m}}(1+\cos \alpha)}{\pi}
$$

$$
6.13
$$

and

$$
I_{\text {RMS }}=\frac{I_{m}}{\sqrt{2}} \sqrt{1-\frac{\alpha}{\pi}+\frac{\sin 2 \alpha}{2 \pi}}
$$

The SCRs are controlled and fire in pairs with a delay angle of a The current and voltage. waveforms become full-wave, as shown in Figure 6.16.

Figure 6.15
Fill-wave brldgeractifier circuit

Figure 6.16

Waveforms of the bridge rectifier with a resistive load

The average values for voltage and current are again twice those of the half-wave case. Therefore, from Equations 6.1 and 6.2,

$$
V_{\mathrm{o}(\text { avg })}=\frac{V_{\mathrm{m}}(1+\cos \alpha)}{\pi}
$$

and

$$
\begin{aligned}
& I_{\text {o(avg })}=\frac{I_{\mathrm{m}}(1+\cos \alpha)}{\pi} \\
& I_{\text {o(avg })}=\frac{V_{\mathrm{m}}(1+\cos \alpha)}{\pi R}
\end{aligned}
$$

The RMS value of the load current is given by

$$
I_{\mathrm{RMS}}=\frac{I_{\mathrm{m}}}{\sqrt{2}} \sqrt{\left[1-\frac{\alpha}{\pi}+\frac{\sin 2 \alpha}{2 \pi}\right]}
$$

b. A single phase half wave controlled rectifier connected to a $150 \mathrm{~V}, 60 \mathrm{~Hz}$ source to supplying a resistive load of 10Ω. If the delay angle α is 30°, then find:
(i) the maximum load current
(ii) the average load current

Answer:

Given Data: VS $=150 \mathrm{~V}, \mathrm{f}=60 \mathrm{~Hz}$, Resistive Load $(\mathrm{R})=10 \Omega$ and
Delay Angle $(\alpha)=30^{\circ}$
Peak Load Voltage $=\mathrm{V}_{\mathrm{m}}=\sqrt{2} \mathrm{~V}_{\mathrm{S}}=1.414 \times 150=212 \mathrm{~V}$.
(i) Maximum Load Current $\left(I_{m}\right)=\frac{V_{m}}{R}=\frac{212}{10}=21.2 \mathrm{~A}$
(ii) Average Load Current $=\frac{\left(I_{m}\right)(1+\cos \alpha)}{2 \pi}=\frac{(21.2)\left(1+\cos 30^{\circ}\right)}{2 \pi}=6.3 \mathrm{~A}$

Q. 6 a. Draw a neat diagram for Three Phase Half Wave Controlled Rectifier circuit with a resistive load and explain its operation with waveforms.

Answer:

7.2.1 With a Resistive Load

A basic three-phase half-wave rectifier consisting of three diodes and a resistive load is shown in Figure 7.1. The circuit can be analyzed by first determining the periods in which each diode is on and then applying the appropriate source voltage across the load resistor R. Each diode conducts for 120° intervals in the sequence $D_{1}, D_{2}, D_{3}, \ldots$ to give the combined output voltage v_{0} shown in Figure 7.2.

At any given time, the most positive instantaneous voltage turns its respective diode on. The on diode connects its most positive source terminal to the other two diode cathodes, keeping the other two diodes off. Therefore, only one diode is on at any time (ignoring the moment of switching). The sudden switchover from one diode to another is called commutation.

The input voltage waveform v_{s} in Figure 7.2 is used to find the periods when each diode is on Consider the interval between 0° and 30°. During this time, the phase voltage v_{CN} is higher than both $v_{\text {AN }}$ and v_{BN}. As a result, diode D_{3} is forward-biased and the output voltage $\left(v_{0}\right)$ becomes equal to v_{CN}. During

Figure 7.1
Three-phase half-wave rectifier circuit diagram

Figure 7.2
Load voltage waveforms

this interval, the voltage across D_{1} is v_{AC} and that across D_{2} is v_{BC}. Diodes D_{1} and D_{3} are therefore reverse-biased. From 30° to 150°, the most positive voltage is $v_{\text {ANi }}$ it turns diode D_{1} on and appears across R as v_{0}. At 150°, the instart taneous voltage of v_{BN} becomes greater than v_{AN}. Diode D_{1} becomes revers biased and turns off as diode D_{2} becomes forward-biased and begin to conduc This applies v_{BN} across R from 150° to 270°. At $270^{\circ}, v_{\mathrm{CN}}$ again becomes the most positive and D_{3} turns on. Diode D_{3} connects v_{CN} across R from 270°. The cycle is then repeated.

The output voltage across the load ν_{0} follows the peaks of the input sup ply voltage and pulsates between $V_{\max }$ and $0.5 V_{\max }$. This circuit is called 1 three-pulse rectifier, since the output repeats itself three times in every cycled v_{5}. The ripple voltage is smaller than that produced by a single-phase rectifier The ripple frequency $\left(f_{t}\right)$ of the output voltage is

$$
f_{\mathrm{r}}=n f_{\mathrm{s}}
$$

where
$n=$ pulse number or number of diodes $=3$
and

$$
f_{\mathrm{s}}=\mathrm{AC} \text { supply frequency }
$$

Therefore,

$$
f_{\mathrm{r}}=3 \cdot 60=180 \mathrm{~Hz}
$$

Filtering is thus easier since the size of the filter is reduced as the ripple frequency increases.

A general expression for the average load voltage is

$$
V_{\mathrm{o}(\text { avg. })}=\frac{n}{\pi} V_{\mathrm{m}} \sin \left(\frac{\pi}{n}\right)
$$

For the case of a three-pulse rectifier,

$$
V_{\text {o(avg) })}=0.827 V_{\mathrm{m}}
$$

In terms of line voltage, average load voltage is given by

$$
V_{\text {o(avg) }}=0.477 V_{U \mathrm{~m})}
$$

where,

$$
\begin{aligned}
& V_{\mathrm{m}}=\text { maximum value of phase voltage } \\
& V_{1(\mathrm{~m})}=\text { maximum value of line voltage }
\end{aligned}
$$

Because the load is resistive, the load current has the same waveform as the load voltage. The individual diode currents are equal to the load current during the time when a particular diode conducts for its 120° interval. Each diode current is then zero for a 240° interval (see Figure 7.3).

In general, each diode conducts for a period of $\frac{2 \pi}{n}$.
The average load current is given by

$$
\begin{align*}
I_{\mathrm{o}(\mathrm{avg})} & =\frac{n}{\pi} I_{\mathrm{m}} \sin \left(\frac{\pi}{n}\right) \\
& =0.827 I_{\mathrm{m}}
\end{align*}
$$

where

$$
I_{\mathrm{m}}=V_{\mathrm{m}} / R
$$

The average current in each diode is only one-third the load current:

$$
I_{\mathrm{D}(\text { avg })}=I_{\text {o(avg.) }} / n=I_{\text {o(avg. })} / 3
$$

The maximum load current and maximum diode current are obviously the same, and because the load is resistive,

$$
\begin{align*}
I_{\mathrm{o}(\mathrm{~m})} & =\frac{V_{\mathrm{m}}}{R} \\
& =1.21 I_{\mathrm{ofag})}
\end{align*}
$$

Figure 7.4
Voitage across the diodes
(b) v_{02}

The PIV rating for the diodes should be PIV rating $\geq V_{\text {Um }}$ or $\sqrt{6} V_{\mathrm{smm}}$.
b. A six pulse half controlled bridge rectifier is connected to a three phase 220 V AC source. Calculate the firing angle if the terminal voltage of the rectifier is 240 V . What is the maximum value of the DC output voltage?
Answer:
Given that the terminal voltage of the rectifier $\left(\mathrm{V}_{\text {o(avg.) }}\right)=240 \mathrm{~V}$ and
the source voltage $\mathrm{V}_{\mathrm{L}(\mathrm{s})}=220 \mathrm{~V}$
Therefore, the maximum voltage $\left(\mathrm{V}_{\mathrm{L}(\mathrm{m})}\right)=\sqrt{2}\left(V_{L(S)}\right)=\sqrt{2}(220 \mathrm{~V})=311 \mathrm{~V}$.
(i) The formula for finding of Firing Angle $\underline{(\alpha) \text { is }\left(V_{O(\text { avg. })}\right)=\frac{3}{2 \pi} V_{L(m)}(1+\cos \alpha), ~\left(V^{2}\right)}$

Hence $(1+\cos \alpha)=\frac{V_{O(\text { avg.) }} 2 \pi}{3 . V_{L(m)}}=\frac{240 V X 2 \pi}{3 \times 311 V}=1.62$
So that $(\cos \alpha)=0.62$
Therefore, the Firing Angle $(\alpha)=52$
(ii) Maximum value of DC output voltage is obtained with $\left(\alpha=0^{\circ}\right)$ is given by

$$
V_{O(\max)}=\frac{3}{2 \pi}\left(V_{L(m)}\right)(1+\cos \alpha)=\frac{3}{2 \pi}(311)(1+1)=297 V
$$

Q. 7 a. What is a DC Chopper? Explain its principle with the help of suitable diagram and waveforms. What are its various industrial applications? (8)

Answer:

The fundamental principle $\subset f$ a basic chopper Is illustrated in Figure 9.1. A switch is connected in series with the DC voltage source $\left(V_{1}\right)$ and the load, The switch S can be a power transistor, an SCR, \propto a GTO thyristor, It is assumed throughout this chapter that the switching devices are ideal. Ideal switches have the following characteristics:

1. They have zero resistance (zero voltage drop) when on.
2. They have infinite resistance (zero leakage current) when off.
3. They can switch from either state in zero time.

Ideally, the power loss in the chopper is zero, so the output power is equal to the input power:

$$
V_{o} I_{o}=V_{i} I_{1}
$$

Figure 9.1
Basic DC chopper

$V_{Q}=$ average output voltage
$V_{i}=$ input voltage
$I_{\mathrm{o}}=$ average output current
$I_{i}=$ average input current
We assume that the output voltage is adjustable in a certain range from zem the input level. Let us operate the switch so that it is on (closed) for a time ? and off (open) for a time $T_{\text {OFF }}$ in each cycle with a fixed period T. The resd ing output voltage waveform (shown in Figure 9.2) is a train of rectangui pulses of duration T_{ON}.

Figure 9.2
Waveform of v_{0} for Figure 9.1

Figure 9.2 shows that the instantaneous voltage across the load is eftr zero (S off) or $V_{i}(\mathrm{~S}$ on). The average (DC) output voltage over a cycle is givent

$$
\begin{aligned}
& V_{\mathrm{o}}=\frac{T_{\mathrm{ON}}}{T_{\mathrm{ON}}+T_{\mathrm{OPF}}} V_{i} \\
& V_{o}=\frac{T_{\mathrm{ON}}}{T} V_{i}
\end{aligned}
$$

where T is the period ($T_{\mathrm{ON}}+T_{\mathrm{OFF}}$). The chopper switching frequency is $f=h$
If we use the idea of duty cycle (d), which is the ratio of the pulse sit T_{ON} to the period of the waveform,

$$
d=\frac{T_{\mathrm{ON}}}{T}
$$

```
then
\(V_{\mathrm{o}}=d V_{1}\)
9.4
```

From Equ $\quad 19.4$, it is obvious that the output voltage varies linearly with the duty cycle. Figure 9.3 shows the output volage as d varies from zero to one. It is therefore possible to control the output voltage in the range zero to. V_{1} :

Figure 9.3 ;
Output voltage v_{0} as a function-ofduty cycle

If the switch S is a transistor, the base current will control the on and off period of the transistor switch. If the switch is a GTO thyristor, a positive gate pulse will turn it on and a negative gate pulse wild turn it off. If the switch is an SCR, a commutation circuit is required to turn it off.

The load current waveform is similar to Figure 9.2, and its average value is given by

$$
I_{\mathrm{o}}=\frac{V_{0}}{R}=\frac{d V_{1}}{R}
$$

The effective (RMS) value of the output voltage is

$$
\begin{align*}
V_{\mathrm{OCMS})} & =\sqrt{\frac{V_{\mathrm{i}}^{2} T_{\mathrm{ON}}}{T}} \\
& =V_{1} \sqrt{\frac{T_{\mathrm{ON}}}{T}} \\
& =V_{i} \sqrt{d}
\end{align*}
$$

The average output voltage can be varied in one of the following ways:

1. Pulse-width modulation (PWM). In this method, the pulse width $T_{O N}$ is varied while the overall switching period T is kept constant. Figure 9.4 shows how the output waveforms vary as the duty cycle is infreased;
 stant while the period (frequency) is varied. As shown in Figure 9.5, the output voltage reduces as frequency is decreased, being high at higher frequencies.

Figure 9.4
Output voltage waveforms with fixed switching frequency

Figure 9.5
Output voltage waveforms with variable switching frequency

For either PWM or PFM control, the output voltage is zero when switch 8 . open, and it is equal to the input voltage when the switch is closed for att longer than the normal switching cycle.

In the PFM method, it is necessary to reduce the chopper switching is quency to obtain a lower output voltage. This may result in discontinuitr low frequencies. Moreover, a reduction in frequency increases the output of rent ripple, thereby Increasing losses and hearing in the load. On the or hand, he losses in the components become very high at higher frequenos The PWM method has the advantage of low ripple, which means smaller components.
b. What is a Buck-Boost Chopper? Draw its circuit configuration and explain its working with the help of voltage and current waveforms.

Answer:

9.5 Buck-Boost Choppers

A buck-boost DC-to-DC chopper circuit combines the concepts of the step-up and step-down choppers. The output voltage can be either higher than, equal to, or lower than the input voltage. A reversal of the output voltage polarity may also occur. The circuit configuration is shown in Figure 9.18(a). The switch can

Figure 9.18
(a) Buck-boost DC chopper (b) equivalent circuit with switch on (c) equivalent circuit with switch off

(a)

(b)

(c)
be any type of controlled switching device such as a power transistor, a GTO thyristor, or an IGBT.

When S is on, the diode D is reverse-biased and t_{D} is zero. The circuit an be simplified as shown in Figure 9.18(b). The voltage across the inductor is equal to the input voltage, and the current through the inductor i_{L} increases $l i$ early with time. When S is off, the source is disconnected. The current through the inductor cannot change instantly, so it forward-biases the diode and porvides a path for the load current. The output voltage becomes equal to the inductor voltage. The circuit can be simplified as shown in Figure 9.18(c). The voltage and current waveforms are shown in Figure 9.19.

With the switch on (T_{ON}),

$$
W_{\mathrm{ON}}=V_{\mathrm{i}} L_{\mathrm{i}} T_{\mathrm{ON}}
$$

Figure 9.19
Voltage and current waveforms for buck-boost chopper

With the switch off (T_{OFF})

$$
W_{\mathrm{OPF}}=V_{\mathrm{O}} I_{1} T_{\mathrm{OFP}}
$$

Ignoring losses,

$$
\begin{aligned}
& w_{\mathrm{ON}}=w_{\mathrm{OFF}} \\
& V_{i} h T_{\mathrm{ON}}=V_{\mathrm{o}} I_{i} T_{\mathrm{OFF}}
\end{aligned}
$$

or $\quad V_{\mathrm{O}}=V_{V} \frac{T_{\mathrm{ON}}}{T_{\mathrm{OFF}}}$
Now, $d=\frac{T_{\mathrm{ON}}}{T}$

$$
T_{O N}=d T
$$

and $\quad T=T_{O N}+T_{O F}$

$$
T_{\mathrm{OFF}}=T-T_{\mathrm{ON}}
$$

$$
=T\left(1-\frac{T_{O N}}{T}\right)
$$

$$
=T(1-d)
$$

Substituting in V_{o},

$$
\begin{align*}
& V_{0}=V_{i} \frac{d T}{(1-d) T} \\
& V_{0}=\frac{d}{1-d} V_{i}
\end{align*}
$$

The output voltage can be controlled by changing the duty cycle d. Depending on the value of d, the output voltage can be higher than, equal to, or lower than the input voltage. When $d>0.5$, the output voltage is greater than the input voltage and the circuit operates in the step-up mode. If $d<0.5$, the output voltage is less than the input voltage and the circuit acts like a step-down chopper. The buck-boost chopper can transfer from operating in the step-down mode to operating in the step-up mode very smoothly and quickly by changing only the control signals for switch S .

Now, from Equation 9.7, -

$$
\begin{aligned}
& I_{\mathrm{L}}=\frac{I_{\max }+I_{\text {min }}}{2} \\
& I_{\mathrm{L}}=L_{\mathrm{L}} d=\left(\frac{I_{\text {max }}+I_{\text {min }}}{2}\right) d
\end{aligned}
$$

The average power input is

$$
\begin{aligned}
P_{1} & =V_{i} * I_{i} \\
& =\left(\frac{I_{\operatorname{tax}}+I_{\operatorname{tin}}}{2}\right) d V_{i}
\end{aligned}
$$

The output power is

$$
P_{o}=\frac{V_{o}^{2}}{R}
$$

If we neglect power losses, the power input must equal the power output:

$$
\begin{aligned}
& \left(\frac{I_{\max }+I_{\min }}{2}\right) d V_{1}=\frac{V_{0}^{2}}{R} \\
& I_{\max }+I_{\min }=\frac{2 V_{0}^{2}}{R d V_{1}}
\end{aligned}
$$

Substituting V_{0} from Equation 9.28 ,

$$
I_{\max }+I_{\min }=\frac{2 d^{2} V_{1}^{2}}{R d(1-d)^{2} V_{i}}=\frac{2 d V_{i}}{R(1-d)^{2}}
$$

with the switch closed (T_{ON}),

$$
\Delta L_{\mathrm{L}}=\frac{V_{1}}{L} T_{\mathrm{ON}}
$$

or $\quad I_{\text {max }}-I_{\min }=\frac{V_{1}}{L} T_{\mathrm{ON}}=\frac{V_{1}}{L} d T$
Adding Equations 9.29 and 9.30 ,

$$
\begin{aligned}
& 2 I_{\max }=\frac{2 d V_{i}}{R(1-d)^{2}}+\frac{V_{i}}{L} d T \\
& I_{\operatorname{tax}}=V_{i}\left[\frac{1}{R(1-d)^{2}}+\frac{T}{2 L}\right] d
\end{aligned}
$$

Similarly, $I_{\text {mit }}$ is given by

$$
I_{\min }=V_{i}\left[\frac{1}{R(1-d)^{2}}-\frac{T}{2 L}\right] d
$$

The peak-to-peak ripple in the input current I_{1} is given by

$$
I_{\mathrm{p}-\mathrm{p}}=I_{\max }-I_{\min }=\frac{V_{\mathrm{i}} T d}{L}
$$

For continuous current conditions, the minimum value of the inductance required is obtained by setting Equation 9.32 equal to zero:

$$
\begin{aligned}
& I_{\text {mixd }}=0=V_{i}\left[\frac{1}{R(1-d)^{2}}-\frac{T}{2 L}\right] d \\
& \frac{1}{R(1-d)^{2}}=\frac{T d}{2 L}
\end{aligned}
$$

Solving for $L_{\text {, }}$

$$
L=\frac{R T d(1-d)^{2}}{2}
$$

Q. 8 a. Explain the working of a full bridge VSI with a neat circuit diagram and waveforms.

Answer:

10.3.2.1 With a Resistive Load

A full-bridge VSI can be constructed by combining two half-bridge VSIs. Figure 10.5 shows the basic circuit for a single-phase full-bridge voltage source inverter. Four switches and four freewheeling diodes are required. The amplitude of the output voltage and therefore the output power are twice that of the half bridge. The switches are turned on and off in diagonal pairs, so either switches S_{1} and S_{4} or S_{2} and S_{3} are turned on for a half-cycle ($T / 2$). Therefore, the DC source is connected to the load alternately in opposite directions. The output frequency is controlled by the rate at which the switches open and close. If the pairs of switches are turned on at equal intervals, the output voltage waveform will be

Figure 10.5
Full-bridge voltage source inverter

a square wave with a peak amplitude of E, as shown in Figure 10.6(a) If switching sequence is given in Table 10.2.

Figure 10.6
Switching sequence and output voltage waveform for the bridge inverter
(a) squarewave output
(b) step-wave output

(a)

(b)

Comparing the waveforms of Figure $10.6(\mathrm{a})$ and $10.3(\mathrm{~b})$ shows that 3 output voltage waveforms of the half-bridge and full bridge inverter are ids cal. Therefore, the same equations apply.

When the switching state is changed while going from one state tot other, both pairs of switches must be in the off state for a short time to avoider possibility of short-circuiting the DC source in the transient state in which ther switches can be simultaneously closing. Therefore, switching from the on sate the off must be done as quickly as possible, while the switching from of tor must be carried out with an appropriate delay and take a definite time.

Table 10.2 Switching Sequence for a Squarewave Output

State	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	Output Voltage.
1	On	Off	Off	O_{n}	$+E$
2	Off	On	On	Off	$-E$
3	On	Off	Off	On	B
4	Off	On	On	Off	$-E$

Table 10.3 Switching Sequence for a Step-Wave Output

State	S_{1}	S_{2}	S_{2}	S_{4}	Output Voltage
1	On	Off	Off	On	$+E$
2	On	Off	Off	On	$+E$
3	On	Off	On	Off	0
4	Off	On	On	Off	$-E$
5	Off	On	On	Off	$-E$
6	Off	On	Off	On	0
7	On	Off	Off	On	$+E$
8	On	Off	Off	On	$+E$

We can control the AC voltage by using a third switch state during which the output voltage is zero. The output waveform is the step wave sbown in Figare $10.6(\mathrm{~b})$. In the third switch state, switches S_{1} and S_{3} or S_{2} and S_{4} close for a time δ, during which $\ell=0$. The switching sequence is given in Table 10.3 .

The average value of the output voltage is given by

$$
V_{\mathrm{o}(a v \mathrm{~g})}=E \frac{(T / 2)-\delta}{T / 2}=\mathrm{E}\left(1-\frac{\delta}{T / 2}\right)=E\left(1-\frac{2 \delta}{T}\right)
$$

The RMS value of the output voltage is given by

$$
V_{o(R, M \mathrm{~S})}=E \sqrt{1-\frac{2 \delta}{T}}
$$

Therefore, the magnitude of the output voltage may be controlled somewhat by delaying the turn-on of the appropriate pair of switches after the conducting pair has been turned off:
b. What are the most commonly used methods of pulse width modulation? Explain multiple pulse width modulation with the help of waveforms when the number of pulses $(\mathrm{m})=2$ and 3 .

Answer:

10.5 Pulse-Width Modulation (PWM)

The three most commonly used methods for pulse-width modulation fall into the following groups:

1. Single pulse-width modulation
2. Multiple pulse-width modulation
3. Sinusoidal pulse-width modulation

10.5.1 Single Pulse-Width Modulation

In this method of voltage control, the output voltage waveform consists of a sinole nulse in each half-cycle of the required mutnut voltaoe For a oiven fre quency $(f=1 / T)$, the palse width t_{w} can be varied to control the AC output voltage. The output voliage waveform of a single-phase bridge inverter (see Figure 10.5) without modulation is Shawn in Figure 10.11(a). Here switches S_{1} and S_{4} are on for one half-cycle and S_{2} and S_{3} are on for the other half-cycle to give maximum output voltage.

Voltage control is achieved by varying the phase of S_{3} and S_{4} with respect to S_{1} and S_{7}. Figure 10 , 11 (b) shows the output voltage waveform when the conduction interval of $S_{3}-1{ }^{2} \mathrm{~S}_{6}$ is advanced by an angle $\boldsymbol{\delta}=90^{\circ}$. The outpur voltage is $\star \$$ by \#\&? square-wave voltages, which are in phase with respect to each other. The output voltage consists of alternating pulses with a pulse width of $\left(180^{\circ}-\delta\right)=90^{\circ}$.

The output voltage can be smoothlv adjusted from its maximum (0° delay) to zem (low delay) by either phase-advancing or -delaying the turn-on of one pair of switches with respect to the other.

10.5.2 Multiple Pulse-Width Modulation

Instead of reducing the pulse width to control the output voltage, the output of the inverter can be switched on and off rapidly several times during each halfcycle to produce a train of constant magnitude pulses.

Figure 10.12 shows the idea of multiple pulse-width modulation. The output voltage waveform consists of m pulses for each half-cycle of the required output voltage. If f is the output frequency of the inverter, the frequency of the -pulses $\left(f_{\mathrm{p}}\right)$ is given by

$$
f_{\mathrm{p}}=2 \mathrm{fm}
$$

Therefore, the number of pulses per cycle is

$$
2 m=f_{\mathrm{p}} / f
$$

Figure 10.12
Multiple pulse-width modulation waveforms (a) $m=2$ (b) $m=3$

Figure 10.13
Variable duty cycle with fixed $m=5$

Figure 10.12(a) shows the output voltage waveform for $m=2$. The pulse width t_{w} should be less than $\pi / 2$. In Figure $10.12(\mathrm{~b})$, for $m=3$, it is clear that t_{w} < $\pi / 3$. In general, the pulse width $t_{\mathrm{w}} \leq \pi / \mathrm{m}$.

An alternative approach for controlling the magnitude of the output voltage is to keep m constant and vary the pulse width t_{w} (see Figure 10.13).

Q. 9 a. What do you mean by AC power control? Discuss the differences between integral cycle control and AC phase control.

Answer:

11.2 AC Power Control

There are two basic methods for controlling the load power: integral cyclecont trol ac on-off control and pbase control, The first method is suitable for systems with a large tire constant, such as a temperature control system. The losd
power can be controlled by connecting the source to the load for a few complete cycles then disconnecting the source from the load for another number of cycles, and repeating the switching cycle. The relative duration of the on and off periods, i.e., the duty cycle d, is adjusted so that the average power delivered to the load meets some particular objective. Figure 11.2 shows a typical pattern. In ideal circumstances, the average power to the load can be controlled from 0% through 100%.

11.3 Integral Cycle Control

In the AC voltage controller in Figure 11.1, the thynstors can be fired at $\alpha=0^{\circ}$ to allow complete cycles of source voltage to be applied to the load. If there is no firing signal in any cycle, then no voltage appears across the load. Thus it is possible to allow complete cycles of source voltage to be applied to the load followed by complete cycles of extinction. If the load voltage is turned on and off in this manner (Figure 11.2), the average power to the load can be varied. The ratio of on time to total cycle time (the period in which the conduction pattern repeats) controls the average load power. In Figure 11.2, T_{O} is the number of cycles for which the load is energized and T is the number of cycles in the full period of operation. During the T_{ON} part of the cycle, the switch is on and the load power is maximum. During the remaining $T_{\mathrm{OFF}}\left(T_{\mathrm{OFP}}=T-T_{\mathrm{ON}}\right)$ cycles, the switch is off and the load power is zero.

For a resistive load R, the average load power is given by

$$
P_{\text {o(avg) })}=\frac{V_{i}^{2} T_{O N}}{R T}=\frac{V_{i}^{2}}{R} d=P_{\text {o(max) }} d
$$

The RMS value of the output voltage is given by

$$
V_{\mathrm{o}}=\frac{V_{\mathrm{m}}}{\sqrt{2}} \sqrt{\frac{T_{\mathrm{ON}}}{T}}=V_{\mathrm{i}} \sqrt{d}
$$

where

$$
\begin{aligned}
& V_{\mathrm{rt}}=\text { maximum value of input voltage } \\
& V_{\mathrm{i}}=\mathrm{RMS} \text { value of input voltage }=V_{\mathrm{m}} / \sqrt{2}
\end{aligned}
$$

Because T_{ON} can be varied only as an integer, the average value of the load power is not a continuous function but has only discrete levels. The number of steps available for regulating the average power depends on the total number of cycles included in the repeat pattern.

Power conversion is the ratio of the average power output $\left(P_{\text {o(avg, }}\right)$ to the maximum possible power output $\left(P_{o(\max)}\right) . P_{\text {o(arg }} / P_{o(\max)}$ is equal to the duty cycled

$$
d=T_{\mathrm{ON}} /\left(T_{\mathrm{ON}}+T_{\mathrm{OHF}}\right)=T_{\mathrm{ON}} / T
$$

where

$$
T=\text { time period }=T_{\mathrm{ON}}+T_{\mathrm{OFF}}
$$

The source current is always in time phase with the source voltage. However, this does not mean that an integral cycle control circuit operates at unity power factor-for part of the time, the source current is not present at all and therefore is not in phase with the source voltage.

The power factor is given by

$$
\mathrm{PF}=\sqrt{T_{\mathrm{ON}} / T}=\sqrt{d}
$$

It is clear from Equation 11.3 that a power factor of one will result when $T_{O N}=$ T, which would result in sinusoidal operation.

A closed-loop control system can be used to vary the value of $T_{\text {ON }} 10$ maintain some variable close to a selected set point. Such a system would depend on sufficient energy storage in the controlled system to smooth variations that result from the on-off nature of the control. Integral cycle control has the advantage of fewer switching operations and low radio frequency interference (RFI) due to control during the zero crossing of the AC voltage, that is, in this method, switching occurs only at zero voltage for resistive loads. The rate of change of the load current depends on the system frequency, which is small, so there is low electrical noise compared with other control methods.

1.4 AC Phase Control

11.4.1 In Circuits with a Resistive Load

The basic circuit in Figure 11.1 can be used to control the power to a resistive load. As is done with a controlled rectifier, output voltage is varied by delaying conduction during each half-cycle by an angle α. The delay angle α is measured from the source voltage zero.
SCR_{1}, which is forward-biased during the positive half-cycle, is turned on at an angle α. It conducts from α to π, supplying power to the load. SCR_{2} is turned on half a cycle later at $\pi+\alpha$. It conducts up to 2π, supplying power to the load. The waveforms in Figure 11.3 are identical to those of a full-wave rectifier with a resistive load. The difference here is that each second half-cycle has a negative current rather than a positive one. There is, however, no effect on the power, because power is a squared function.

The equation for the RMS value of the output voltage is

$$
V_{\mathrm{O}(\mathrm{RMS})}=V_{i}\left\{1-\frac{\alpha}{\pi}+\frac{\sin 2 \alpha}{2 \pi}\right\}^{1 / 2}
$$

The equation for the RMS value of the output current with a resistive load is similar to Equation 11.4:

$$
I_{\mathrm{C}(\mathrm{RMS})}=\frac{V_{i}}{R}\left\{1-\frac{\alpha}{\pi}+\frac{\sin 2 \alpha}{2 \pi}\right\}^{1 / 2}
$$

By varying the delay angle α, the output current of the load can be continuously adjusted between the maximum value of V_{i} / R at $\alpha=0$ and zero at $\alpha=180^{\circ}$.

The RMS current rating of the triac is given by

$$
I_{\text {(RMS) }}=I_{\text {OOMM5) }}
$$

The RMS current rating of the SCRs is given by

$$
I_{\text {SCR(CMMS) }}=I_{\text {O(RMSS }} / \sqrt{2}
$$

Output power is given by

$$
P_{\text {o(avg) })}=I_{\text {o(RMS) }}^{2}(R) \quad \text { or } \quad V_{\text {ocRMS })}^{2} / R
$$

Examination of Equations 11.5 and 11.8 shows that the load power can be varied by changing α over the full range from zero to 180°. Suitable trigger circuits exist to allow conduction to be adjusted essentially over this entire range.

Table 11.1

$\alpha\left({ }^{\circ}\right)$	$V_{\text {o(RMs) }}(V)$	$P_{\text {o(avg) }}(\mathrm{W})$	$P_{\text {o(avg) }} / P_{\text {o(max) }}$	$V_{\text {otrMs) }} / V_{i}$
0	50.0	25.0	1.0	1.0
30	49.3	24.3	0.97	0.98
60	44.8	20.1	0.80	0.89
90	35.4	12.5	0.50	0.71
120	21.9	4.8	0.20	0.44
150	8.5	0.72	0.03	0.17
180	0.0	0.0	0.0	0.0

The control characteristic of a single-phase AC power controller can be calculated as a function of the delay angle. If we assume $V_{i}=50 \mathrm{~V}$ and load resistance $R=100 \Omega$, then at $\alpha=0^{\circ}$, using Equation 11.4, output voltage $V_{\text {o(pMs) }}=$ $V_{1}=50 \mathrm{~V}$ and

$$
P_{\text {o(max })}=V_{i}^{2} / R=50^{2} / 100=25 \mathrm{~W}
$$

while

$$
P_{\text {(avg })}=V_{\text {(RMS) }}^{2} / R
$$

Evaluating output voltage and power for successive values of the delay angle gives the results shown in Table 11.1.

The control characteristic, $V_{\text {orms) }} / V_{i}$ and $P_{o(a v g)} / P_{o(\max)}$ versus α, for a resistive load is plotted in Figure 11.4.

Figure 11.4
Variation of output voltage and power with delay angle for a resistive load

Because the current is nonsinusoidal, the power factor presented to the AC source is less than unity, although the load is resistive. Whatever the wave-
form, by definition the power factor' 'is given byim m .

$$
\begin{aligned}
\mathrm{PF} & =\frac{\text { active power }}{\text { apparent power }} \\
& =\frac{P}{V_{1} I_{1}} \\
& =\frac{\left|V_{\text {c(RMS })}^{2} / R\right|}{V_{i}\left(V_{\text {O(RMS) }} / R \mid\right.} \\
& =\frac{V_{\text {OCRMS }}}{V_{1}}
\end{aligned}
$$

Substituting Equation 11.4, we obtain

$$
\mathrm{PF}=\left\{1-\frac{\alpha}{\pi}+\frac{\sin 2 \alpha}{2 \pi}\right\}^{1 / 2}
$$

 sively smaller as α increases, becoming approximately zero for $a=\pi$.

The switch current becomes zero just when the source voltage ts zero, because the load is resistive. Therefore, when the switch begins blocking at the time of the Current zero, negligible source voltage is present The problem of dudit being large at turnoff does not exist, and no snubber is required to reduce the rate of volcage buildup across the device terminals.

For values of $a>90^{\circ}$, the switch blocks the peak source voltage before it tums an. The minimum switch voltage capabillty therefore is the peak value of the source voltage, This blocking capability is of course necessary in both directions for either the SCR \subset the triac implementation of the switch.

PIV $\geq V_{i(m)}$
11.10

b. Compare the advantages and disadvantages of semiconductor switches over mechanical switches.

Answer:

12.2 Comparison of Semiconductor and Mechanical Switches

A semiconductor switch, offers several advantages qver other swlrching devices:

1. It provides extremely high switching speeds, because the switch turns on immediatcly.
3 operation is quet because there are no moving parts and no arcing.
2. nauv irequency interference (RFI) is eliminated by using zero voltage
3. No routine maintenance is required because there are no contacts a moving parts that wear.
4. Operational life is much longer.
5. It is completely safe in an explosive environment.
6. Immune from vibration and shock.
7. It can be ing*allad in a.... position or location.
8. 1here is no switch contact bounce when closing.
9. It is small and lightweight.
10. It is easily tailored to electronic control. The cost is low,
11. It offers greater reliability.
12. In addition to turning a load on or off, it can also be used to control the load power from zero to maximum
13. The control circuit can be easily isolated from the power circuit.
14. It ti easv to control remotely.

Some of the disadvantages of a semiconductor switch are:

1. Due to reverse leakage current when off, it does not allow the load to be completely isolated from the source.
2. It is likely to fail when subjected to overvoltage and overcurrent situations unless protected by an RC snubber circuit.
3. It has higher power losses in the on-state condition, so cooling is required.
4. The on-state voltage drop across the device may not be permissible in some applications.
5. Due to the higher cost of the device and the complexity of control, its use is normally limited to single-phase circuits.
6. The same switch cannot be used in both AC and DC circuits, since the AC switch turns off naturally while the DC switch needs additional force commutation circuitry to turn it off.
7. Continuous firing pulses are required to maintain the switch in the on state.
8. It can cause false triggering as a result of voltage transients caused by switching incluctive loads on neighboring lines.
9. To prevent false triggering, the firing circuits must be completely isolated or shielded from power circuits.
10. Protection circuits are necessary to safely turn off the device before the surge current or fault current ratings are exceeded.
11. Overload capability is limited by the maximum current of the semiconductor device.

Static switches are used in both AC and DC switching operations. AC switching requires bidirectional control, which is usually implemented by using a triac or two SCRs connected in antiparallel. Since the device turns off naturally, the upper frequency limit is determined by the type of device used. For low-frequency switching applications, a singie triac can be used. For high-frequency applications a configuration of two antiparallel SCRs is employed. DC switching requires control for only one direction of current flow, and the switching device is usually an SCR. The switching speed is limited by the commutation circuit and the reverse recovery time of the SCR.
DE71 Distribution of Marke
6.2
(a)

$$
\text { Powes loss - } 02
$$

$$
\begin{aligned}
& \text { conduction losses dixpram }-2 \\
& \text { evalanatio }-4
\end{aligned}
$$

(b) overvritye - 3 over cinsent - -2 (8)
Q. 3 (a)

$$
\begin{equation*}
\text { BJT as switeh - } 2 \tag{8}
\end{equation*}
$$ $V-I$ cheractenction - 2 significance -4

$$
4 \times 2=8
$$

(b) Colculations $4 \times 2=8$
Q. 4
(a) necessity - 2 (9)

$$
\text { Diagram - } 5
$$

(b) methors - 2
Commentation meltora - 4 Wareforms
Q. 5

(a)

$$
\left.\begin{array}{c}
\text { Definition }-2 \\
\text { primiple }-2 \\
\text { Diapram + waneformir }-2 \\
\text { applicatim1 }-2
\end{array}\right\}
$$

(b)

$$
\left.\begin{array}{l}
\text { Diapramion -2 } \\
\text { applicatin } 16 \\
\text { Definition }-1 \\
\text { circunt }-2 \\
\text { Wanefarms }-2 \\
\text { Explamation - } 3
\end{array}\right\}
$$

$$
\text { Q. } 8 \text { (a) }
$$

ckt circint diafram - 2
wanifan -2 axplanation -4
(b)

$$
\text { Methots - } 2
$$

$$
\begin{aligned}
& \text { Metho methoo }-4 \\
& \text { pwareforms }-2
\end{aligned}
$$

0.9
$\left.\begin{array}{l}\text { Definition - }-6 \\ \text { Explination }\end{array}\right\}(8)$
(b)

Advantajes - 4 Advanteges
Disaodvantajes -a

TEXT BOOK

I. Power Electronics for Technology, First Impression (2006), Ashfaq Ahmed, Purdue University - Calumet, Pearson Education

