Q. 2 a. Evaluate $\operatorname{lt}_{x \rightarrow 1} \frac{x^{x}-x}{x-1-\log x}$

Answer:

$$
\begin{aligned}
& \text { Q. } 2 \text { (a) } \lim _{x \rightarrow 1} \frac{x^{x}-x}{x-1-\log x} \\
& =\lim _{x \rightarrow 1} \frac{\frac{d}{d x}\left(x^{x}-1\right.}{1-\frac{1}{x}} \\
& =\operatorname{lt}_{x \rightarrow 1} \frac{x^{x}(1+\log x)-1}{1-\frac{1}{x}} \quad\left(\frac{0}{0} \text { form }\right) \\
& =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} x^{x} \cdot(1+\log x)+x^{x} \cdot \frac{1}{x}-0}{\frac{1}{x^{2}}} \\
& =\operatorname{lt}_{x \rightarrow 1} \frac{x^{x}(1+\log x)^{2}+x^{x-1}}{x^{-2}} \\
& =\frac{1 \cdot(1+0)^{2}+1}{1}=2
\end{aligned}
$$

b. Find the area bounded by $y^{2}=9 x$ and $x^{2}=9 y$

Answer:
(b)

$$
\begin{align*}
& y^{2}=9 x \tag{1}\\
& x^{2}=9 y \tag{2}
\end{align*}
$$

are $O(0,0)$ and $A(9,9)$
Reqd A sea $=O A \subset O=A x c a \quad O A B O-O C A B O Y^{\prime}$
$=\int_{0}^{9} \sqrt{9 x} d x-\int_{0}^{9} \frac{x^{2}}{9} d x$.
$=3 \int_{0}^{9} \sqrt{x}-\frac{1}{9} \int_{0}^{9} x^{2} d x$
$=3\left[\frac{x^{3 / 2}}{3 / 2}\right]_{0}^{9}-\frac{1}{9}\left[\frac{x^{3}}{3}\right]_{0}^{9}$
$=2(27-0)-\frac{1}{3 \times 9}[9 \times 9 \times 9-0]$
$=54-27=27$ Ans.
Solving (1) \&(2), the points
of vilersection of the curves

Q. 3 (a)

$$
\begin{aligned}
& \text { LAS } \\
& =(1+\cos \theta+i \sin \theta)^{n}+(1+\cos \theta-i \sin \theta)^{n} \\
& =\left(2 \cos ^{2} \theta / 2+2 i \sin \theta \cos \theta / 2\right)^{n}+\left(2 \cos ^{2} \theta / 2-2 i \sin \theta / 2 \cos \theta / 2\right)^{n} \\
& =2^{n} \cos ^{n} \theta / 2(\cos \theta / 2+i \sin \theta / 2)^{n}+2^{n} \cos ^{n} \theta / 2(\cos \theta / 2-i \sin \theta / 2)^{n} \\
& \left.=2^{n} \cos ^{n} \theta / 2\left[(\cos \theta / 2+i \sin \theta / 2)^{n}+(\cos \theta / 2-i \sin \theta)^{n}\right)\right] \\
& =2^{n} \cos ^{n} \theta / 2[\cos n \theta / 2+i \sin n \theta / 2+\cos n \theta / 2-i \sin n \theta / 2] \\
& =2^{n} \cos ^{n} \theta / 2 \cdot 2 \cos n \theta / 2 \\
& =2^{n+1} \cos ^{n} \theta / 2
\end{aligned}
$$

b. Forces of magnitudes 5 and 3 units acting in the directions $6 i+2 j+3 k$ and $3 i-2 j+6 k$ respectively act on a particle which is displaced from the point $(2,2,-1)$ to $(4,3,1)$. Find the work done by the forces.
Answer:
(b)

$$
\text { b) } \begin{align*}
\vec{F}_{1} & =5 \frac{(6 i+2 j+3 k)}{\sqrt{36+4+9}}=\frac{5}{7}(6 i+2 j+3 k) \tag{8}\\
\vec{F}_{2} & =3 \frac{(3 i-2 j+6 k)}{\sqrt{9+4+36}}=\frac{3}{7}(3 i-2 j+6 k) \\
\text { Total Force } \vec{F} & =\vec{F}_{1}+\vec{F}_{2} \\
& =\frac{1}{7}(39 i+4 j+33 k)
\end{align*}
$$

$$
\begin{aligned}
\vec{d}=\text { Displacement } & =(4 i+3 j+k)-(2 i+2 j-k) \\
& =2 i+j+2 k
\end{aligned}
$$

$$
\text { Work done }=\vec{F} \cdot \vec{d}
$$

$$
=\frac{1}{7}(39 i+4 j+33 k) \cdot(2 i+j+2 k)
$$

$$
=\frac{1}{7}(78+4+66)
$$

$$
=\frac{148}{7}
$$

Q. 4 a. Find a Fourier series to represent $x-x^{2}$ from $x=-\pi$ to $x=\pi$. Answer:
Q. 4 (a)

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi} x-x^{2} d x \\
& =\frac{1}{\pi}\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{-\pi}^{\pi} \\
& =\frac{1}{\pi}\left[\frac{\pi^{4}}{2}-\frac{\pi^{3}}{3}-\frac{x^{2}}{2}-\frac{\pi^{3}}{3}\right] \\
& =-\frac{1}{\pi} \cdot \frac{2 \pi^{3}}{3}=-\frac{2 \pi^{2}}{3}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x-x^{2}\right) \cos n x d x . \\
& =\frac{1}{\pi}\left[\left(x-x^{2}\right) \frac{\sin n x}{n}-\int(1-2 x) \frac{\sin n x}{n} d x\right]_{-\pi}^{\pi} \\
& =\frac{1}{\pi}\left[\left(x-x^{2}\right) \frac{\sin n x}{n}-\left\{(1-2 x)\left(-\frac{\cos n x}{n^{2}}\right)-(-2) \int-\frac{\cos n x}{n^{2}} d x\right\}\right]_{-\pi}^{\pi} \\
& =\frac{1}{\pi}\left[\left(x-x^{2}\right) \frac{\sin n x}{n}+(1-2 x) \frac{\cos n x}{n^{2}}+2 \frac{\sin n x}{n^{3}}\right]_{\pi}^{\pi} \\
& =\frac{1}{\pi}\left[\frac{(1-2 \pi)(-1)^{n}}{n^{2}}-\frac{(1+2 \pi)(-1)^{n}}{n^{2}}\right] \\
& =\frac{(-1)^{n}}{\pi}\left(-\frac{4 \pi}{n^{2}}\right)=\frac{-4(-1)^{n}}{n^{2}}=\frac{(-1)^{n+1} 4}{n^{2}} \\
& \therefore a_{1}=\frac{4}{1^{2}}, a_{2}=-\frac{4}{2^{2}}, a_{3}=\frac{4}{3^{2}}, a_{4}=-\frac{4}{4^{2}} \text { sud loo on. } \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x-x^{2}\right) \sin n x d x \\
& =\frac{1}{\pi}\left[\left(x-x^{2}\right)\left(-\frac{\cos n x}{n}\right)-(1-2 x)\left(-\frac{\sin n x}{n^{2}}\right)+(-2)\left(\frac{\cos n x}{n^{3}}\right)\right]_{-\pi}^{\pi} \\
& =\frac{1}{\pi}\left[-\left(\pi-\pi^{2}\right) \frac{(-1)^{n}}{n}-\frac{2(-1)^{n}}{n^{3}}+\left(-\pi-\pi^{2}\right) \frac{(-1)^{n}}{n}+\frac{2(-1)^{n}}{n^{3}}\right] \\
& =\frac{1}{\pi}\left[\frac{-2 \pi(-1)^{n}}{n}\right]=(-1)^{n+1} \cdot \frac{2}{n} \\
& b_{1}=\frac{2}{1}, \quad b_{2}=-\frac{2}{2}, \quad b_{3}=\frac{2}{3}, b_{4}=-\frac{2}{4} \text { and loo on. }
\end{aligned}
$$

[^0]Answer:
Q. 4 (b)

$$
\begin{aligned}
L \frac{d^{2} i}{d t^{2}}+\frac{i}{c} & =0 \\
\frac{d^{2} i}{d t^{2}}+\frac{i}{L C} & =0 \\
\text { or }\left(D^{2}+\frac{1}{L C}\right) i & =0 \quad D=\frac{d}{d t}
\end{aligned}
$$

$A \cdot E$ is $m^{2}+\frac{1}{L C}=0$

$$
m= \pm \frac{j}{\sqrt{L C}} \quad(j=\sqrt{-1})
$$

for Sols. is

$$
\begin{equation*}
i=c_{1} \sin \frac{1}{\sqrt{L C}} t+c_{2} \cos \frac{1}{\sqrt{L C}} t \tag{1}
\end{equation*}
$$

When $t=0, \quad i=0$

$$
\therefore \quad C_{2}=0
$$

(1) becomes

$$
\imath=\frac{c_{1} \sin 1}{\sqrt{L C} t}
$$

Current i is maximum when $\sin \frac{1}{\sqrt{L C}} t=1$

$$
\therefore \quad c_{1}=I
$$

\therefore Recd solution i is $i=I \sin \frac{1}{\sqrt{L C}} t$
Q. 5 a. Find the Laplace transform of $t^{2} \cos a t$.
(8) Answer:
2). $5(a)$

$$
\begin{aligned}
& \mathcal{L}\left(t^{2} \cos a t\right) \\
= & (-1)^{2} \frac{d^{2}}{d s^{2}}\left(\frac{s}{s^{2}+a^{2}}\right) \\
= & \frac{d}{d s}\left[\frac{\left.\left(s^{2}+a^{2}\right) \cdot 1-s \cdot 2 s\right]}{\left(s^{2}+a^{2}\right)^{2}}\right] \\
= & \frac{d}{d s}\left[\frac{a^{2}-s^{2}}{\left(s^{2}+a^{2}\right)^{2}}\right] \\
= & \frac{\left(s^{2}+a^{2}\right)^{2}(-2 s)-\left(a^{2}-s^{2}\right) \cdot 2\left(s^{2}+a^{2}\right) \cdot 2 s}{\left(s^{2}+a^{2}\right)^{4}} \\
= & \frac{\left(s^{2}+a^{2}\right)\left[-2 s\left(s^{2}+a^{2}\right)-4 s\left(a^{2}-s^{2}\right)\right]}{\left(s^{2}+a^{2}\right)^{4}} \\
= & \frac{-2 s^{3}-2 a^{2} s-4 a^{2} s+4 s^{3}}{\left(s^{2}+a^{2}\right)^{3}} \\
= & \frac{2 s^{3}-6 a^{2} s}{\left(s^{2}+a^{2}\right)^{3}}=\frac{2 s\left(s^{2}-3 a^{2}\right)}{\left(s^{2}+a^{2}\right)^{3}} \quad \text { Ans }
\end{aligned}
$$

b. Evaluate $L^{-1}\left[\frac{s-1}{s^{2}-6 s+25}\right]$

Answer:

$$
\begin{aligned}
& \mathcal{L}^{-1}\left[\frac{s-1}{s^{2}-6 s+25}\right] \\
= & \mathcal{L}^{-1}\left[\frac{s-1}{(s-3)^{2}+4^{2}}\right] \\
= & \mathcal{L}^{-1}\left[\frac{s-3}{(s-3)^{2}+4^{2}}+\frac{2}{(s-3)^{2}+4^{2}}\right] \\
= & \mathcal{L}^{-1}\left[\frac{s-3}{(s-3)^{2}+4^{2}}\right]+\frac{1}{2} \mathcal{L}^{-1}\left[\frac{4}{(s-3)^{2}+4^{2}}\right] \\
= & e^{3 t} \cos 4 t+1 e^{3 t} c \cdot .
\end{aligned}
$$

Q. 6 a. Solve using Laplace transform the equation $\left(D^{3}-3 D^{2}+3 D-1\right) y=t^{2} e^{t}$, given

$$
\begin{equation*}
\text { that } y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-2 . \quad\left(D=\frac{d}{d x}\right) \tag{8}
\end{equation*}
$$

Answer:

Q. 6 (a) $\quad\left(D^{3}-3 D^{2}+3 D-1\right) y=t^{2} e^{t}, \quad y(0)=1, \quad y^{\prime}(0)=0, y^{\prime \prime}(0)=-2$

Taking L.T of botu sides, we get

$$
\begin{gathered}
{\left[s^{3} \bar{y}-s^{3} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)\right]-3\left[s^{2} \bar{y}-s y(0)-y^{\prime}(0)\right]+3[s \bar{y}-y(0)]-\bar{y}} \\
=2
\end{gathered}
$$

Using grvien condilions

$$
=\frac{2}{(s-1)^{3}}
$$

$$
\left(s^{3}-3 s^{2}+3 s-1\right) \bar{y}=s^{2}-2-3 s+3+\frac{2}{(s-1)^{3}}
$$

$$
(s-1)^{3} \bar{y}=s^{2}-3 s+1+\frac{2}{(s-1)^{3}}
$$

$$
\bar{y}=\frac{s^{2}-3 s+1}{(s-1)^{3}}+\frac{2}{(s-1)^{6}}
$$

$$
=\frac{(s-1)^{2}-(s-1)-1}{(s-1)^{3}}+\frac{2}{(s-1)^{6}}
$$

$$
\begin{aligned}
& =\frac{1}{(s-1)^{3}}-\frac{1}{(s-1)^{2}}-\frac{1}{(s-1)^{3}}+\frac{2}{(s-1)^{6}} \\
& =\mathcal{L}^{-1} \frac{1}{(s-1)}-\frac{1}{(s-1)^{2}}-\frac{1}{(s-1)^{3}}+2 \frac{1}{(s-1)} \\
& 2 e^{6}+1 e^{t} t^{5}
\end{aligned}
$$

$$
=e^{t}-t e^{t}-\frac{1}{2} t^{2} e^{t}+\frac{1}{60} e^{t} \cdot t^{5}
$$

$$
\begin{equation*}
=e^{t}\left(1-t-\frac{1}{2} t^{2}+\frac{1}{60} t^{5}\right) \tag{8}
\end{equation*}
$$

b. Solve $\frac{d^{2} y}{d x^{2}}-\frac{3 d y}{d x}+2 y=x e^{x}$

Answer:
(b)

$$
\frac{d^{2} y}{d x^{2}}-\frac{3 d y}{d x}+2 y=x e^{x}
$$

$A \cdot B$ is

$$
\begin{aligned}
& m^{2}-3 m+2=1,2 \\
\text { e.f i } & C_{1} e^{x}+C_{2} e^{2 x} \\
P \cdot I & \frac{1}{D^{2}-3 D+2} x e^{x} \\
= & e^{x} \frac{1}{(D+1)^{2}-3(D+1)+2} x \\
= & e^{x} \frac{1}{D^{2}-D} x \\
& =-\frac{1}{D}(1-D)^{-1} x \\
& =-e^{x} \frac{1}{D}(1+D+\cdots) x \\
& =-e^{x} \frac{1}{D}(x+1) \\
& =-e^{x}\left(\frac{x^{2}}{2}+x\right)
\end{aligned}
$$

Complete solutian is

$$
y=C_{1} e^{x}+C_{2} e^{2 x}-e^{x}\left(\frac{x^{2}}{2}+x\right)
$$

Q. 7 a. Using Maclaurin's series expand tan x upton the term containing x^{5}.

(8)

Answer:
Q. 7 (a)

$$
\begin{aligned}
& f(x)=\tan x \Rightarrow \tan ^{2} x \Rightarrow f^{\prime}(0)=1 \\
& f^{\prime}(x)=\sec ^{2} x=1+\tan ^{\prime} x \\
& f^{\prime \prime}(x)=2 \tan x \sec ^{2} x \\
&=2 \tan x\left(1+\tan ^{2} x\right) \Rightarrow f^{\prime \prime}(0)=0 \\
& f^{\prime \prime \prime}(x)=2 \sec ^{2} x\left(1+\tan ^{-2} x\right)+2 \tan x\left(2 \tan ^{2} x \sec ^{2} x\right) \\
&=2\left(1+\tan ^{-2} x\right)^{2}+4 \tan ^{2} x\left(1+\tan ^{2} x\right) \\
& \therefore f^{\prime \prime \prime}(0)=2=6 \tan ^{4} x+8 \tan ^{-2} x+2 \\
& f^{i v}(x)=24 \tan ^{3} x \sec ^{2} x+16 \tan x \sec ^{2} x \Rightarrow f^{i v}(0)=0 \\
&=24 \tan ^{5} x+40 \tan ^{3} x+16 \tan ^{2} x \Rightarrow \tan ^{2} x \sec ^{2} x+16 \sec ^{2} x \Rightarrow f^{2}(0)=16
\end{aligned}
$$

$$
\therefore \text { Maclaurin's series is }
$$

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{2 \prime \prime}(0)+\cdots
$$

$$
\begin{align*}
\operatorname{lin} x & =0+x \cdot 1+\frac{x^{2}}{2!} \cdot 0+\frac{x^{3}}{3!} 2+\frac{x^{4}}{4!} \cdot 0+\frac{x^{5}}{5!} 16+\cdots \\
& =x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\cdots \tag{8}
\end{align*}
$$

b. Using Laplace transforms evaluate the integral $\int_{0}^{\infty} t e^{-2 t} \sin t d t$

Answer:

7 (b)

$$
\begin{aligned}
& \begin{array}{rl}
\int_{0}^{\infty} t e^{-2 t} \sin t & d t \\
& =\int_{0}^{\infty} e^{-s t}(t \sin t) d t \quad \text { where } s=2 \\
& =(t \sin t) \frac{d}{d s}\left(\frac{1}{s^{2}+1}\right) \\
& =(-1) \frac{(-2 s)}{\left(s^{2}+1\right)^{2}}=\frac{2 s}{\left(s^{2}+1\right)^{2}} \\
\int_{0}^{\infty} t e^{-2 t} \sin t d t & =\frac{4}{25}
\end{array}
\end{aligned}
$$

Q. 8 a. Two circuits of impedances $2+\mathrm{j} 4 \mathrm{ohms}$ and $3+\mathrm{j} 4$ ohms are connected in parallel and ac. voltage of 100 volts is applied across the parallel combination. Calculate the magnitude of the current as well as power factor for each circuit and the magnitude of the total current for the parallel combination.
Answer:

$$
\begin{aligned}
& \text { Q. } 8 \text { (a) } \\
& z_{1}=2+j 4, \quad z_{2}=3+j 4 \\
& i_{1}=\frac{v}{z_{1}}=\frac{100}{2+j^{4}}=\frac{50}{1+2 j}=\frac{50(1-2 j)}{1+4}=10(1-2 j) \\
& =10-20 j \\
& \left|i_{1}\right|=\sqrt{100+400}=10 \sqrt{5} \text { alp } \\
& \text { Power factor }=\frac{R_{1}}{\left|z_{1}\right|}=\frac{2}{\sqrt{20}}=\frac{1}{\sqrt{5}}=0.647
\end{aligned}
$$

Total current

$$
\begin{aligned}
i & =i_{1}+i_{2} \\
& =(10-20 j)+(12-16 j) \\
& =22-36 j
\end{aligned}
$$

$$
|i|=\sqrt{484+\mid 296}=\sqrt{1780}=2 \sqrt{445}=42.19
$$

b. Express $f(x)=x$ as a Fourier series in the interval $-\pi<x<\pi$.

Answer:

$$
\begin{aligned}
& i_{2}=\frac{V}{z_{2}}=\frac{100}{3+4 j}=\frac{100(3-4 j)}{25}=4(3-4 j) \\
& =12-16 j \\
& \left|i_{2}\right|=\sqrt{144+256}=20 \text { sup. } \\
& \text { Power factor }=\frac{R_{2}}{\left|z_{2}\right|}=\frac{3}{5}=.6
\end{aligned}
$$

(b) Since $f(-x)=-x=-f(x), f(x)$ is an odd function and therefore

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x \\
& b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin x x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} x \sin n x d x \\
& =\frac{2}{\pi}\left[x\left(-\frac{\cos n x}{n}\right)-\int\left(-\frac{\cos n x}{n}\right) d x\right]_{0}^{\pi} \\
& b_{n}=\frac{2}{\pi}\left[-\frac{x \cos n x}{n}+\frac{\sin x x}{n^{2}}\right]_{0}^{\pi} \\
& =\frac{2}{\pi}\left[-\frac{\pi(-1)^{n}}{n}\right] \\
& =(-1)^{n+1} \frac{2}{n} \\
& b_{1}=\frac{2}{1}, b_{2}=-\frac{2}{2}, b_{3}=\frac{2}{3}, b_{4}=-\frac{2}{4} \\
& \therefore \quad x=2\left(\sin x-\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x-\frac{1}{4} \sin 4 x+\ldots\right) \\
& \text { Q. } 9 \text { a. If }\left(x^{2} y-2\right)+i(x+2 x y-5)=0 \text {, find the value of } \mathbf{x} \text { and } \mathbf{y} \text {. }
\end{aligned}
$$ Answer:

Q. 9. (a)

$$
\begin{aligned}
& \left(x^{2} y-2\right)+i(x+2 x y-5)=0 \\
& \text { हpuatui- seal \& imaginayy paris } \\
\Rightarrow & \left.x^{2} y-2=0-1\right) \& \quad x+2 x y-5=0
\end{aligned}
$$

(1) gives

$$
\begin{equation*}
y=\frac{2}{x^{2}} \tag{3}
\end{equation*}
$$

Subsitutuing is (2)

$$
\begin{gathered}
x+2 x \cdot \frac{2}{x^{2}}-5=0 \\
o x^{2}+4 x-5 x=0 \\
\left(x^{2}-5 x+4\right)=0 \\
(x-4)(x-1)=0 \\
x=1 \text { or } x=4
\end{gathered}
$$

Case 1. wheu

$$
\begin{aligned}
& x=1 \\
& y=2
\end{aligned} \quad(\text { from }(3))
$$

Case 2 wheu $x=4$

$$
y=\frac{y}{2} \frac{1}{8} \quad(\text { foron } 3)
$$

MODERATION-I
b. Evaluate $\int_{0}^{\pi / 6} \cos ^{4} 3 \theta \sin ^{3} 6 \theta d \theta$
(8)

Answer:

$$
\begin{aligned}
& \text { Q. 9(b). } \int_{0}^{\pi / 6} \cos ^{4} 3 \theta \sin ^{3} 6 \theta d \theta \\
& =\int_{0}^{\pi / 6} \cos ^{4} 3 \theta(2 \sin 3 \theta \cos 3 \theta)^{3} d \theta \\
& =8 \int_{0}^{\pi / 6} \sin ^{3} 3 \theta \cos ^{7} 3 \theta d \theta \\
& \text { Put } \begin{aligned}
& 3 \theta=x \\
& 3 d \theta=d x \Rightarrow d \theta=\frac{d x}{3} \\
& \theta=0, x=0, \text { for } \theta=\frac{\pi}{6}
\end{aligned}, x=\frac{\pi}{2} \\
& =\frac{8}{3} \int^{\pi / 2} \sin ^{3} x \cos ^{7} x d x \\
& \text { \& } \Gamma\left(\frac{3+1}{2}\right) \Gamma\left(\frac{7+1}{2}\right) \left\lvert\, \frac{8}{3} \cdot \frac{2 \times 6 \cdot 4 \cdot 2}{10 \cdot 8 \cdot 6 \cdot 4 \cdot 2}=\frac{1}{15}\right. \\
& =3 \frac{2}{2 \Gamma\left(\frac{3+7}{2}+2\right)} \\
& =\frac{8}{3} \cdot \frac{1 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \\
& =\frac{1}{15}
\end{aligned}
$$

I. Engineering mathematics -Dr. B.S.Grewal, 12th edition 2007, Khanna publishers, Delhi
II. Engineering Mathematics - H.K.Dass, S. Chand and Company Ltd, $13^{\text {th }}$ Revised Edition 2007, New Delhi
III. A Text book of engineering Mathematics - N.P. Bali and Manish Goyal , $7^{\text {th }}$ Edition 2007, Laxmi Publication (P) Ltd

[^0]: \therefore

 $$
 \begin{aligned}
 x-x^{2}=\frac{-\pi^{2}}{3} & +4\left(\frac{\cos x}{1^{2}}-\frac{\cos 2 x}{2^{2}}+\frac{\cos 3 x}{3^{2}} \cdots\right) \\
 & +2\left(\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}-\frac{\sin 4 x}{4}+\cdots\right)
 \end{aligned}
 $$

 b. The differential equation for a circuit in which self-inductance neutralizes each other is $L \frac{d^{2} i}{d t^{2}}+\frac{i}{C}=0$. Find the current \boldsymbol{i} as a function of \boldsymbol{t} given that \mathbf{I} is the maximum current, and $i=0$ when $t=0$.

