$$
\begin{equation*}
\text { Q. } 2 \text { a. If } x \sqrt{1+y}+y \sqrt{1+x}=0 \text {, then prove that } \frac{d y}{d x}=-\frac{1}{(1+x)^{2}} \tag{8}
\end{equation*}
$$

Answer:

$$
Q \cdot 2 \cdot(a)
$$

$$
x \sqrt{1+y}+y \sqrt{1+x}=0
$$

$$
x \sqrt{1+y}=-y \sqrt{1+x}
$$

Spraming both sides, we get

$$
x^{2}(1+y)=y^{2}(1+x)
$$

$$
x^{2}+x^{2} y=y^{2}+x y^{2}
$$

$$
x^{2}-y^{2}+x^{2} y-x y^{2}=0
$$

$$
(x-y)(x+y)+x y(x-y)=0
$$

$$
(x-y)[x+y+x y]=0
$$

$$
x-y \neq 0, \therefore x+y+x y=0
$$

$$
\begin{aligned}
& y(1+x)=-x \\
& y=\frac{-x}{1+x}
\end{aligned}
$$

onffeentiating both oses, w.r.t. " x "

$$
\begin{aligned}
\frac{d y}{d x} & =-\left[\frac{(1+x) \frac{d}{d x} x-x \cdot \frac{d}{d x}(1+x)}{\left(1+x^{2}\right)}\right] \\
& =-\left[\frac{(1+x)-1-x(1)}{(1+x)^{2}}\right] \\
& \left.=-\left[\frac{1+x-x)}{(1+x)^{2}}\right]=\frac{-1}{(1+x)^{2}}\right](2)-8 .
\end{aligned}
$$

b. Find the point on the curve $y=7 x-3 x^{2}$, where the inclination of the tangent with x-axis is of 45°. Also find the equation of the normal to the given curve at that point.
(8)

Answer:
b.

Let $P\left(x_{1}, y_{1}\right)$ be a point on the curve $y=7 x-3 x^{2}$ where the tangent \dot{n} inclined at an angle of 45° wt th the x-axis, then slope of the tangent at $P=\tan 45^{\circ}$

$$
\begin{aligned}
& P=\tan 45^{\circ} \\
& \text { i }\left(\frac{d y}{d x}\right)_{P}=\tan 45^{\circ}\left(1 \Rightarrow\left(\frac{d y}{d x}\right)_{P}=1(1)-(1)\right.
\end{aligned}
$$

Afferentiating $y=7 x-3 x^{2}$, wet. ' x ', we get

$$
\begin{align*}
& \frac{d y}{d x}=7-6 x \tag{1}\\
\therefore \quad & \left(\frac{d y}{d x}\right)_{p}=7-6 x_{1}
\end{align*}
$$

from (i) and (ii), we get

$$
\begin{aligned}
& 7-6 x_{1}=1 \Longrightarrow x_{1}=1 \text { (1) } \\
& \text { fee } P\left(x_{1}, y_{1}\right) \text { lies on the unve } y= \\
& \therefore y_{1}=7 x_{1}-3 x_{1}^{2} \\
& \Rightarrow y_{1}=7-3=4\left(\text { Putting } x_{1}=1\right]
\end{aligned}
$$

Hence, the required point on the curve is $(1,4)$ Ans
slope of normed $=-1$ (1) [say $m]$
\therefore Equation of normal is

$$
\begin{align*}
& y-y_{1}=m\left(x-x_{1}\right) \tag{1}\\
\Rightarrow & y-4=-1(x-1) \\
\Rightarrow & y-4=-x+1 \\
\Rightarrow & x+y=5 \tag{8}
\end{align*}
$$

Q. 3 a. Evaluate $\int x \cos ^{3} x d x$

Answer:
Q. 3. a.

$$
\text { a. } \begin{align*}
& \int x \cos ^{3} x d x \\
&= \int x\left(\frac{1}{4} \cos 3 x+\frac{3}{4} \cos x\right) d x \\
&= \frac{1}{4} \int x \cos 3 x d x+\frac{3}{4} \int x \cos x d x \\
&= \frac{1}{4}\left[x \int \cos 3 x d x-\int\left(\frac{d}{d x} x \int \cos 3 x\right) d x\right] \\
&+\frac{3}{4}\left[x \int \cos x d x-\int\left(\frac{d}{d x} x \int \cos x d x\right) d x\right]+ \\
&= \frac{1}{4}\left[\frac{x \sin 3 x}{3}-\int \frac{\sin 3 x}{3} d x\right]+\frac{3}{4}\left[x \sin x-\int \sin x d x\right] \\
&= \frac{1}{4}\left[\frac{x \sin 3 x}{3}+\frac{1}{3}\left(\frac{\cos 3 x}{3}\right)\right]+\frac{3}{4}[x \sin x-(-\cos x)]+C \\
&= \frac{1}{4}\left[\frac{x \sin 3 x}{3}+\frac{\cos 3 x}{9}\right]+\frac{3}{4}[x \sin x+\cos x]+c \tag{8}
\end{align*}
$$

b. Evaluate $\int_{0}^{\pi / 2} x^{2} \cos ^{2} x d x$

Answer:
b.

$$
\int_{0}^{\pi / 2} x^{2} \cos ^{2} x d x
$$

$$
\text { 0. } \begin{aligned}
& \int_{0}^{\pi / 2} x^{2} \cos x d x \\
= & \int_{0}^{\pi / 2} x^{2} \cdot \frac{(1+\cos 2 x)}{2} d x(1) \\
= & \frac{1}{2} \int_{0}^{\pi / 2} x^{2} d x+\frac{1}{2} \int_{0}^{\pi / 2} x^{2} \cos 2 x d x(1)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{1}{2} \int_{0}^{\pi / 2} x^{2} d x+\frac{1}{2}\right]_{0}^{2}\left[\frac{x^{3}}{3}\right]_{0}^{\pi / 2}+\frac{1}{2}\left[\left[x^{2} \frac{\sin 2 x}{2}\right]_{0}^{\pi / 2}-\int_{0}^{\pi / 2} 2 x \frac{\sin 2 x}{d x}\right] \\
& =1+\frac{1}{2}\left[0-\int_{0}^{\pi / 2} x \sin 2 x d x\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{x}{3} \int_{0}^{1}+\frac{1}{2}\left(\frac{\pi^{3}}{8}-0\right)+\frac{1}{2}\left[0-\int_{0}^{\pi / 2} x \sin 2 x d x\right]\right. \\
& =\frac{1}{0}
\end{aligned}
$$

$$
\begin{aligned}
& =6 \frac{\pi 3}{48}-\frac{1}{2} \int_{0}^{\pi / 2} x \cdot \sin 2 x d x \\
& =\frac{\cos 2 x}{\pi} \pi / 2
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\pi}{48}-\frac{1}{2} \int_{0}^{\pi / 2} x \cdot \sin 2 x a x \\
& =\frac{\pi^{3}}{48}-\frac{1}{2}\left[\left[-x \frac{\cos 2 x}{2}\right]_{0}^{\pi / 2}-\int_{0}^{\pi / 2}\left(-\frac{\cos 2 x}{2}\right)^{\pi}\right]
\end{aligned}
$$

$$
=\frac{48}{48}-\frac{\pi^{3}}{48}-\frac{1}{2}\left[\left(-\frac{\pi}{4} \cos \pi-0\right)+\frac{1}{4}[\sin 2 x]_{0}^{\pi / 2}\right]
$$

$=\frac{\pi^{3}}{48}-\frac{1}{2}\left[\frac{\pi}{4}+0\right]=\frac{\pi^{3}}{48}-\frac{\pi}{8}$ Ans
Q. 4 a. Solve $\cos (x+y) d y=d x$

Answer:

$$
\begin{aligned}
& \frac{\text { Q.ea }}{} \cos ^{4}(x+y) d y=d x \\
& \text { or } \frac{d y}{d x}=\sec (x+y)
\end{aligned}
$$

On puthing $x+y=z$ (1)
So that, $1+\frac{d y}{d x}=\frac{d z}{d x}$ or $\frac{d y}{d x}=\frac{d z}{d x} \otimes 1$

$$
\begin{aligned}
& \text { or } \frac{d z}{d x}=1+\sec z \\
& \text { or } \frac{d z}{d x}=1+\sec z \\
& \text { or } \frac{d z}{1+\sec z}=d x \\
& \int \frac{\cos z}{\cos z+1} d z=\int \operatorname{din} x+c \\
& \text { or } \int\left[1-\frac{1}{\cos z+1}\right] d z=x+c \\
& \text { or } \int\left[1-\frac{1}{2 \cos ^{2} \frac{z}{2}-1+1}\right] d z=x+c \\
& \text { or } \int\left(1-\frac{1}{2} \sec ^{2} \frac{z}{2}\right) d z=x+c \text { (1) } \\
& \text { or } z-\tan \frac{z}{2}=x+c(2) \\
& \text { or } x+y-\tan \frac{x+y}{2}=x+c \\
& \text { or } y-\tan \frac{x+y}{2}=c(1) \text { Ans. }
\end{aligned}
$$

b. Solve $\frac{d y}{d x}+y \cdot \sec x=\tan x$

Answer:
Q.S.b. Some The given differential eqn. is,

$$
\begin{equation*}
\frac{d y}{d x}+y \sec x=\tan x \tag{1}
\end{equation*}
$$

This ni a linear differential eqn. of the form,

$$
\begin{aligned}
& \frac{d y}{d x}+p y=Q \text {, where } P=\sec x \text { and } Q=\tan x \\
\therefore & I \cdot F=e^{\int \operatorname{ldx}}\left(1=e^{\int \sec x d x}=e^{\log (\sec x+\tan x)}\right.
\end{aligned}
$$

Multiplying both sides of (i) by $I F=(\sec x+\tan x+\tan x)$,
we get, $(\sec x+\tan x) \frac{d y}{d x}+y \sec x(\sec x+\tan x)$
$-\tan (\sec x+\tan x)$
Integrating both sides, w.r.t. ' x ' we get

$$
\begin{align*}
& y(\sec x+\tan x)= \int \tan x(\sec x+\tan x) d x+c \\
& {\left[\begin{array}{rl}
\text { using } y(I \cdot F \cdot) & \left.=\int Q \cdot(I \cdot f) d x+C\right] \\
\Rightarrow y(\sec x+\tan x) & =\int\left(\tan x \cdot \sec x+\tan ^{2} x\right) d x+C \\
& =\int\left(\tan x \cdot \sec x+\sec ^{2} x-1\right) \tan x+c \\
& =\operatorname{sen} x+\tan x-x+c \text { Ans. }
\end{array}\right] }
\end{align*}
$$

Q. 5 a. Find the term independent of \mathbf{x} in the expansion of $\left(2 x^{2}-\frac{1}{x}\right)^{12}$

Answer:
Q. Baa. Som

$$
\left(2 x^{2}-\frac{1}{x}\right)^{12}
$$

Here $x=12, x \rightarrow 2 x^{2}, a \rightarrow-\frac{1}{x}$

$$
\begin{align*}
T_{r+1} & ={ }^{n} C_{r r} x^{n-r} a^{\gamma}(1)(\text { General Term) } \\
& ={ }^{12} C_{r}\left(2 x^{2}\right)^{12-r} \cdot\left(-\frac{1}{x}\right)^{\gamma} \\
& ={ }^{12} C_{r}(2)^{12-r} x^{24-2 r} \frac{(-1)^{\gamma}}{x^{\gamma}} \\
& ={ }^{12} C_{r}(2)^{12-r} x^{24-3 \gamma}(-1)^{\gamma} \tag{2}
\end{align*}
$$

To find the term independent of ' x ' put $24-3 r=0$ (1)

$$
\begin{aligned}
T_{8+1} & ={ }^{12} C_{8}(2)^{12-8} \cdot x^{24-24}(-1)^{8} \\
& =\frac{12!}{8!4!}(2)^{4} x^{0}(1) \\
& =\frac{12 \times 11 \times 10 \times 9 \times 8!}{8!\times 4 \times 3 \times 2 \times 1} \times 16=79200 \text { Ans. }
\end{aligned}
$$

b. The sum of first three terms of a G.P. is 16 and the sum of the next three term is 128. Find the sum of $1^{\text {st }} \mathbf{n}$ terms (S_{n}) of G.P.
(8)
Q.6. b. Som:

Let a be the first term and γ the common ratio of the G.P., them,

$$
a+a r+a r^{2}=16
$$

and $a r^{3}+a r^{4}+a r^{5}=128(t)$ (ii)
$\Rightarrow a\left(1+r+r^{2}\right)=16$ and $a r^{3}\left(1+r+r^{2}\right)=128$

$$
\Rightarrow \frac{a r^{3}\left(1+1+r^{2}\right)}{a\left(1+r+r^{2}\right)}=\frac{-128}{16} 8
$$

\Rightarrow
$r^{3}=$
Putting $r=2$ in (1), we get $a=\frac{16}{7}$

$$
\begin{align*}
& \therefore S_{n}=a\left(\frac{r^{n}-1}{r-1}\right) \\
& \Rightarrow S_{n}=\frac{16}{7}\left(\frac{2^{n}-1}{2-1}\right)=\frac{16}{7}\left(2^{n}-1\right) \text {. Ans. } \tag{8}
\end{align*}
$$

Q. 6 a. Prove that, $\cos 2 A \cdot \cos 2 B+\sin ^{2}(A-B)-\sin ^{2}(A+B)=\cos (2 A+2 B)$

Answer:
Q.6. an som:

$$
\begin{aligned}
\alpha+1 S & =\cos 2 A \cdot \cos 2 B+\sin ^{2}(A-B)-\sin ^{2}(A+B) \\
= & \cos 2 A \cdot \cos 2 B+\sin (A-B+A+B) \cdot \sin (A-B-A-B) \\
& {\left[\because \sin (A+B) \cdot \sin (A-B)=\sin ^{2} A-\sin ^{2} B\right] } \\
= & \cos 2 A \cdot \cos 2 B+\sin 2 A \cdot \sin (-2 B)(2)[\because \sin (-\theta)=-\sin \theta \\
= & \cos 2 A \cdot \cos 2 B-\sin 2 A \cdot \sin 2 B \\
= & \cos (2 A+\cos 2 B)
\end{aligned}
$$

$=$ Rtis. Hence Promef.
b. The sides of a triangle are $x^{2}+x+1,2 x+1$ and $x^{2}-1$. Find the greatest angle.
Answer:
Q.G.b. Som:

The given sides of a triangle $c=2 x+2$

$$
y_{c}=2 x+2
$$ are $x^{2}+x+1,2 x+1$ and $x^{2}-1$.

Sarnie, $A C=x^{2}+x+1$ is the

$$
b=x^{2}+x+1
$$

largest side, therefore, the angle opposite $A C$ in largest i.. angle B 's the largest angle (1.)

$$
\begin{aligned}
& \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}=\frac{\left(x^{2}-1\right)^{2}+(2 x+1)^{2}-\left(x^{2}+x+1\right)^{2}}{2\left(x^{2}-1\right)(2 x+1)} \\
& =\frac{x^{4}+2+2 x^{2}+4 x-x^{4}-x^{2}-1-2 x^{3}-2 x-2 x^{2}}{2\left(2 x^{3}+x^{2}-2 x-1\right)}=\frac{x^{4}+1-2 x^{2}+4 x^{2}+1+4 x-\left(x^{4}+x^{2}+1+2 x^{3}\right.}{2\left(2 x+2 x^{2}\right)} \\
& =\frac{-2 x^{3}-x^{2}+2 x+1(2)}{2\left(2 x^{3}+x^{2}-2 x-1\right)(2}=\frac{-\left(2 x^{3}+x^{2}-2 x-1\right)}{2\left(2 x^{3}+x^{2}-2 x-11\right.}=-1 / 2
\end{aligned}
$$

$$
=-\frac{1}{2}
$$

$$
\cos B=\frac{-1}{2}
$$

$$
\cos B=\cos \left(180^{\circ}-60^{\circ}\right)
$$

$$
B=120^{\circ}
$$

Ans
Q. 7 a. Find the equation of the circle which passes through the points $(3,-2),(-2,0)$ and having its centre on the line $2 x-y=3$.
(8)

Answer:
2.T.a. sem:

Let the en of the circle be.,

$$
x^{2}+y^{2}+28 x+2 f y+c=0 \text { (1) }
$$

As (1) passes through $(3,-2)$

$$
\begin{align*}
& \therefore 9+4+6 g-4 f+c=0 \\
& \text { or } 6 g-4 f+c=-13 \tag{ii}
\end{align*}
$$

Also (1) poses through $(-2,0)$,

$$
\therefore \quad 4+0-4 g-0+c=0
$$

$$
\begin{equation*}
\text { or } 4 g-c=40 \tag{iii}
\end{equation*}
$$

The centre $(-g,-f)$ of (T) lies $2 x-y=3$

$$
\begin{equation*}
\therefore \quad-2 g+f=3 \text { (1) } \tag{iv}
\end{equation*}
$$

Adding (ii) and (iii), we get-

$$
10 g-4 f=-9
$$

Solving (iv) and (V), we get

$$
g=3 / 2(1) f=6(1)
$$

Anting gini(ii), we get $c=2$ (1)
Enbstituling these values of g, f and c in (1) $w<c_{1} 1$ $x^{2}+y^{2}+3 x+12 y+2=0$ (Which is the requ- em. of the circle.
b. Find the vertex, focus, directrix, axis and latus-rectum of the parabola of $y^{2}=4 x+4 y$
Answer:
Q.9.b. Som:

The given en. is $y^{2}=4 x+4 y$
or $y^{2}-4 x=4 y$ or $y^{2}-4 y+4=4 x+4$

$$
\text { or }(y-2)^{2}=4(x+1)
$$

Shifting the origin to the point $(-1,2)$ without rotating the axes and denoting the new co-cordinates with respect to these axes by x and y, we have

$$
\left.\begin{array}{l}
x=x+(-1) \\
y=y+2
\end{array}\right]
$$

Using these relation eau. (T), reduce to.

$$
y^{2}=4 x
$$

This s the form of $y^{2}=4 a \cdot x$ on comparing, weer $4 a=4$ or $a=1$. The co-rrdinales of the vertex, writ. new axes are $(x=0, y=0)$
\therefore Coordinates of the vertex w.r.t. ald aves
$=$ are $(-1,2)(1)[$ Putting $x=0$ and $y=0$ in (ii) $]$
the coordinates of the foes w.r.t. newases are

$$
(x=0, y=0)
$$

\therefore co-ardinake of thu foens wort. old axes are $(0,2)$
Eqn. of the directrix of the parabola wort. nee ares in $x=-1$.
\therefore the ign. of the directrix of parabola w.ret. old axes is $x=-2$ I) Punting $x=-1$ in em (ii)]

Q,g.b som.
Eq. of the axes of the parstrbola w-r.t-nen axes is $y y=0$
\therefore spp of axes w.r.t. de axes in $\psi=2$ (1) [Putting $x=0$ in (ii)]
The length of Antis return $=4$ (1) Ans
Q. 8 a. If \mathbf{p} be the length of perpendicular from the origin to the line whose intercepts on the axes are a and \mathbf{b} respectively, then show that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
(8)

Answer:
Q.8.a. som:

Let $A B$ be the line which enos co-ordinale axes at A \& B such that $O A=a$, and $O B=b$

Let $O L \perp A B$ and $O L=\beta$
thew $L A O L=\alpha$ then $L L O B=90^{\circ}-\alpha$
in r. angled triangle $A L O$,

$$
\frac{O L}{O A}=\cos \alpha
$$

$$
\frac{p^{a}}{a}=\cos \alpha a \quad \rightarrow \text { (i) }
$$

In r angled triangle $B O L$, we have

$$
\begin{aligned}
& \frac{O L}{O B}=\cos \left(90^{\circ}-\alpha\right)=\sin \alpha \\
& \frac{p}{b}=\sin \alpha
\end{aligned}
$$

Squaring and adding (1) and (ii) $\frac{p^{2}}{a^{2}}+\frac{p^{2}}{b_{2}}=\cos ^{2} \alpha+\sin ^{2} \alpha$ (1) $\quad \underset{p^{2}}{20^{\circ}-\alpha} 0$

$$
\frac{p^{2}}{a^{2}}+\frac{p^{2}}{b^{2}}=1
$$

$$
\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{b^{2}}
$$

or $\frac{1}{b^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$ (1) Hence force
b. Find the equation of the straight lines through the point $(2,-1)$ and making an angle of 45° with the line $6 x+5 y-1=0$

Answer:

0.8.

 $8(b)$a. en som:

The eon. of $8:$. line through $(2,-1)$ and haring Slope m is $y+1=m(x-2)$ (1) (2)
(i) makes an angle 45° with lane $6 x+5 y-1=0$
slope of (ii) $n \quad-\frac{6}{5}$ (i)

$$
\tan 45^{\circ}= \pm \frac{m+\frac{6}{5}}{1-\frac{6 m}{5}}
$$

$$
\text { or } 1= \pm \frac{5 m+6}{5-6 m}
$$

Taking the true sign.
$5-6 m=+(5 m+6) \Rightarrow m=-\frac{1}{11}$ (1)
Taking we sign.

$$
5-6 m=-(5 m+6) \Rightarrow m=11
$$

Putting the values of m in (1) we got

$$
y+1=-\frac{1}{11}(x-2) \text { and } y+1=11(x-2)
$$

$$
\text { or } x+11 y+9=0 \text { (1) and } 11 x-y-23=0 \text { (1) SAns }
$$

arne the required eqn.s of the st. lines. (Ans
Q. $9 \quad$ a. If $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right]$, find A^{-1} and show that $A^{-1}=A^{2}$

Answer:
$9(a)$
Q.4.a. Soln:

$$
\begin{align*}
& A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -1 & 0 \\
1 & 0 & 0
\end{array}\right] \\
& \text { for } A^{-1}, \quad|A|=\left|\begin{array}{ccc}
1 & -1 & 1 \\
2 & -1 & 0 \\
1 & 0 & 0
\end{array}\right| \\
& |A|=1(0-0)+1(0-0)+1(0+1)=1 \neq 0 \tag{1}
\end{align*}
$$

$\therefore A^{-1}$ exirts,

$$
\begin{aligned}
& A_{11}=+(0-0)=0, A_{21}=-(0-0)=0, A_{31}=+(0+1)=1 \\
& A_{12}=-(0-0)=0, A_{22}=+(0-1)=-1, A_{32}=-(0-2)=2 \\
& A_{13}=+(0+1)=1, A_{23}=-(0+1)=-1, A_{33}=+(-1+2)=1
\end{aligned}
$$

$$
\operatorname{adj} A=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & -1 \\
1 & 2 & 1
\end{array}\right]^{t}=\left[\begin{array}{lcc}
0 & 0 & 1 \\
0 & -1 & 2 \\
1 & -1 & 1
\end{array}\right](1)
$$

$$
\not A^{-1}=\frac{\operatorname{adj}(A)}{|A|}=\frac{1}{1}\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 2 \\
1 & -1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 2 \\
1 & -1 & 1
\end{array}\right] \text { (1) (1) }
$$

$$
A^{2}=A \times A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -1 & 0 \\
1 & 0 & 0
\end{array}\right] \times\left[\begin{array}{crr}
1 & -1 & 1 \\
2 & -1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

$$
=\left[\begin{array}{llll}
1(1)-1(2)+1(1) & 1(-1)-1(-1)+1(0) & 2(1)-1(0)+1(0) \\
2(1)-1(2)+0(1) & 2(-1)-1(-1)+0(0) & 2(1)-1(0)+0(0) \\
1(1)+0(2)+0(1) & 1(-1)+0(-1)+0(0) & 1(1)+0(0)+0(0)
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
1-2+1 & -1+1+0 & 1-0+0 \\
2-2+0 & -2+1+0 & 2-0+0 \\
1+0+0 & -1+0+0 & 1+0+0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 2 \\
1 & -1 & 1
\end{array}\right] \text { (1) (ii) }
$$

From (1) and (11) $\rightarrow A^{2}=A^{-1}$ (1) $\begin{aligned} & \\ & \text { thenee forves. }\end{aligned}$
b. If $\left[\begin{array}{lll}a & a^{2} & a^{3}-1 \\ b & b^{2} & b^{3}-1 \\ c & c^{2} & c^{3}-1\end{array}\right]=0$. Prove that $\mathbf{a b c}=\mathbf{1}$.

Answer:

TEXT BOOK

I. Applied Mathematics for Polytechnics, H. K. Dass, 8 ${ }^{\text {th }}$ Edition, CBS Publishers \& Distributors
II. A Text book of Comprehensive Mathematics Class XI, Parmanand Gupta, Laxmi Publications (P) Ltd, New Delhi
III. Engineering Mathematics, H. K. Dass, S, Chand and Company Ltd, $13^{\text {th }}$ Edition, New Delhi

