Q.2 a. If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
, then prove that $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$ (8)
Answer:
Q.2. (A)
 $2(\sqrt{1+y}) + \sqrt{\sqrt{1+x}} = 0$
 $2(\sqrt{1+y}) = -\sqrt{(1+x)} D$
Squarning both 2 ides, role get
 $x^2(1+x) = \sqrt{2}(1+x) D$
 $x^2 + x^2 + = \sqrt{2} + x\sqrt{2}$
 $x^2 - \sqrt{2} + x^2 + -x\sqrt{2} = 0$
 $(x-x)(x+y) + x\sqrt{2} = 0$
 $(x-y)(x+y) - x\sqrt{2} =$

b. Find the point on the curve $y = 7x - 3x^2$, where the inclination of the tangent with x-axis is of 45° . Also find the equation of the normal to the given curve at that point. (8)

ENGINEERING MATHEMATICS - I DEC 2015

6. det p(x1, x1) be a point on the curve y= 7x-3x2 where the tangent is inclined at an angle of 45° with the x-amis, Then slope of the tangent $i \left(\frac{dy}{\partial k}\right) p = tan 45^{\circ} \left(\frac{dy}{\partial m}\right) p = 10^{\circ} 0$ at p= tan 45° Differentiating y= In-322, w.r.t. 'n', we get $\frac{dy}{dx} = 7 - 6\pi O$ $\frac{dy}{dx} = 7 - 6\pi O$ (i) from () and (ii) we get 7 - 6x1 = 1 => 21 = 1 () Since p(21, 4,) lies on the serve y = 71 - 372 -: - y1 = 7 x1 - 3x12-x+11+ - - + 4 => Y1=7-3=40 [Anthing 24=2] Hence, the required point on the curve is (1,4) Ang - Slope of normal = -1 [say m] ". Equation of normal is 1-31 = m(x-x,) (T) = -4 = -1(x-1)= y - 4 = -x + 1- J N+X =5 () **Q.3 a. Evaluate** $\int x \cos^3 x dx$ (8)

Answer:

2

ENGINEERING MATHEMATICS - I DEC 2015

Q. 3. a $= \int \chi \left(\frac{1}{4} \cos^3 \chi + \frac{3}{4} \cos \chi \right) d\chi$ $= \frac{1}{4} \int \mathcal{X} \cos 3\mathcal{X} d\mathcal{X} + \frac{3}{4} \int \mathcal{X} \cos \mathcal{X} d\mathcal{X} = \frac{1}{4} \int \mathcal{X} \cos 3\mathcal{X} d\mathcal{X} + \frac{3}{4} \int \mathcal{X} \cos \mathcal{X} d\mathcal{X} = \frac{1}{4} \left[\mathcal{X} \int \cos 3\mathcal{X} d\mathcal{X} - \int \left(\frac{1}{2} d\mathcal{X} \int \cos \mathcal{X} d\mathcal{X} \right) \right] + \frac{3}{4} \left[\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right) \right] + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin 3\mathcal{X}}{3} + \frac{1}{3} \left(\frac{\cos 3\mathcal{X}}{3} \right) \right] + \frac{3}{4} \left[\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right) \right] + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \sin \mathcal{R} - \left(-\cos \mathcal{X} \right)}{3} + \frac{1}{4} \left[\frac{\mathcal{R} \cos \mathcal{R} - \frac{1}{4} + \frac{1}{4} \left[\frac{\mathcal{R} \cos \mathcal{R} - \frac{1}{4} + \frac{1}{4} \right] \right]$ **b. Evaluate** $\int_{0}^{\pi/2} x^2 \cos^2 x dx$ (8) Answer: (12 22 cosn one 6. $= \int_{0}^{\pi/2} \chi^{2} \frac{(1+\cos 2\pi)}{2} dx O$ = $\frac{1}{2} \int_{0}^{\pi/2} \chi^{2} dx + \frac{1}{2} \int_{0}^{\pi/2} \chi^{2} \cos 2\pi dx O$ = $\frac{1}{2} \int_{0}^{\pi/2} \chi^{2} dx + \frac{1}{2} \int_{0}^{\pi/2} \chi^{2} \cos 2\pi dx O$ $= \frac{1}{2} \left[\frac{x^{3}}{3} \right]_{0}^{0} + \frac{1}{2} \left[\left[x^{2} \frac{\sin 2x}{2} \right]_{0}^{0} - \int_{0}^{\pi} \frac{\sin 2x}{2\pi} \right]$ $= \frac{1}{6} \left(\frac{\pi^3}{20} - 0 \right) + \frac{1}{2} \left[0 - \int_0^{\pi/2} \pi \frac{\sin 2\pi}{2} d\pi \right]$

$$= \frac{\pi^{3}}{48} - \frac{1}{2} \int_{0}^{\pi/2} \pi \cdot \frac{\zeta_{1} \sqrt{2} \pi}{2} dx = \frac{\pi^{2}}{2} \int_{0}^{\pi/2} \left(-\frac{\zeta_{0} \sqrt{2} \pi}{2} \right) dx = \frac{\pi^{2}}{48} - \frac{1}{2} \left[\left[-x \frac{\cos(2\pi)}{2} \right]_{0}^{\pi/2} - \int_{0}^{\pi/2} \left(-\frac{\cos(2\pi)}{2} \right) \right] \\= \frac{\pi^{3}}{48} - \frac{1}{2} \left[\left(-\frac{\pi}{4} \cos(\pi - 0) + \frac{1}{4} \left[\sin(2\pi) \right]_{0}^{\pi/2} \right] \\= \frac{\pi^{3}}{48} - \frac{1}{2} \left[\left(-\frac{\pi}{4} + 0 \right] = \frac{\pi^{3}}{48} - \frac{\pi}{8} \left(-\frac{\pi}{8} \right) \frac{Ang}{48} \right]$$

Q.4 a. Solve cos(x + y)dy = dxAnswer:

(8)

© iete

ENGINEERING MATHEMATICS - I DEC 2015

$$\frac{\beta \cdot \frac{1}{2} \alpha \cdot \frac{1}{2} \cdot \frac{1}{2$$

b. Solve
$$\frac{dy}{dx} + y \cdot \sec x = \tan x$$

(8)

Q.J.b. Sohn: The given differential eqn. is, dy +y seex = town - O this is a linear differential eqn. of the form, dy + fly = 8, where f = seex and &= town one fly Steered log (seex ftance) i. I.F. = e D = e = e Multiplying both sides of () by E.G. = (Secur stamm), We get, (Secur tand) on + y Secur (Secur tann) - tan (Secur tand) Integrating both Soldes, wirth in weget 4 (Secretion n) = Stann (Secretion) and the [using y (I.F.)= SQ.(I.F.) and the J (Secretion n) = S(tann. Secretion n) and the = S(tan x. Secret Secretion n) and the = Bar ftan x - x + C Ang. 5

Q.5 a. Find the term independent of x in the expansion of $\left(2x^2 - \frac{1}{x}\right)^2$ (8) Answer:

1300 (1) Som (2x2- 2)12 $\begin{array}{l} (22-3) \\ \text{Here} & n=12, & n \rightarrow 23^{2}, & a \rightarrow -\frac{1}{2} \end{array} \\ T_{7+1} &= {}^{n} C_{7} & 2^{n-7} & a^{7} \end{array} (General Term) \\ &= {}^{12} C_{7} & (2x^{2})^{12-7} & (-\frac{1}{2})^{7} \\ &= {}^{12} C_{7} & (2x^{2})^{12-7} & 24-27 & (-1)^{7} \\ &= {}^{12} C_{7} & (2)^{12-7} & 24-27 & (-1)^{7} \end{array} \\ &= {}^{12} C_{7} & (2)^{12-7} & 24-37 & (-1)^{7} \end{array}$ To find the term independent of x part 24-37=00 x=80 $= \frac{12}{(2)} (2)^{12-8} x^{24-24} (-1)^8$ $= \frac{12!}{8!4!} (2)^{4} x^{0} (1)$ = $\frac{12!}{8!4!} (2)^{4} x^{0} (1)$ = $\frac{12 \times 11 \times 10^{-5} \times 9 \times 8!}{8! \times 9 \times 8!} \times 16 = 79200$

b. The sum of first three terms of a G.P. is 16 and the sum of the next three term is 128. Find the sum of 1^{st} n terms (S_n) of G.P. (8)

A newor. R. J. b. Som: Som: Som Bangalan B Let a be the first term and of the common ratio of the G.P., then, $a + ar + ar^2 = 16 \oplus \oplus$ and $ar^3 + ar^4 + ar^5 = 128 \oplus \oplus \oplus$ $\Rightarrow q(1 + r + r^2) = 16$ and $ar^3(1 + r + r^2) = 128$

$$\Rightarrow \frac{q_{1}^{3}(1+q_{1}+r^{2})}{r(1+r_{1}+r^{2})} = \frac{128}{16} 8$$

$$\Rightarrow r^{3} = 8(3+r^{2}) = \frac{128}{16} 8$$

$$\Rightarrow r^{3} = 8(3+r^{2}) = \frac{16}{7} (2)$$

$$futting r = 2 in (1), we get $q = \frac{16}{7} (1)$

$$\Rightarrow Sn = q(\frac{r^{n}-1}{r_{-1}}) = \frac{16}{7} (2^{n}-1) = \frac{16}{7}$$$$

Q.6 a. Prove that, $\cos 2A \cdot \cos 2B + \sin^2(A-B) - \sin^2(A+B) = \cos(2A+2B)$ (8) Answer:

 $\frac{B.6.a.}{d415} = \frac{C052A}{C052B} + \frac{C052B}{C052A} + \frac{C052B}{C052B} + \frac{C052B}{C052A} + \frac{C052B}{C052B} + \frac{C052B}{C052B} + \frac{C052B}{C$ = (032A. (032B + Sin2A. Sin (-2B)) [: Sin (-0) = - Sin (-= Cos (2A + COS2B) (4) = RHS. Hence formet.

b. The sides of a triangle are $x^2 + x + 1, 2x + 1$ and $x^2 - 1$. Find the greatest angle. (8)

Q.g. b. Som. Athe given Rides of a totangle and x2+x+1, 2x+1 and x2-1. are $x^2 + x + i$, 2x + i and x - i. Since, $AC = x^2 + x + i$ is the $B = q = x^2 - i$ largest side, therefore, the confle opposite AC is largest ie. angle B is the largest angle D $EOS B = \frac{a^2 + c^2 - b^2}{2AC} = \frac{(x^2 - i)^2 + (2x + i)^2 - (x^2 + x + i)^2}{2(x^2 - i)(2x + i)}$ $= \frac{2(x^{2}-1)(2x+1)}{2(x^{4}+1)(x^{4$ Cos B = cos (180° - 60°) B= 120° (A.

a. Find the equation of the circle which passes through the points (3,-2),(-2,0)0.7 and having its centre on the line 2x - y = 3. (8)

det the equi of the circle be, 22+42+ 2ga+ 2gy+ C=0 C As (1) passes through (3,-2) 1. 9+4+69-4- + + (=0 or 69-47+C=-1300 Also @ poreces through (-2,0), : 4+10-49-0+C=0 or 49-C=40-The centre (-g,-f) of (D lies 21-: -- 29 + f = 3(1 Adding (and (, we get f @ - and @, we get forthing quite , we get C=20 Substituting these values of g, f and c in Dwist x²+y² + 8x + 12y + 2 = 0 Dotnich is the sequer equi gthe circle. Key

b. Find the vertex, focus, directrix, axis and latus-rectum of the parabola of $y^2 = 4x + 4y$ (8)

Q.g.b. Som: The given eqn. is y= 4x+44 or $y^2 - 4x = 4y$ or $y^2 - 4y + 4 = 4x + 4$ or $(y-2)^2 = 4(x+1)2$ Shifting the origin to the point (-1,2) withoutvotating the axes and denoting the new co-ordinates with despect to these ares by x and y, we have x = X + (-+)]. (1) using these relation eqn. (D, reduce to. $Y^2 = 4X$ (D) $y^2 = 4a \cdot X$ on comp This is the form of Y = 4a. X on comparing weget 4a=4 or a=1. The co-ordinales of the verter writ. new areas are (x =0, y=0) ". Co-ordinates of the vertex wirth old ages are (=1,2) [Pritting X=0 and Y=0 in [] " The corordinates of the foens wirth menapes are (X=0, Y=0) m . co-ordinate of the focus wrat. ald ares are (0,2) Eqn. of the directory of the provobola wint, new appres in x=-1. i The Eqn. of the direction of parabola work. ald area is 2 = -201 Protting x=-1 in eqn(1)7 Som. Equi of the axres of the parabola with men. : Expri of asides wirt. de arries is \$=2 () [frikting x =0 in ()] The length of Lather rectum = 4 . (1) Ang

Q.8 a. If p be the length of perpendicular from the origin to the line whose intercepts on the axes are a and b respectively, then show that $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$ (8)

Answer:

$$\frac{g(2)}{2} \cdot \frac{g}{4} \cdot \frac{g}{2} \cdot \frac{g}{4} \cdot \frac{$$

b. Find the equation of the straight lines through the point (2,-1) and making an angle of 45° with the line 6x+5y-1=0 (8) Answer:

8(b)
9.8 10 Solm:
The eqn. of \$\$1. line through (2,-1) and having
\$lope mix \$\$11 = m(9-2) - (3)
(2) makes an angle \$\$50 with line \$5\$, +5\$,-1=0
\$lope of (3) \$\$n -6 (3)
\$lan45° =
$$\pm \frac{m+6}{1-6m}$$

or $1 = \pm \frac{5m+6}{5-6m}$
Taking the two \$logn.
 $5-6m = + (5m+6) \implies m = -\frac{1}{11}$ (1)
Taking the values of m in (1) we get
 $3 \pm 1 = -\frac{1}{11}$ (3 ± 2) and $3 \pm 1 = 11(3-2)$
or $3 \pm 1 \pm 3 \pm 3 = 0$ () and $113 - 3 = 23 = 0$ (1) And
are the required equilibrian of $4^{-1} = A^{2}$ (8)

9(9)	
Q.q.a. Som:	
$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	
For A^{-1} , $A_{J} = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	
$ A = 1(0-0) + 1(0-0) + 1(0+1) = 1 \neq 0$	0
$A_{11} = \pm (0 - 0) = 0$ AD = (0 - 0) = 0 AD = (0 - 0) = 0	
$A_{12} = -(0-0) = 0, A_{22} = +(0-1) = -1, A_{32} = -(0-2) = 3$	O
$A_{13} = + (0+1) = 1, A_{23} = -(0+1) = -1, A_{33} = + (-1+2) = $	1
$A^{-1} = \frac{adj(k)}{ A } = \frac{1}{1} \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \end{bmatrix}$	Ð
$A^{2} = A \times A = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 1 & (1) - 1 & (2) + 1 & (1) & 1 & (-1) - 1 & (-1) + 1 & (0) & 2 & (1) - 1 & (0) + 1 & (0) \\ 2 & (1) - 1 & (2) + 0 & (1) & 2 & (-1) - 1 & (-1) + 0 & (0) & 2 & (1) - 1 & (0) + 0 & (0) \\ 1 & (1) + 0 & (2) + 0 & (1) & 1 & (-1) + 0 & (-1) + 0 & (0) & 1 & (1) + 0 & (0) + 0 & (0) \end{bmatrix}$	
$= \begin{bmatrix} 1-2+1 & -1+1+0 & 1-0+0 \\ 2-2+0 & -2+1+0 & 2-0+0 \\ 1+0+0 & -1+0+0 & 1+0+0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{bmatrix} $ (i)	
From () and (1) -> A ² = A ⁻¹ () thence toored.	
b. If $\begin{bmatrix} a & a^2 & a^3 - 1 \\ b & b^2 & b^3 - 1 \\ c & c^2 & c^3 - 1 \end{bmatrix} = 0$. Prove that abc = 1. (8)	

TEXT BOOK

I. Applied Mathematics for Polytechnics, H. K. Dass, 8th Edition, CBS Publishers & Distributors

II. A Text book of Comprehensive Mathematics Class XI, Parmanand Gupta, Laxmi Publications (P) Ltd, New Delhi

III. Engineering Mathematics, H. K. Dass, S, Chand and Company Ltd, 13th Edition, New Delhi