Q. 2 a. Expand $\log _{e} x$ in powers of $(x-1)$ and hence evaluate $\log _{e} 1.1$ correct to 4 places of decimal.

Answer:
Q
(a)

Let $f(x)=\log _{e} x \Rightarrow f(1)=0$
$f^{\prime}(x)=\frac{1}{x}$
$f^{\prime}(1)=1$
$f^{\prime \prime}(x)=-\frac{1}{x^{2}}$
$f^{\prime \prime}(1)=-1$
$\begin{array}{ll}f^{\prime \prime \prime}(x)=\frac{2}{x^{3}} & f^{\prime \prime \prime}(1)=2 \\ f^{\prime \prime}(x)=-6 / x^{\prime}(x) & f^{\prime \prime}(1)=-6\end{array}$
By Taylor's series
$f(x+h)=f(x)+\frac{h}{11} f^{\top}(x)+\frac{h^{2}}{21} f^{\prime \prime}(x)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(x)+\cdots$
or Replacing x by a \& by $x-a$
$f(x)=f(a)+\frac{(x-a)}{1!} f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\frac{(x-a)^{3}}{3!} f^{\prime \prime \prime}(a)+\cdots$
Taking $a=1$
$f(x)=f(1)+\frac{(x-1)}{11} f^{\prime}(1)+\frac{(x-x)^{x}}{(x-1)^{2}} \frac{f^{\prime \prime}(1)}{2!}+\frac{(x-1)^{3}}{3!} f^{\prime \prime \prime}(1)+\cdots$
Substitution the values of $f, f^{\prime}, f^{\prime \prime} \& f^{\prime \prime \prime}$ at $x=1$
$\log x=f(x)=(x-1)-\frac{(x-1)^{2}}{2!}+\frac{2}{3!}(x-1)^{3}-\frac{6}{4!}(x-1)^{4}+\cdots$
$\log _{e} x=f(x)=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\cdots$
Putting $x=1.1$, so that $x-1=1$, we have

$$
\begin{align*}
\log 1.1 & =.1-\frac{1}{2}(.1)^{2}+\frac{1}{3}(.1)^{3}-\frac{1}{4}(.1)^{4}+\cdots \\
& =.1-.005+.0003-.00002+\cdots \\
& =.095275 .0953 \tag{8}
\end{align*}
$$

b. Evaluate $\underset{x \rightarrow 0}{\operatorname{lt}}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$

Answer:

$$
\begin{array}{rlr}
\text { 2. (b) } & \lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right) & (\infty-\infty \text { form }) \\
= & \operatorname{lt}_{x \rightarrow 0}\left(\frac{x-\sin x}{x \sin x}\right) & \left(\frac{0}{0} \text { forme }\right) \\
= & \lim _{x \rightarrow 0} \frac{1-\cos x}{x \cos x+\sin x} & \left(\frac{0}{0} \text { form }\right) \\
= & \lim _{x \rightarrow 0} \frac{\sin x}{x(-\sin x)+\cos x+\cos x .} \\
= & \frac{0}{0+1+1}=0 .
\end{array}
$$

Q. 3 a. Evaluate by using reduction formula

Answer:
Q. 3
(a)

$$
\begin{aligned}
& \int_{0}^{\pi / 6} \cos ^{4} 3 \phi \sin ^{2} 6 \phi d \phi \\
= & \int_{0}^{\pi / 6} \cos ^{4} 3 \phi(2 \sin 3 \phi \cos 3 \phi)^{2} d \phi \\
= & 4 \int_{0}^{\pi / 6} \cos ^{6} 3 \phi \sin ^{2} 3 \phi d \phi
\end{aligned}
$$

$$
\text { Put } \quad 3 \phi=\theta
$$

$$
\begin{aligned}
& 3 \varphi=\theta \quad \text { or } \quad d \phi=\frac{d \theta}{3} \\
& 3 d \varphi=d \theta \quad
\end{aligned}
$$

when $\phi=0, \theta=0$, e when $\phi=\frac{\pi}{6}, \theta=\frac{\pi}{2}$
7

$$
=\frac{4}{3} \int_{0}^{\pi / 2} \cos ^{6} \theta \sin ^{2} \theta d \theta
$$

(Here m \& n are both even)

$$
\begin{aligned}
& =\frac{4}{3} \frac{(6-1)(6-3)(6-5) \cdot(2-1)}{8 \cdot(8-2)(8-4)(8-6)} \cdot \frac{\pi}{2} \\
& =\frac{4}{\beta} \frac{5 \cdot \beta \cdot 1 \cdot 1}{8 \cdot 6 \cdot 4 \cdot 2} \cdot \frac{\pi}{2} \\
& =\frac{5 \pi}{192}
\end{aligned}
$$

b. Find the area common to the parabola $y^{2}=x$ and the circle $x^{2}+y^{2}=2$.

Answer:
Q. 3 (b)

$$
\begin{align*}
y^{2} & =x \tag{1}\\
x^{2}+y^{2} & =2
\end{align*}
$$

Solving (1) 8(2)

$$
\begin{gathered}
x^{2}+x=2 \\
\text { or } x^{2}+x-2=0 \\
(x-1)(x+2)=0 \\
x=1,-2 \\
\therefore y= \pm 1, \text { or } \pm i \sqrt{2}
\end{gathered}
$$

\therefore Poines of vitersection of (1) \&(2) are $A(1,1) \& C(1,-1)$ B has coosdinates $(\sqrt{2}, 0)$

$$
\begin{aligned}
\text { Regd. Area } & =\text { Ar } O A B C O=2 \text { ar.OABDO } \\
& =2[a, O A D O+a r A B D A] \\
& =2\left[\int_{0}^{1} \sqrt{x} d x+\int_{1}^{\sqrt{2}} \sqrt{2-x^{2}} d x\right]
\end{aligned}
$$

$$
\begin{aligned}
& =2\left[\left(\frac{2}{3} x^{3 / 2}\right)_{0}^{1}+\left(\frac{x}{2} \sqrt{2-x^{2}}+\frac{2}{2} \sin ^{-1} \frac{x}{\sqrt{2}}\right)_{1}^{\sqrt{2}}\right] \\
& =2\left[\frac{2}{3}+\sin ^{1} 1-\frac{1}{2}-\sin ^{-1} \frac{1}{\sqrt{2}}\right] \\
& =2\left[\frac{2}{3}+\frac{\pi}{2}-\frac{1}{2}-\frac{\pi}{4}\right] \\
& =\frac{4}{3}+\pi-\frac{\pi}{2}-1 \\
& =\frac{4}{3} \pi \frac{1}{3}+\frac{\pi}{2}
\end{aligned}
$$

Q. $4 \quad$ a. If \boldsymbol{n} is positive integer, prove that

$$
\begin{equation*}
(\sqrt{3}+i)^{n}+(\sqrt{3}-i)^{n}=2^{n+1} \cos \frac{n \pi}{6}, \quad(i=\sqrt{-1}) \tag{8}
\end{equation*}
$$

Answer:
Q. 4 (a) Let $\sqrt{3}+i=r(\cos \alpha+i \sin \alpha)$

$$
\begin{aligned}
r & =\sqrt{3+1}=2, \quad \alpha=\tan ^{n} \frac{1}{\sqrt{3}}=\frac{\pi}{6} \\
\sqrt{3}+i & =2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right) \\
(\sqrt{3}+i)^{n}+(\sqrt{3}-1)^{n} & =2^{n}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{n}+2^{n}\left(\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)^{n} \\
& =2^{n}\left[\left(\cos \frac{n \pi}{6}+i \sin \frac{n \pi}{6}\right)+\left(\cos \frac{n \pi}{6}-i \sin \frac{n \pi}{6}\right)\right] \\
& =2^{n} \cdot 2 \cos \frac{n \pi}{6} \\
& =2^{n+1} \cos \frac{n \pi}{6}
\end{aligned}
$$

b. Two impedance $Z_{1}=8+j 6 \mathrm{ohms} \& Z_{2}=6-j 8 \mathrm{ohms}$ are connected in parallel across $\mathbf{2 0 0}$ volts, calculate the magnitude of current in each branch and the total current in the circuit.
Answer:
(a). 4

$$
\text { magnitude of } i_{1}=4 \sqrt{16+9}=20 \text { amperes }
$$

$$
i_{2}=\frac{V}{z_{2}}=\frac{200}{6-8 j}
$$

$$
=\frac{200(6+8 j)}{(6-8 j)(6+8 j)}
$$

$$
=4(3+4 j)
$$

$$
\text { Magnilide of } i_{2}=4 \sqrt{9+16}=20 \text { auperes. }
$$

Total current

$$
i_{1}+i_{2}=4(4-3 j)+4(3+4 j)
$$

$$
=28+4 j
$$

Magnitude of total current $=\sqrt{28^{2}+4^{2}}=\sqrt{800}$

$$
=20 \sqrt{2} \text { amperes }
$$

Q. 5 a. Forces of magnitude 5 and 3 units acting in the directions $6 i+2 j+3 k$ and $3 i-2 j+6 k$ respectively act on a particle which is displaced from the point $(2,2,-1)$ to $(4,3,1)$. Find the work done by the forces.

$$
\begin{aligned}
& \text { (b) } \quad z_{1}=8+6 j \\
& \& \quad z_{2}=6-8 j \\
& i_{1}=\frac{V}{z_{1}}=\frac{200}{8+6 j} \\
& =\frac{200(8-6 j)}{(8+6 j)(8-6 j)} \\
& =4(4-3 j)
\end{aligned}
$$

Q.S. (a)

$$
\begin{aligned}
& \vec{F}_{1}=\frac{5(6 i+2 j+3 k)}{\sqrt{36+4+9}}=\frac{5}{7}(6 i+2 j+3 k) \\
& \vec{F}_{2}=\frac{3(3 i-2 j+6 k)}{\sqrt{9+4+36}}=\frac{3}{7}(3 i-2 j+6 k)
\end{aligned}
$$

$$
\text { Total force } \vec{F}=\vec{F}_{1}+\vec{F}_{2}
$$

$$
=\frac{5}{7}(6 i+2 j+3 k)+\frac{3}{7}(3 i-2 j+6 k)
$$

$$
=\frac{1}{7}(39 i+4 j+33 k)
$$

Displacement

$$
\begin{aligned}
\vec{d} & =(4 i+3 j+k)-(2 i+2 j-k) \\
& =2 i+j+2 k
\end{aligned}
$$

$$
\begin{aligned}
\text { Work done } & =\vec{F} \cdot \vec{d} \\
& =\frac{1}{7}(39 i+4 j+33 k) \cdot(2 i+j+2 k) \\
& =\frac{1}{7}(78+4+66) \\
& =\frac{148}{7} \text { units }
\end{aligned}
$$

b. Find the volume of the parallelepiped, if $\vec{a}=-3 i+7 j-5 k$, $\vec{b}=-3 i+7 j-3 k$ and $\vec{c}=7 i-5 j-3 k$ are the three coterminous edges of the parallelepiped.
Answer:
Q. 5. (b)

$$
\begin{align*}
\text { Volure } & =\vec{a} \cdot(\vec{b} \times \vec{c})=\left|\begin{array}{rrr}
-3 & 7 & -5 \\
-3 & 7 & -3 \\
7 & -5 & -3
\end{array}\right| \\
& =-3(-21-15)-7(9+21) \overline{+5}(15-49) \\
& =108-210+170 \\
& =68 \tag{8}
\end{align*}
$$

Q. 6 a. Solve $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=\sin 2 x$

Answer:
Q. 6 (a)

$$
\begin{gathered}
\quad \frac{d^{2} y}{d x^{2}}+\frac{3 d y}{d x}+2 y=\sin 2 x \\
\text { A.E } \quad \operatorname{m}^{2}+3 m+2=0 \\
(m+1)(m+2)=0 \\
m=-1,-2 . \\
\text { C.F } \quad C_{1} e^{-x}+c_{2}
\end{gathered}
$$

$$
\begin{aligned}
P \cdot I & =\frac{1}{D^{2}+3 D+2} \sin 2 x \\
& =\frac{1}{-4+3 D+2} \sin 2 x \\
& =\frac{1}{3 D-2} \sin 2 x \\
& =\frac{(3 D+2)}{9 D^{2}-4} \sin 2 x \\
& =-\frac{1}{40}(3 D+2) \sin 2 x \\
& =-\frac{1}{40}[6 \cos 2 x+2 \sin 2 x] \\
& =-\frac{1}{20}[3 \cos 2 x+\sin 2 x]
\end{aligned}
$$

Complete solution is

$$
y=c_{1} e^{-x}+c_{2} e^{-2 x}-\frac{1}{20}(3 \cos 2 x+\sin 2 x)
$$

b. A Condenser of capacity C is discharged through the inductance L and a resistance R in series and the charge \boldsymbol{q} at any time \boldsymbol{t} satisfies the equation

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=0
$$

Given that $L=0.25$ henry, $R=\mathbf{2 5 0}$ ohms, $C=\mathbf{2 \times 1 0 ^ { - 6 }}$ farad and that when $t=$ $\mathbf{0}$, the charge $\mathbf{q}=\mathbf{0 . 0 0 2}$ coulombs, and the current $\frac{d q}{d t}=0$, obtain the value of \boldsymbol{q} in terms of t.
Answer:

$$
\text { Q: 6.(b) } \quad L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{c}=0
$$

Substituting the given values

$$
\frac{d^{2} q}{d t^{2}}+\frac{250}{.25} \frac{d q}{d t}+\frac{1}{2 \times 10^{-6} \times .25} q=0
$$

or $\quad \frac{d^{2} q}{d t^{2}}+1000 \frac{d q}{d t}+2 \times 10^{6} q=0$

$$
\begin{aligned}
\text { A.E is } & m^{2}+1000 m+2 \times 10^{6}=0 \\
m= & \frac{-1000 \pm \sqrt{10^{6}-8 \times 10^{6}}}{2} \\
= & -500 \pm 500 i \sqrt{7}=-500 \pm 1323 i
\end{aligned}
$$

$$
\therefore \text { Solution is }
$$

$$
q=e^{-500 t}(A \cos 1323 t+B \sin \sin 1323 t)
$$

$$
\text { When } t=0, q=0.002 \text {. }
$$

$$
\therefore \quad A=.002
$$

$$
\begin{aligned}
\frac{d q}{d t}= & -500 e^{-500 t}(A \cos 1323 t+B \sin 1323 t) \\
& +e^{-500 t}(-1323 A \sin 1323 t+1323 B \cos 1323 t)
\end{aligned}
$$

$$
\text { When } t=0, \frac{d q}{d t}=0
$$

$$
0=-500 A+1323 B
$$

$$
\Rightarrow B=\frac{500 \times .002}{1323}=.0008
$$

$$
\therefore q=e^{-500 t}(.002 \cos 1323 t+.0008 \sin 1323 t)
$$

Q. 7 Test for convergence the series given below:

a. $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$

Answer:
(Q). 7 (a) Here $u_{n}=\frac{n!}{n^{n}}$

Applying Ratio Test

$$
\begin{aligned}
& \frac{u_{n+1}}{u_{n}}=\frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n}{n!} \\
&=\frac{(n+1) \cdot n!}{(n+1) \cdot(n+1)^{n}} \cdot \frac{n}{n!} \\
&=\frac{(n+1)^{n}}{\left(1+\frac{1}{n}\right)^{n}} \\
&=\frac{\left(1+\frac{1}{n}\right)^{n}}{\left(1+\frac{1}{n}\right.}=\frac{1}{e} \\
& \therefore \lim _{n+\infty}^{u_{n}}
\end{aligned}
$$

Hence the given series is convergent.
b. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+\sqrt{n+1}}$

Answer:
(b)

$$
\begin{aligned}
u_{n} & =\frac{1}{\sqrt{n}+\sqrt{n+1}} \\
& =\frac{\sqrt{n}+1-\sqrt{n}}{(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})} \\
& =\sqrt{n+1}-\sqrt{n} \\
& =\sqrt{n}\left[\left(1+\frac{1}{n}\right)^{\frac{1}{2}}-1\right]
\end{aligned}
$$

$$
=\sqrt{n}\left[\left(1+\frac{1}{2 n}-\frac{1}{8 n^{2}}+\cdots\right)-1\right]
$$

(Using binomial) expansion

Taking $v_{n}=\frac{1}{\sqrt{n}}$, we have

$$
\begin{aligned}
& \text { Taking } v_{n}=\frac{u_{n}}{\sqrt{n}}=\operatorname{li}_{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\operatorname{lum}_{n \rightarrow \infty}\left(\frac{1}{2}-\frac{1}{8 n}+\cdots\right)
\end{aligned}
$$

$=\frac{1}{2}$ Which is finite could nom-zero. $\therefore \sum u_{n} \& \sum v_{n}$ converge or diverge together.
But $\sum v_{n}=\sum \frac{1}{\sqrt{n}}$ i known 16 be divergent Hence $\sum u_{n}$ is atro divergent.
Q. $8 \quad$ Find the Laplace transform of $f(t)$ where
a. $f(t)=2 \sin 2 t \cos 4 t$

Answer:
Q. 8 (a)

$$
f(t)=2 \sin 2 t \cos 4 t
$$

$$
\begin{aligned}
& =\sin \left(\frac{2 t+4 t)}{}+\sin (2 t-2 t)\right. \\
& =\sin 6 t-\sin t
\end{aligned}
$$

$$
=\sin 6 t-\sin 2 t
$$

$$
\alpha(f(t))=\frac{6}{s^{2}+36}-\frac{2}{s^{2}+4}
$$

b. $f(t)=\frac{e^{a t}-\cos b t}{t}$

Answer:
Q. $8(b) \quad f(t)=\frac{e^{a t}-\cos b t}{t}$

$$
\begin{align*}
& \text { Now, } \mathcal{L}\left(e^{a t}-\cos b t\right)=\left(\frac{1}{s-a}-\frac{s}{s^{2}+b^{2}}\right) \\
& \therefore \frac{\mathcal{L}\left(\frac{e^{a t}-\cos b t}{t}\right)}{\therefore}=\int_{s}^{\infty}\left(\frac{1}{s-a)}-\frac{s}{s^{2}+b^{2}}\right) d s \\
& \\
& =\left[\log (s-a)-\frac{1}{2} \log \left(s^{2}+b^{2}\right)\right]_{s}^{\infty} \\
& \\
& =\frac{1}{2}\left[\log (s-a)^{2}-\log \left(s^{2}+b^{2}\right)\right]_{s}^{\infty} \\
& \\
& =\frac{1}{2}\left[\log \frac{(s-a)^{2}}{s^{2}+b^{2}}\right]_{s}^{\infty} \tag{8}\\
& \\
& =\frac{1}{2}\left[\log \frac{\left(1-\frac{a}{s}\right)^{2}}{\left(1+\frac{b^{2}}{s^{2}}\right)}\right]_{s}^{\infty} \\
&
\end{align*}
$$

Q. 9 a. Find the inverse Laplace transform of $\frac{s-4}{4(s-3)^{2}+16}$

Answer:

$$
\begin{aligned}
& \text { Q. } 9 \text { (a) } \\
& \mathcal{L}^{-1}\left\{\frac{s-4}{4(s-3)^{2}+16}\right\} \\
& =\frac{1}{4} \mathcal{L}^{-1}\left\{\frac{(s-3)-1}{(s-3)^{2}+2^{2}}\right\} \\
& =\frac{1}{4} \mathcal{L}^{-1}\left\{\frac{s-3}{(s-3)^{2}+2^{2}}\right\}-\frac{1}{8}\left\{\frac{2}{(s-3)^{2}+2^{2}}\right\} \\
& =\frac{1}{4} e^{3 t} \cos 2 t-\frac{1}{8} e^{3 t} \sin 2 t
\end{aligned}
$$

b. Apply convolution theorem to find $L^{-1}=\left\{\frac{s}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\right\}$

Answer:

$$
\begin{aligned}
& \text { (b) } \\
& \mathcal{L}^{-1}\left\{\frac{s}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\right\} \\
& \text { We know that } \\
& f^{-1}\left(\frac{s}{s^{2}+1}\right)=\cos x \text {, } \\
& \mathcal{L}^{-1}\left(\frac{1}{s^{2}+4}\right)=\frac{1}{2} \sin 2 x \\
& \text { 1 } t \text { (by } \\
& \begin{array}{l}
\text { (by constdutiou } \\
\text { the) }
\end{array} \\
& \therefore \mathcal{L}^{-1}\left\{\frac{s}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\right\}=\frac{1}{2} \int_{0}^{t} \sin 2 x \cos (t-x) d x \\
& =\int_{0}^{t} \sin x \cos x\{\cos t \cos x+\sin t \sin x\} d x \\
& =\int_{0}^{t}\left(\sin x \cos ^{2} x \cos t+\sin ^{2} x \cos x \sin t\right) d x \\
& =\left[-\frac{\cos ^{3} x}{3} \cos t+\frac{\sin ^{3} x \cos \sin t}{3}\right]_{0}^{t} \\
& =-\frac{\cos ^{4} t}{3}+\frac{\sin ^{4} t}{3}+\frac{1}{3} \cos t \\
& \begin{array}{l}
=\frac{1}{3}\left(\sin ^{4} t-\cos ^{4} t\right)+\frac{1}{3} \cos t \\
=\frac{1}{3}\left(\sin ^{2} t-\cos ^{2} t\right)+\frac{1}{3} \cos t
\end{array}
\end{aligned}
$$

TEXT BOOK

I. Engineering Mathematics - Babu Ram, Pearson Education Limited, 2012
II. Applied Mathematics for Polytechnic, H.K.Dass, $10^{\text {th }}$ Edition, 2012, CBS Publishers \& Distributors, New Delhi

