
DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 1

 Q.2 a. List out HTML LIST tags. Explain HTML LIST tags with example. (1+7)
Answer:
HTML provides three types of list: 1. unordered lists (bullet lists) 2. Ordered lists
(numbered lists) and 3. Definition List

Unordered Lists

An unordered list is a list of items marked with bullets (typically small
black circles). An unordered list starts with the tag. Each list item
starts with the tag.
Example:

Coffee
Milk

Result:

 Coffee
 Milk

Ordered Lists
An ordered list is also a list of items. The list items are marked with
numbers. An ordered list starts with the tag. Each list item starts with
the tag.
Example
<ol style="list-style-type:decimal;">
Item one
 Item two
 Watch, you can easily nest list items: This item has some sub-items
 <ol style="list-style-type:lower-alpha;">
Sub-item one
Sub-item two
Shall we do a 3rd nested list?
<ol style="list-style-type:lower-roman;">
OK
Your browser should automatically use different bullet styles for each
level.

Result:

1. Item one
2. Item two
3. Watch, you can easily nest list items: This item has some sub-items

a. Sub-item one
b. Sub-item two
c. Shall we do a 3rd nested list?

i. OK
ii. Your browser should automatically use different bullet styles for

each level.
Definition Lists

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 2

Definition lists consist of two parts: a term and a description . To mark
up a definition list, you need three HTML elements; a container <dl>, a
definition term <dt>, and a definition description <dd>.
Example:
<dl>
<dt>Cascading Style Sheets</dt>
<dd>Style sheets are used to provide
presentational suggestions for
documents marked up in HTML.
</dd>
</dl>
Result:
Cascading Style Sheets
 Style sheets are used to provide
 presentational suggestions for

 documents marked up in HTML.

 b. What purpose do the FORM Serves in HTML. Explain any six widgets used

in FORM. (2+6)
Answer:
A form is an area that can contain form elements. Form elements are elements that allow the user
to enter information (like text fields, textarea field s, drop-down menus, radio buttons,
checkboxes, etc.) in a form. A form is defined with the <form> tag.

<form>
.
input elements
.
</form>

Input:
The most used form tag is the <input> tag. The type of input is
specified with the type attribute. The most commonly used input
types are explained below.

Text Fields:
Text fields are used when you want the user to type letters,
numbers, etc. in a form.
<form> First name:<input type="text" name="firstname" />

Last name:<input type="text" name="lastname" /> </form>
The width of the text field is 20 characters by default.

Password Field:

Password fields are used when user want to type letters, numbers,
etc. And at the same time information typed by the user can’t be
displayed, they are masked with a character. In a form <input
type="password" /> defines a password field: The characters in a
password field are masked (shown as asterisks or circles).
<form> Password: <input type="password" name="pwd" />
</form>
How the HTML code above looks in a browser:

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 3

Password:

Radio Buttons:

Radio Buttons are used when you want the user to select one of a
limited number of choices.
<form> <input type="radio" name="sex" value="male" /> Male
input type="radio" name="sex" value="female" /> Female </form>

 Male Female

Checkboxes:

Checkboxes are used when you want the user to select one or more
options of a limited number of choices.
<form> I have a bike: <input type="checkbox" name="vehicle"
value="Bike" />
I have a car:<input type="checkbox" name="vehicle"
value="Car"/>
</form>

Submit:
A submit button is used to send form data to a server. The data is
sent to the page specified in the form's action attribute. The file
defined in the action attribute usually does something with the
received input:
<input type="submit" value="Send form">
How it looks in a browser:

 Without value the submit button look like this

Reset:

A ‘reset’ button resets all controls in the form, clearing the user
input and returning controls to their initial values.
<input type="reset" value="Reset form">
How it looks in a browser

Button:

The <button> tag defines a push button. A button is marked up as
follows:
<button type="button">Click Me!</button>
Inside a button element you can put content, like text or images. This is the

 difference between this element and buttons created with the input element.

 Q.3 a. What is CSS? What are the benefits of using CSS? Explain the types of CSS

with syntax. (1+2+5)
Answer:
CASCADING STYLE SHEETS (CSS):
 CSS lets us to assign several properties at once to
 all the elements
 It is a set of formatting instructions
 Common format for all web pages

Send

Submit

Reset

Click

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 4

 Saves Time
 Easy to Change
 Easy to apply
 Overrides earlier definitions
 Controls text in a way that HTML cannot.

There are three types CSS

1. Inline Style Sheets
2. Internal Style Sheets
3. External Style sheets

INLINE STYLE SHEETS:

Style information can be included inline i.e. within the tag of
HTML elements. It can also be called as local styles. All style
elements are declared with in the <BODY> tag.
Syntax:
STYLE = “ declaration “
Declaration => property: value

Ex.
<BODY>
<P STYLE=”font-family:Arial”> NRIIT </P>
<BODY>

INTERNAL STYLE SHEETS:

Internal styles are ideal for individual pages. Style information
can be embedded directly with in thedocument by using the
<STYLE> tag.

Syntax:
<STYLE>
SELECTOR{ declarator}
</STYLE>
SELECTOR can be any HTML element

Ex:
<HEAD>
<STYLE>
H1{color:red}
</STYLE>
</HEAD>

EXTERNAL STYLE SHEETS:

External style sheets are ideal for giving all the pages on our web site a common
look. External stylesheet is separate web document which has style definitions,
and has an extension “.css”. This externalstyle sheet can be linked to any web
documents via a URL.Style
document:

<STYLE>
H2{color:blue}

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 5

H3{background : yellow}
</STYLE>

This document should be saved by giving extension as “.css” Linking of external
document to our present web document can be done as

<HEAD>
<LINK REL=stylesheet TYPE=”text/css” HREF=”css file
path”>
</HEAD>

 b. Explain CSS Font Properties with Values. (8)
Answer:
Font

The font property can set the style, weight, variant, size, line height and font:
 font: italic bold normal small/1.4em Verdana, sans-serif;
The above would set the text of an element to an italic style a bold weight a
normal variant a relative size a line height of 1.4em and the font to Verdana or
another sans-serif typeface.
Font-Family
You can set what font will be displayed in an element with the font-family
property.
There are 2 choices for values:

• family-name
• generic family

If you set a family name it is best to also add the generic family at the end. As this
is a priortized list. So if the user does not have the specified font name it will use
the same generic family. (see below)
 font-family: Verdana, sans-serif;

Font Size
You can set the size of the text used in an element by using the font-size property.
 font-size: value;
There are a lot of choices for values:

• xx-large
• x-large
• larger
• large
• medium
• small
• smaller
• x-small
• xx-small
• length
• % (percent)

Font Style
You can set the style of text in a element with the font-style property
 font-style: value;
Possible values are

• normal

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 6

• itailc
• oblique

Font Variant
You can set the variant of text within an element with the font-variant property
 font-variant: value;
Possible values are

• normal
• small-caps

Font Weight
You can control the weight of text in an element with the font-weight property:
 font-weight: value;
Possible values are

• lighter
• normal
• 100
• 200
• 300
• Bold
• Bolder

 Q.4 a. Explain different types of operators with example in JavaScript. (8)
Answer:
There are six category of the operator in Javascript.

1) Arithmetic
2) Assignment
3) Comparisons
4) Logical Operators
5) Conditional Operators
6) Bitwise operators

1) Arithmetic Operators
 Arithmetic operators are : -, +, /, *, %

X + Y if x, y are numbers = num if x, y are in quotes "X" + "y" = xy
Modulus remainder when x is divided by y E.g. 5%2=1
X++ same as x=x+1
++X x+1=X
X-- x=x-1
--X x-1=x
-X reverse sign
++X adds one before any operation
X++ adds one after any operation
--X subtracts one before any operation
X-- subtracts one a
fter any operation
Screen Output
Test Value of a Value b
var a=100 b=a++ 101 100

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 7

var b= a++ b=++a 101 101
document.write (a); b=a-- 99 100 document.write (b); b=--a 99 99

2) Assignment Operators
Putting a value into a variable this usually the final operation performed in
an expression by equating a variable to a literal value. The = sign is not
the only assignment operator.
Assignment What it does
x = y Sets x = y
x+= y x = x+y
x-=y x = x-y
x*=y x=x*y
x/=y x=x/y
x%=y x=x%y
x^=y x=x^y
x<<=y
x>>=Y

3) Comparison Operators
Comparison operators generate a TRUE or FALSE output based on a
logical comparison of the operands on either side of the comparison.
There are 6 kinds of comparison operators

== set to or equals (not to be confused with =)
!= not equals (return true if x is not equal to y)
< less than (return true if x is less than y)
> greater than
<= less than or equal to
<= greater than or equal to
In some languages there is no distinction made between = and ==
x == y return true if x and y are equal
Logical Comparison
x && y return true if x and y are equal
x || y return true if x or y are equal
!x return true if x is false

4) Logical Operators
var snow=true;
var day="Monday"
var month="11"
These are assignments not comparisons Operators&& logical and, returns
true if both operands are true, otherwise false;
II logical or, returns true if either operand is true
! not, returns true if the operand is false and false if the operand is true

5) Conditional operators
Evaluate ot one of two different values based on a condition
(condition) ? val1: val2
val1 (true condition)
val2 (false condition)
e.g.
(day == "Saturday") ? "Weekend!" : "Not Saturday!"

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 8

6) Bitwise operators
Operate on bits of a variable i.e. 1s and Os, treats numbers as a 32 bit
value
NOT ~
AND &
OR |
NOR ^
>>
>>>

 <<

 b. Explain any four JavaScript string functions with example. (8)
Answer:
There are many JavaScript string function (any four):

1.replace(regexp/substr, replacetext) Searches and replaces the regular expression (or
sub string) portion (match) with the replaced text instead.

//replace(substr, replacetext)
var myString = 'JavaScript Example;
console.log(myString.replace(/JavaScript/i, "Test"));
//output: Test Example

//replace(regexp, replacetext)
var myString = '11 JavaScript Example ';
console.log(myString.replace(new RegExp("11", "gi"), "The"));
//output: The JavaScript Example

2. search(regexp) Tests for a match in a string. It returns the index of the match, or -1 if
 not found.

//search(regexp)
var intRegex = /[0-9 -()+]+$/;

var myNumber = '999';
var isInt = myNumber.search(intRegex);
console.log(isInt);
//output: 0

var myString = '999 Test Example’;
var isInt = myString.search(intRegex);
console.log(isInt);
//output: -1

3. indexOf(substr, [start]) Searches and (if found) returns the index number of the
searched character or substring within the string. If not found, -1 is returned. “Start” is
an optional argument specifying the position within string to begin the search. Default is
0.

//indexOf(char/substring)
var sentence="Hi, my name is XYZ!"
if (sentence.indexOf("Sam")!=-1)

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 9

alert("XYZ is in there!")
charCodeAt(x) Returns the Unicode value of the character at position “x” within the
string.

//charAt(position)
var message="jquery4u"
//alerts "q"

 alert(message.charAt(1))

 Q.5 a. What is DHTML? Write advantage and disadvantages of DHTML. (1+3+3)
Answer:

Dynamic HyerText Markup Language (DHTML) is a combination of Web
development technologies used to create dynamically changing websites. Web
pages may include animation, dynamic menus and text effects. The
technologies used include a combination of HTML, JavaScript or VB Script,
CSS and the document object model (DOM).
Advantages:-

1. Fast and Zippy: - dHTML loads content on fly. Your whole page does not

loads but only the content part that needs to be altered, so saving the crucial time for
the users and giving the snazzy look to the website.

2. Plug-ins, we don’t need them:- dHTML uses most of the features already
present in the browsers, so there is no need to download any sort of Plug-ins.

3. Great Utility:- The dynamic features possessed by dHTML are helping web
designers to create Web pages that posses compact looks, downloads fast, have
graphic effects, provides greater functionality and can hold much more text or
content all at the same time.

Disadvantages:-

1. Costly Editing tools: - although dHTML provides great functionality but the editors’

available for that in market are pretty expensive. Examples of dHTML editors are
Dreamweaver and Fusion.

2. Long and Complex coding: - dHTML coding is long and complex. Only theexpert
Javascript and HTML programmers can write them and edit them with good
degree of functionality.

3. Browser Support problems: - dHTML suffers from browser support problems for different
browsers. For example, a code written for Netscape might not work in Internet Explorer
and Vice-Versa. The problem arises due to the different features of browsers.

 b. Write a JavaScript code to display information in Status Bar. (9)
Answer:

<html>
<head>
 <title>Status Bar</title>
 <script type="text/javascript">
 <!--window.defaultStatus = "Welcome to the URL page."

 function changeStatus() {
 window.status = "Click me to go to home page."

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 10

 }

 function changeDefaultStatus() {
 window.defaultStatus=window.document.statusForm.
 messageList.options[window.document.statusForm.
 messageList.selectedIndex].text
 }
 //-->
 </script>
</head>

<body>
 <p> </p>
 <p> </p>
 <p align="center">

 http://www.abc.com

 </p>
 <p align="center">
 <a href="http://www.abc.com"onmouseover="changeStatus();
 return true">Go...
 </p>
 <p align=center>

 To change the default status bar message, select a
 message from the list below and click the Change button.

 </p>
 <form name="statusForm" method="POST">

 <select name="messageList" size="1">
 <option selected>Welcome to the large URL page.</option>
 <option>A</option>
 <option>B</option>
 <option>C</option>
 </select>
 <input type="button" name="Change" value="Change"
 onclick="changeDefaultStatus()">
 </form>
</body>

 </html>

 Q.6 a. What are the fundamentals of arrays in Perl? Explain. (8)
Answer:
An array stores a ordered list of values. While a scalar variable can only store one value, an
array can store many. Perl array names are prefixed with a @ sign. Here is an example:
my @colors = ("red","green","blue");

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 11

Each individual item (or element) of an array may be referred to by its index number. Array
indices start with 0, so to access the first element of the array @colors, you use $colors[0].
Notice that when you're referring to a single element of an array, you prefix the name with $
instead of @. The $-sign again indicates that it's a single (scalar) value; the @-sign means
you're talking about the entire array.
If you want to loop through an array, printing out all of the values, you could print each
element one at a time:

my @colors = ("red","green","blue");
print "$colors[0]\n"; # prints "red"
print "$colors[1]\n"; # prints
"green" print "$colors[2]\n"; # prints "blue"

A much easier way to do this is to use a for each loop:
 my @colors = ("red","green","blue");
 foreach my $i (@colors) {
 print "$i\n";
 }
 For each iteration of the for each loop, $i is set to an element of the @colors array. In this

example, $i is "red" the first time through the loop. The braces {} define where the loop
begins and ends, so for any code appearing between the braces, $i is set to the current
loop iterator.

 b. Explain the different categories of a variable in Perl with an example. (8)
Answer:
Categories of perl variable are:

i. Scalar Variable
ii. Array Variable
iii. Hash Variable

Scalars are variables that can store either numbers, strings, or references
- Numbers are stored in double format; integers are rarely used
- Numeric literals have the same form as in other common languages

Perl has two kinds of string literals, those delimited by double quotes and those delimited by
single quotes

- Single-quoted literals cannot include escape sequences
- Double-quoted literals can include them
- In both cases, the delimiting quote can be embedded by preceding it with a
backslash
- If you want a string literal with single-quote characteristics, but don‘t want
delimit it with single quotes, use qx, where x is a new delimiter
- For double quotes, use qq
- If the new delimiter is a parenthesis, a brace, a bracket, or a pointed bracket,
the right delimiter must be the other member of the pair
- A null string can be '' or "" Scalar type is specified by preceding the name with
a $
- Name must begin with a letter; any number of letters, digits, or underscore
characters can follow
- Names are case sensitive
- By convention, names of variables use only lowercase letters
- Names embedded in double-quoted string literals are interpolated e.g., If the

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 12

value of $salary is 47500, the value of "Jack makes $salary dollars per year" is
"Jack makes 47500 dollars per year"
- Variables are implicitly declared
- A scalar variable that has not been assigned a value has the value undef
(numeric value is 0; string value is the null string)
- Perl has many implicit variables, the most common
- of which is $_ (Look at perldoc perlvar)
An array stores a ordered list of values. While a scalar variable can only store
one value, an array can store many. Perl array names are prefixed with a @-
sign.
Here is an example: my @colors = ("red","green","blue");
Each individual item (or element) of an array may be referred to by its index
number. Array indices start with 0, so to access the first element of the array
@colors, you use $colors[0]. Notice that when you're referring to a single
element of an array, you prefix the name with $ instead of @. The $-sign again
indicates that it's a single (scalar) value; the @-sign means you're talking about
the entire array. If you want to loop through an array, printing out all of the
values, you could print each element one at a time:
A hash is a special kind of array — an associative array, or paired list of
elements. Each pair consists of a string key and a data value.
Perl hash names are prefixed with a percent sign (%). Here's how they're
defined: Hash Name key value
my %colors = ("red",
"#ff0000", "green",
"#00ff00", "blue",
"#0000ff", "black",
"#000000", "white",
"#ffffff");
This particular example creates a hash named %colors which stores the RGB
HEX values for the named colors. The color names are the hash keys; the hex
codes are the hash values. Remember that there's more than one way to do
things in Perl, and here's the other way to define the same hash: Hash Name
key value
my %colors = (red =>
"#ff0000", green =>
"#00ff00",
blue => "#0000ff",
black =>
"#000000", white
=> "#ffffff");
The => operator automatically quotes the left side of the argument, so
enclosing quotes around the key names are not needed. To refer to the
individual elements of the hash, you'll do:
$colors{'red'}
Here, "red" is the key, and $colors{'red'} is the value associated with that key.
In this case, the value is "#ff0000".
You don't usually need the enclosing quotes around the value, either;
$colors{red} also works if the key name doesn't contain characters that are also

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 13

Perl operators (things like +, -, =, * and /). To print out all the values in a hash,
you can use a foreach loop:
foreach my $color (keys %colors) {
print "$colors{$color}=$color\n";
}
This example uses the keys function, which returns a list of the keys of the
named hash. One drawback is that keys %hashname will return the keys in
unpredictable order — in this example, keys %colors could return ("red",
"blue", "green", "black", "white") or ("red", "white", "green", "black", "blue")
or any combination thereof. If you want to print out the hash in exact order,
you have to specify the keys in the for each loop:
foreach my $color ("red","green","blue","black","white") {
print "$colors{$color}=$color\n";

 }

 Q.7 a. Explain CGI.pm module with the help of an example. (8)
Answer:

The Common Gateway Interface (CGI) is a standard that defines how
webserver software can delegate the generation of webpages to a console
application. Such applications are known as CGI scripts; they can be written in
any programming language, although scripting languages are often used. In
simple words the CGI provides an interface between the webservers and the
clients.
The task of a webserver is to respond to requests for webpages issued by clients
(usually web browsers) by analyzing the content of the request (which is mostly
in its URL), determining an appropriate document to send in response, and
returning it to the client.
If the request identifies a file on disk, the server can just return the file's
contents. Alternatively, the document's content can be composed on the fly. One
way of doing this is to let a console application compute the document's
contents, and tell the web server to use that console application. CGI specifies
which information is communicated between the webserver and such a console
application, and how.
The webserver software will invoke the console application as a command. CGI
defines how information about the request (such as the URL) is passed to the
command in the form of arguments and environment variables. The application
is supposed to write the output document to standard output; CGI defines how it
can pass back extra information about the output (such as the MIME type,
which defines the type of document being returned) by prepending it with
headers.
CGI.pm is a large and widely used Perl module for programming Common
Gateway Interface (CGI) web applications, providing a consistent API for
receiving user input and producing HTML or XHTML output. The module is
written and maintained by Lincoln D. Stein.
A Sample CGI Page
Here is a simple CGI page, written in Perl using CGI.pm (in object oriented
style):
#!/usr/bin/perl -w

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 14

use strict;
use warnings;
use CGI;
my $cgi = CGI->new();
print $cgi->header('text/html');
print $cgi->start_html('A Simple CGI Page'),
$cgi->h1('A Simple CGI Page'),
$cgi->start_form,
'Name: ',
$cgi->textfield('name'), $cgi->br,
'Age: ',
$cgi->textfield('age'), $cgi->p,
$cgi->submit('Submit!'),
$cgi->end_form, $cgi->p,
$cgi->hr;
if ($cgi->param('name')) {
print 'Your name is ', $cgi->param('name'), $cgi->br;
}
if ($cgi->param('age')) {
print 'You are ', $cgi->param('age'), ' years old.';
}
print $cgi-
>end_html;
This would print a very simple webform, asking for your name and age, and
after having been submitted, redisplaying the form with the name and age
displayed below it. This sample makes use of CGI.pm's object-oriented
abilities;
it can also be done by calling functions directly, without the $cgi->.
Note: in many examples $q, short for query, is used to store a CGI object. As
the above example illustrates, this might be very misleading.Here is another
script that produces the same output using CGI.pm's procedural interface:
#!/usr/bin/perl use strict;
use warnings;
use CGI ':standard';
print header,
start_html('A Simple CGI Page'), h1('A Simple CGI Page'),
start_form,
'Name: ', textfield('name'), br,
'Age: ', textfield('age'), p, submit('Submit!'), end_form, p,
hr;
print 'Your name is ', param('name'), br if param 'name';
print 'You are ', param('age'), ' years old.' if param 'age';

 print end_html;

 b. Describe the steps to create Cookies in terms of CGI. (8)
Answer:

Using CGI.pm, creating cookies that you can store on your client's computers is

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 15

very simple. Listing 1 below shows the steps necessary to create a cookie from a
Perl program.
In the first step, you just create a CGI object, just as you normally would when
using the CGI.pm module.
In the second step, you'll define the cookie properties by calling the cookie
method. In this example, the name of the cookie is MY_COOKIE, while the value
of the cookie is "BEST_COOKIE=chocolatechip". You create a cookie just like
this, by specifying the name and value of the cookie when using the cookie
method:
$cookie = $query->cookie(-name=>'MY_COOKIE',
 -value=>'BEST_COOKIE=chocolatechip',
 -expires=>'+4h',
 -path=>'/');

In your applications you'll probably want to create cookies with names like
"SITE-ID" or "USER-ID", and then store a value in the cookie like "12345", or
perhaps use something more complicated like "UID12345:NITEMS3:AGE=30".
As you can see from this example, what you put in your cookie is entirely up to
you.
As you can see from the documentation in the code of Listing 1, the rest of the
parameters (besides the name and value) for the $query->cookie method are
optional, but in many cases you'll want to set these values to gain more control
over your cookies.
Once you've defined your cookie in step two of the process, just add the cookie
information to the header of your HTML page in step three with this statement:

print $query->header(-cookie=>$cookie);

This statement prints the header information to your visitor's browser, and
includes the information about the cookie you just created. If the browser will
allow cookies to be saved to your visitors computer, the cookie information will
be saved to their disk drive for later retrieval.

 Q.8 a. List out the data types that PHP supports. Explain any four data types in

detail. (4+4)
Answer:

PHP supports the following data types:
• String
• Integer
• Float (floating point numbers - also called double)
• Boolean
• Array
• Object
• NULL
• Resource

Variables can store data of different types, and different types of data can do
different things. For example, you can add variables whose values are numbers
(1 + 2), but adding variables whose values are characters (a + b) doesn't make

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 16

much sense.
You can store the following simple types of data in PHP variables:

• Integer: A whole number (no fractions), such as –43, 0, 1, 27, or 5438. The range of
integers that is allowed varies, depending on your operating system, but in general, you
can usually use any number from –2 billion up to +2 billion.

• Floating point number: A number (usually not a whole number) that includes decimal
places, such as 5.24 or 123.456789. This is often called a real number or a float.

• Character string: A series of single characters, such as hello. There is no practical limit
on the length of a string.

• Boolean: A TRUE or FALSE value.
which determines the flow of execution.
Boolean data types represent two possible states — TRUE or FALSE. Boolean
values are used mainly to compare conditions for use in conditional statements.
For example, PHP evaluates an expression, such as $a > $b, and the outcome is
either TRUE or FALSE.
PHP considers the following values FALSE :

• The string FALSE (can be upper- or lowercase)
• The integer 0
• The float 0.0
• An empty string
• The one-character string 0
• The constant NULL

Any other values in a Boolean variable are considered TRUE. If you echo a
Boolean variable, the value FALSE displays as a blank string; the value TRUE
echoes as a 1. Functions often return a Boolean variable that you can test to see

 whether the function succeeded or failed.

 b. Explain the control structures in PHP with examples. (8)
Answer:

PHP Control Structures
Any PHP script is built out of a series of statements. A statement can be an assignment,
a function call, a loop, a conditional statement of even a statement that does nothing
(an empty statement). Statements usually end with a semicolon. In addition,
statements can be grouped into a statement-group by encapsulating a group of
statements with curly braces. A statement-group is a statement by itself as well.

1. if statement
2. else statement
3. Elseif statement
4. Switch statement

If Statement
An if statement is a way of controlling the execution of a statement that follows it
(that is, a single statement or a block of code inside braces). The if statement
evaluates an expression between parentheses. If this expression results in a true
value, the statement is executed. Otherwise, the statement is skipped entirely. This
enables scripts to make decisions based on any number of factors:
Syntax:-

if (expression) {
// code to execute if the expression evaluates to true

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 17

}
PHP Example:- The following code would display a is bigger than b if $a is
bigger than $b:

<?php
if ($a > $b)
 echo "a is bigger than b"; ?>

Else Statement
When working with the if statement, you will often want to define an alternative
block of code that should be executed if the expression you are testing evaluates
to false. You can do this by adding else to the if statement followed by a further
block of code:
Syntax:-

if (expression) {
// code to execute if the expression evaluates to true
} else {
// code to execute in all other cases
}

PHP Example:- The following code would display a is bigger than b if $a is
bigger than $b, and a is NOT bigger than b otherwise:

<?php
if ($a > $b) {
 echo "a is bigger than b";
} else {
 echo "a is NOT bigger than b";
}
?>

The else statement is only executed if the if expression evaluated to FALSE.

Elseif Statement
As its name suggests, is a combination of if and else. Like else, it extends an if
statement to execute a different statement in case the original if expression
evaluates to FALSE. However, unlike else, it will execute that alternative
expression only if the elseif conditional expression evaluates to TRUE.
Syntax:-

if (expression) {
// code to execute if the expression evaluates to true
} elseif (another expression) {
// code to execute if the previous expression failed
// and this one evaluates to true
} else { // code to execute in all other cases
}

PHP Example:- The following code would display a is bigger than b, a equal to b
or a is smaller than b:

<?php
if ($a > $b) {
 echo "a is bigger than b";
} elseif ($a == $b) {

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 18

 echo "a is equal to b";
} else {
 echo "a is smaller than b";
}
?>

Switch Statement
The switch statement is similar to a series of IF statements on the same
expression. In many occasions, you may want to compare the same variable (or
expression) with many different values, and execute a different piece of code
depending on which value it equals to. This is exactly what the switch statement
is for.
Tips:-

• That unlike some other languages, the continue statement applies to switch and acts
similar to break. If you have a switch inside a loop and wish to continue to the next iteration of
the outer loop, use continue 2.

Syntax:-
switch (expression) {
case result1:
// execute this if expression results in result1
break;
case result2:
// execute this if expression results in result2
break;
default:
// execute this if no break statement
// has been encountered hitherto
}

PHP Example:-
<?php
switch ($i) {
 case 0:
 echo "i equals 0";
 case 1:
 echo "i equals 1";
 case 2:
 echo "i equals 2";
}
?>

 Q.9 a. What is the purpose of DTD? What are four possible keywords in DTD
declaration? Write their format. (1+2+5)

Answer:
A DTD is a set of structural rules called declarations. These rules specify a set of elements,
along with how and where they can appear in a document

• Purpose: provide a standard form for a collection of XML documents a define a
markup language for them.
• DTD provides entity definition.
• With DTD, application development would be simpler.
• Not all XML documents have or need a DTD

DC71/DC118 INTERNET APPLICATIONS DEC 2015

© IETE 19

<!keyword … >
There are four possible declaration keywords:
ELEMENT, ATTLIST, ENTITY, and NOTATION
<!ELEMENT element_name(list of child names)>
<!ATTLIST element_name attribute_name attribute_type [default
_value]> More than one attribute
< !ATTLIST element_name attribute_name1 attribute_type
default_value_1 attribute_name 2 attribute_type default_value_2
…>
<!ENTITY [%] entity_name "entity_value">

 b. Mention the advantages of XML schema over DTD's. (8)
Answer:

XML schemas is similar to DTD i.e. schemas are used to define the
structure of the document
DTDs had several disadvantages:
 The syntax of the DTD was un-related to XML, therefore they cannot
be analysed with an XML processor
 It was very difficult for the programmers to deal with 2 different types
of syntaxes
 DTDs does not support the datatype of content of the tag. All of them
are specified as text Schemas themselves are written with the use of a
collection of tags, or a vocabulary, from a
namespace that is, in effect, a schema of schemas. The name of this
namespace is
abc.com/XMLSchema”
 Every schema has schema as its root element. This namespace
specification appears
as follows:
xmlns:xsd = “abc.com/XMLSchema”
 The name of the namespace defined by a schema must be specified
with the targetNamespace attribute of the schema element.
targetNamespace = “abc.com/ planeSchema”
 If the elements and attributes that are not defined directly in the
schema element are to be included in the target namespace, schema’s
elementFormDefault must be set to qualified, as follows:
elementFormDefault = “qualified”
 The default namespace, which is the source of the unprefixed names in
the schema, is given with another xmlns specification, but this time without
the prefix:

 xmlns = “abc.com/ planeSchema”
TEXT BOOK

I. Web Programming – Building Internet Applications, Chris Bates, Third Edition, Wiley
Student Edition, 2006

	Example
	If Statement
	Else Statement
	Elseif Statement
	Switch Statement

