DC69 C# & .NET | DEC 2015

Q.2 a. Briefly explain the advantage of framework base classes in .NET. (5)
Answer:
.NET supplies a library of base classes that we can use to implement applications quickly. We can use
them by simply instantiating them and invoking their methods or by inheriting them through derived
classes, thus extending their functionality.
Much of the functionality in the base framework classes resides in the vast namespace called system. We
can use the base classes in the system namespace for many different tasks including

e Input/output operations

String handling
Managing arrays, list etc
Accessing files and file system
Security
Windowing
Window messages
Database management
Evaluation of mathematical functions
Drawing
Managing errors and exceptions
Connecting to internet
And many more

b. What is the purpose of ‘using’ directive in C# program? Explain with
example. (5)
Answer:
C# supports a feature known as using directive that can be used to import the namespaces in the program.
Once the namespace is imported, we can use the elements of that namespace without using the namespace
as prefix.
For example:

using System; //System is a namespace
Class Myclass

{
// main method begins
{
Console.WriteLine(“hello”);
}
/I main method ends
}

The first statement in the program is

using system;

This tells the compiler to look in the System library for unresolved class names. There is no need to use
System prefix to the Console class in the output line.

When the compiler parses the Console.WriteLine method, it will understand that the method is
undefined. However, it will then search through the namespaces specified in using directives and upon
finding the method in System namespace, will compile the code without any complaint.

c. With a suitable example explain the concept of boxing and unboxing. (6)
Answer:

© IETE 1

DC69 C# & .NET | DEC 2015

In object-oriented programming, methods are invoked using objects. Since value types such as int
and long are not objects, we cannot use them to call methods. C# enables us to achieve this through
a technique known as boxing . Boxing means the conversion of a value type on the stack to a object
type on the heap. Conversely, the conversion from an object type back to a value type is known as
unboxing,

4.12.1 Boxing

Any type, value or reference can be assigned to an object without an explicit conversion. When the
compiler finds a value type where it needs a reference type, it creates an object *box” into which it places
the value of the value type. The following code illustrates this:

int m = 100;
object om = m; // creates a box to hold m
When executed, this code creates a temporary reference type ‘box’ for the object on heap. We can
also use a C-style cast for boxing.
int m = 100;
object om = (object)m; //C-style casting
MNote that the boxing operation creates a copy of the value of the m integer to the object om. Now
both the variables m and om exist but the value of om resides on the heap. This means that the values
are independent of each other. Consider the following code:
int m = 10:
object om =m;
m = 20;
Console.WriteLine(m); // m =20
Console WriteLine{om); //om =10
When a code changes the value of m, the value of om is not affected.

4.12.2 Unboxing

Unboxing is the process of converting the object type back to the value type. Remember that we can
only unbox a variable that has previously been boxed. In contrast to boxing, unboxing is an explicit
operation using C-style casting,
intm=10;
objectom=m; //boxm
int n = (int)om; //funbox om back to an int
When performing unboxing, C# checks that the value type we request is actually stored in the object
under conversion. Only if it is, the value is unboxed.
When unboxing a value, we have to ensure that the value type is large enough to hold the value of the
object. Otherwise, the operation may result in a runtime error. For example, the code
int m = 300;
object om = m;
byte n = (byte)om;
will produce a runtime error.
Notice that when unboxing, we need to use explicit cast. This is because in the case of unboxing, an
object could be cast to any type. Therefore, the cast is necessary for the compiler to verify that it 1s valid
as per the specified value type.

Q.3 a. Explain how a conditional operator evaluates an expression in C# to make
decision? Also, compare it with if-else statements. (8)
Answer:

© IETE 2

DC69 C# & .NET | DEC 2015

C# has an unusual operator, useful for making two-way decisions; it is a combination of ? and :, and

takes three operands. This operator is popularly known as the conditional operator. The general form of
use of the conditional operator is as follows:

conditional expression ? expression? : expression2

The conditional expression is evaluated first. If the result is true, expression [is evaluated and is

returned as the value of the conditional expression. Otherwise, expression? is evaluated and its value is
returned. For example, the segment

if (x=0)
flag = 0;
else
flag = 1;

can be written as
flag = (x<0) 20 : 1;
Consider the evaluation of the following function:
y=15<¢+3 forx <=2
y=2x+5 forx =2

This can be evaluated vsing the conditional operator as follows:
y=(x=2)7 (2% +5): (1.5% + 3);

The conditional operator may be nested for evaluating more complex assignment decisions. For

example, consider the weekly salary of a salesgirl who is selling some domestic products. If x is the
number of products sold in a week, her weekly salary is given by

{ 4x + 100 for x < 40
salary = { 300 for x = 40
{ 4.5x + 150

for x = 40
This complex equation can be written as

salary = (x!=40) ? ((x<40)?(4*x+100):(4.5*x+150)) : 300; // nesting

The same can be evaluated using if....else statements as follows:

if (x<=40)
if (x<40)
salary = 4"x+100;
else
salary = 300;
else

salary = 4.5"x+150;
When the conditional operator is used, the code becomes more concise and perhaps, more efficient.

However, the readability is poor. It is better to use if statements when more than a single nesting of the
conditional operator is required.

b. How does foreach statement differs from for loop? Using for each statement,
write a program in C# to print all values in an integer array. (8)
Answer:

The foreach statement is similar to the for statement but implemented differently. It enables us to
iterate the elements in arrays and collection classes such as List and HashTable. The general form of
the foreach statement is:
foreach (type variable in expression)
Body of the loop
1
The type and variable declare the iteration variable. During execution, the iteration variable represents
the array element (or collection element in case of collections) for which an iteration is currently being
performed. im is a keyword.

The expression must be an array or collection type and an explicit conversion must exist from the

element type of the collection to the type of the iteration variable. Example:
public static void Main (string [] args)

{
foreach { string s in args)
{
Console. WriteLine(s);
}
3
© IETE

DC69 C# & .NET

DEC 2015

Program 7.6 illustrates the use of foreach statement for printing the contents of a numerical
array.

@mgmm 7.6 I PRINTING ARRAY VALUES USING FOREACH STATEMENT
]

using System;
class ForeachTest
{
public static void Main ()
{
int[] arraylnt = { 11, 22, 33, 44 };
foreach (int m in arraylnt)
{
Console. Write(" " + m);
}
Console.WriteLine();
1
1

Program 7.6 will display the following output:
11 22 33 44
An important point to note is that we cannot change the value of the iteration variable during execution.
For instance, the code
int[]x={1,2,3}
foreach { intiinx)

L
it+;
Console. Write(i);

}

will not work. If we need to change the values of an item during the iteration process, we may use the
for loop construct.

The advantage of foreach over the for statement is that it automatically detects the boundaries of the
collection being iterated over. Further, the syntax includes a built-in iterator for accessing the current
element in the collection.

Q.4 a. What is method overloading? Demonstrate it with the help of C# code. (8)

Answer:

C# allows us to create more than one method with the same name, but with the different parameter lists
and different definitions. This is called method overloading. Method overloading is used when methods
are required to perform similar tasks but using different input parameters.

Overloaded methods must differ in number and/or type of parameters they take. This enables the
compiler to decide which one of the definitions to execute depending on the type and number of
arguments in the method call. Note that the method’s return type does not play any role in the overload
resalution.

Using the concept of method overloading, we can design a family of methods with one name but
different argument lists. For example, an overloaded add() method handles different types of data as
shown below:

© IETE 4

DC69 C# & .NET

DEC 2015

[/ Method definitions

intadd (inta,intb){..} /{Method1

int add (inta, intb, intc){..} { {Method?
double add (float x, floaty) { ... } {IMethod3
double add (int p, floatg) { ... } // Method4
double add (float p, int g) { ... } ! /Method5
f/Method calls

intm=add (5, 10); #/calls methodt

double x = add (15, 5.0F); { fcalls method4
double x = add (1.0F, 2.0 F); //calls method3
intm=add (5,10, 15); ffcalls method2
double x = add { 2.0F, 10); /fcalls method5

The method selection involves the following steps:

1. The compiler tries to find an exact match in which the types of actual parameters are the same
and uses that method.

2. If the exact match is not found, then the compiler tries to use the implicit conversions to the
actual arguments and then uses the method whose match is unique. If the conversion creates
multiple matches, then the compiler will generate an error message.

using System;

class Overloading

{
public static void Main()

£

Console. WriteLine(volume (10));

Console.WriteLine(volume(2.5 F, 8));

Console.WriteLine(volume(100L,75,15));
H

static int volume (int x) /I cube

: return { x*x*x);

static double volume (floatr, inth) /i cylinder
return (3.14519*r*r*h);

static long volume (long |, int b, inth) /7 box

return (L*b*h);

The output of Program 8.9 would be:
1000
157.2595
112500

b. What are jagged arrays? Write a program in C# to sort a list of numbers.
(3+5)
Answer:

© IETE

DC69 C# & .NET

DEC 2015

C# treats multidimensional arrays as “arrays of arrays’. It is possible to declare a two-dimensional array
as follows:

int[][1 x= new int[3][]; /fthree rows array
x[0] = new int[2]; JIfirst row has two elements
%x[1] = new int[4]; /fsecond row has four elements
*[2] = new int[3]: //third row has three elements
These statemenis create a two-dimensional array
having different lengths for each row as shown in — ox[0](1]
Fig. 9.3. Variable-size arrays are called jagged arrays. x[0] | o -
The elements can be accessed as follows: x[1] | ~——
X [1] [1] = 10; — =
inty =x [2[[2]; x[2] | ~—F— x[11[3]
Note the difference in the way we access the two ' /
types of arrays. With rectangular arrays, all indices x[2]1[2]

are within one set of square brackets, while for jagged

arrays each element is within its own square brackets. SR Variable size arrays

{
using System;
class NumberSorting

{

public static void Main()

{
int[Jnumber = { 55, 40, 80, 65, 71 };
int n = number.Length;
Console. Write(“Given list : ");

for (inti=10;1 < n; i++)

Console.Write(" " + number[i]);

1

Console.WriteLine(“\n");
// Sorting begins
for (inti=10; 1 < n; i++)

{

for (int j = i+1; j < n; j++)
if (number[i] < number[j])

/1 Interchange values
int temp = number(i];
number[i] = number[j];
number[j] = temp;

}
h

Console.Write(“Sorted list : ™);
for (inti=0; i <n;i++)

{
i

Console. WriteLine(* ");

Console.Write(" " + number[i]);

}

}

Program 9.1 displays the following output:
Given list 15540 8065 T1
Sorted list : 8071655540

© IETE 6

DC69 C# & .NET

DEC 2015

Q.5 a. What are mutable strings? Explain the following methods and properties of

StringBuilder class.
(i) Append()
(ii) Insert()
(iii)Replace()
(iv) Remove()
(v)Capacity
(vi) Length
Answer:
Mutable strings that are modifiable can be created using the StringBuilder class. Examples:
StringBuilder str1 = new StringBuilder(“abc™);
v StringBuilder str2 = new StringBuilder ();
The string object strl is created with an initial size of three characters and str2 is created as an
empty string. They can grow dynamically as more characters are added to them. They can grow either
unbounded or up to a configurable maximum. Mutable sirings are also known as dvnamic strings.

The StringBuilder class supports many methods that are useful for manipulating dyvnamic strings.
The System.Text namespace contains the StringBuilder class and therefore we must include the
using System.Text directive for creating and manipulating mutable strings.

Append() — Appends a string

Insert() — Inserts a string at a specified position

Replace() — replaces all instances of a character with a specified one
Remove() — removes the specified characters

Capacity — To retrieve or set the number of characters the object can hold
Length — To retrieve or set the length

b. What do you mean by a structure? How a structure is declared in C#?

(8)

Illustrate nesting of structures with an example.
Answer:

Structures (often referred to as srrucis) are similar to classes in C#. Although classes will be used to
implement most objects, it is desirable to use structs where simple composite data types are required.
Because they are value types stored on the stack, they have the following advantages compared to class
objects stored on the heap:

* They are created much more quickly than heap-allocated types.

They are instantly and automatically deallocated once they go out of scope.

* Itis easy to copy value type variables on the stack.

The performance of programs may be enhanced by judicious use of structs.

Acstruct in C# provides a unique way of packing together data of different types. It is a convenient tool
for handling a group of logically related data items. It creates a femplate that may be used to define its
data properties. Once the structure type has been defined, we can create variables of that type using
declarations that are similar to the built-in type declarations.

Structs are declared using the struet keyword. The simple form of a struct definition is as follows:
struct struct-name

{
data member1;
data member;

© IETE

(8)

DC69 C# & .NET | DEC 2015

H
Example:

struct Student

{
public string Mame;
public int RollMumber;
public double TotalMarks;

}

The keyword struct declares Student as a new data type that can hold three variables of different
data Types. These variables are known as members or fields or elements. The identifier Student can now
be used to create variables of type Student. Example:

Student s1 ; [/declare a student
s1 is a variable of type Student and has three member variables as defined by the template.

C# permits declaration of structs nested inside other structs. The following code is valid:
struct Employee

{
public string name;
public int code;
public struct Salary
{
public double basic;
public double allowance;
}
}

We can also use struct variables as members of another struct. This implies nesting of references to
structs.
struct M

{
}
{

public int x;
struct N

public M m; // object of M
public int y;

M n;
n.m.x = 100; {{ xis a member of m, a member of n
n.y = 200; /1y is a member of n

Q.6 a. What do you mean by a property? What are various features of property?
Why they are referred to as smart fields? (8)
Answer:

© IETE 8

DC69 C# & .NET

DEC 2015

One of the design goals of object-oriented systems is not to permit any direct access to data members,
because of the implications of integrity. It is normal practice to provide special methods known as
accessor methods to have access to data members. We must use only these methods to set or retrieve
the values of these members. Recall that we have used a method GetData() in Program 12.1 to provide
values to the data members length and breadth of Rectangle class. Similarly, we could use another
method to read the values of these members. Program 12.5 shows how accessor methods can be used to
set and get the value of a private data member.

legmm 12.5 I ACCESSING PRIVATE DATA USING ACCESSOR METHODS
L]

using System;
class Number
{
private int number;
public void SetMumber(int x) { faccessor method
f
number = x: //private number accessible
public int GetMumber() { faccessor method
f
return number;
1
}
class NumberTest
{

public static void Main ()

{
Number n = new Mumber ();
n.SetNumber (100}; /! set value

Console.WriteLine(“Mumber = * + n.GerNumber(}); // get value
!/ n.number; //Error! Cannot access private data

Output of Program 12.5;
Number = 100
The SetNumbers method is also known as the mutaror method. Using accessor methods works well
and is a technique used by several OOP languages, including C++ and Java. However, it suffers from
the following drawbacks:
e We have to code the accessor methods manually,
s Users have to remember that they have to use accessor methods to work with data members,
In order to overcome these problems, C# provides a mechanism known as properties that has the
same capabilities as accessor methods, but is much more elegant and simple to use. Using a property, a
programmer can get access to data members as though they are public fields. (Properties are sometimes
referred to as “smart fields” as thev add smartness to data fields.)

© IETE

DC69 C# & .NET

DEC 2015

Program 12.6 | IMPLEMENTING A PROPERTY
]
using System;
class Number
{
private int number;
public int Anumber // property
{
get
{
return number;
1
set
{
number = value;
}
1
1
class PropertyTest
{
public void static Main ()
{
Mumber n = new Number { };
n.Anumber = 100;
int m = n.Anumber;
Console.WriteLine(“Number = * + m);
]
H

The class now declares a property called Anumber of type int and defines a gef accessor method
(also known as gewrer) and a ser accessor method (also known as serter). The getter method used
the keyword return to return the field’s value to the caller. The setter method uses the keyword
value to receive the value being passed in from the user. The type of value is determined by the type of
property.

As the names imply, getter method is used to get (or read) the value and the setter method 1s used to
set (or write) the value. In Program 12.6, the statement

n.Anumber = 100;
invokes the setter method and places an integer value 100 in a variable named value which in turn is
assigned to the field number.

Similarly, the statement

int m = n.Anumber;
invokes the getter method and assigns the value of the property to m.

A property can omit either a get clause or the set clause. A property that has only a getter is called
a read-only property, and a property that has only a setter 1s called a write-only property. A write-only
property is very rarely used. There are other powerful features of properties. They include:

& Other than fetching the value of a variable, a get clause uses code to calculate the value of the
property using other fields and returns the results. This means that properties are not simply tied
to data members and they can also represent dynamic data.

* Like methods, properties are inheritable. We can use the modifiers abstract, virtual, new and
override with them appropriately, so that the derived classes can implement their own versions
of propertics.

* The statiec modifier can be used to declare properties that belong to the whole class rather than
to a specific instance of the class. (Like static methods, static properties cannot be declared with
the virtual, abstract or override modifiers.)

An important point to note here is that we can specify any modifier only at the property level and
this will affect both the accessors equally. For instance, we cannot override only one, leaving the other
unaffected.

© IETE

10

DC69

C# & .NET

DEC 2015

b. What is polymorphism? Show how polymorphic behaviour can be achieved

with the help of virtual methods.

Answer:

(8)

polymorphism is the capability of one object to behave in multiple ways. Polymorphism can be achieved
in two ways as shown in Fig. 13.8. C# supports both of them.

Operation polymorphism is implemented using overloaded
methods and operators. We have already used the concept
of overloading while discussing methods and constructors.
The overloaded methods are ‘selected’ for invoking by
malching arguments, in terms of number, type and order.
This information is known to the compiler at the time of

compilation and, therefore, the compiler is able to select and

bind the appropriate method to the object for a particular call |
at compile time itself. This process is called early binding, or |
static binding, or static linking. It is also known as compile ©

time polymorphism.

Polymorphism
I Y — 7‘ 1
Operation || | Inclusion I|
polymorphism | polymarphism | |
| | | i
Using Using ||
overloaded wirtual [
methods | methods |

Fig. 13.8 Achieving polymorphism

Inclusion polvmorphism 1s achieved through the use of wirtual functions. Assume thai the class
A implements a virtual method M and classes B and C that are derived from A override the
virtual method M. When B is cast to A, a call to the method M from A is dispatched to B. Similarly,
when C is cast to A, a call to M is dispatched to C. The decision on exactly which method to call
is delayed until runtime and, therefore, it 1s also known as runtime polymorphism. Since the method
islinked with a particular class much later after compilation, this process is termed lafe binding. It is
also known as dynamic binding because the selection of the appropriate method is done dynamically
at runtime. Program 13.7 illustrates the use of virtual methods to implement polymorphic behaviour of

objects.

© IETE

11

DC69 C# & .NET | DEC 2015

using System;
class Maruthi

public virtual void Display () //virtual method

{
Console. WritLine(“Maruthi car”);
3
H
class Esteem : Maruthi
{
public averride void Display()
{
Console.WriteLine(*Maruthi Esteem™);
3
H

class Zen : Maruthi
public override void Display ()

Console.WriteLine(“Maruthi Zen");

3
class Inclusion
{
public static void Main()
{
Maruthi m = new Maruthi ();
m = new Esteem (); / {upcasting
m.Display ();
m = new Zen (); / fupcasting
m.Display ()
1
}

___|
Program 13.7 outputs:
Maruthi : Esteem
Maruthi : Zen
In Program 13.7, a particular car object, whether it be Esteem or Zen, is cast to m which is of type
Maruthi, the base class, using the casting statements.

m = new Esteem ():
m=new Zen ();

When an object of Esteem is cast to m, then, m behaves like an Esteem type object. Similarly, when
1 Zen object is cast to m, it behaves like a Zen type object. Therefore, the two identical calls produce
wo different outputs:
Maruthi Esteem

Maruthi Zen
Q.7 a. Demonstrate the use of interface to support the concept of multiple
inheritance. 8)
Answer:

we inherit methods and properties from several distinct classes. Since ‘C++ - like® implementation of
multiple inheritance proves difficult and adds complexity to the language, C# provides an alternate
approach known as interface to support the concept of multiple inheritance. Although a C# class cannot
be a subclass of more than one superclass, it can implement more than one interface, thereby enabling us
to create classes that build upon other classes without the problems created by multiple inheritance.

© IETE 12

DC69 C# & .NET | DEC 2015

Most often we have situations where the base class of a derived class implements an interface. In
such situations, when an object of the derived class is converied to the interface type, the inheritance
hierarchy is searched until it finds a class that directly implements the interface. Consider the code in
Program 14.3.

Cngmm 14.3 | INHERITING A CLASS THAT IMPLEMENTS AN INTERFACE
L

using System;
interface Display

void Print ();

class B : Display // implements Display

{
public void Print ()
{
Console.WriteLine(“Base Display™);
}
}
classD: B 1/ inherits B class
{
public new void Print {)
{
Console.WriteLine("“Derived Display™);
}
class InterfaceTest3
{
public static void Main{)
{
Dd=newD/();
d.Print ();
Display dis = (Display) d;
dis.Print |);
}

}

1 ——
Program 14.3 would produce the following output:

Derived Display

Base Display

Note that the statement

dis.Print {);
calls the method Print () in base class B but not the one available in the derived class itself. This is
because the derived class does not implement the interface, That is, the use of modifier new in the
derived class “hides” the Print method implemented in the base class.

b. What is an operator method? Describe its syntax. Show how a binary

operator “+” can be overloaded in C#. (8)
Answer:

© IETE 13

DC69 C# & .NET

DEC 2015

To define an additional task to an operator, we must specify what it means in relation to the class (or
struct) to which the operator is applied. This is done with the help of a special method called operator
methaod, which describes the task. The general form of an operator method is:

public static retval operator op (arglist)

{

}

The operator is defined in much the same way as a method, except that we tell the compiler it is
actually an operator we are defining by the operator keyword, followed by the operator symbol op. The
key features of operator methods are:

* They must be defined as public and static.

® The retval (return value) type is the type that we get when we use this operator. But, technically,
it can be of any type.

* The arglist is the list of arguments passed. The number of arguments will be one for the unary
aperators and two for the binary operators.

Method body //task defined

o In the case of unary operators, the argument must be the same type as that of the enclosing class
or struct.

¢ In the case of binary operators, the first argument must be of the same type as that of the
enclosing class or struct and the second may be of any type.

© IETE

14

DC69 C# & .NET | DEC 2015

Program 15.2 | OVERLOADING + OPERATOR

using System;

class Complex

{
double x; [ifreal part
double v; //imaginary part
public Complex {)
{

public Complex(double real, double imag)

% = real;
¥ = imag;
}
public static Complex operator + (Complex c1, Complex c2)
{
Complex c3 = new Complex ();
cd.x =cl.x + c2.x;
cld.y=cl.y +cl.y;
return (c3);
}
public void Display{)
{
Console. Write(x);
Console.Write(" + j” + y);
Console.WriteLine();
1
}
class ComplexTest
{
public static void Main()
{
Complex a, b, c;
a = new Complex (2.5, 3.5);
b = new Complex (1.6, 2.7);
c=a+b;
Console.Write(* a = *);
a.Display();
Console. Write("b = ");
b.Display();

Console. Write(“c =");
c.Display();

}

The output of Program 15.2 would be:
a=25+33.5
b=1.6+j2.7
c=4.1+j6.2

Q.8 a. What do you mean by multicast delegates? Demonstrate with an example. (8)
Answer:

We have seen so far that a delegate can invoke only one method (whose reference has been encapsulated
into the delegate). However, it is possible for certain delegates to hold and invoke multiple methods.

© IETE 15

DC69 C# & .NET

DEC 2015

Such delegates are called multicast delegates. Multicast delegates, also known as combinable delegates,
must satisfy the following conditions:
o The return type of the delegate must be void.
* None of the parameters of the delegate type can be declared as output parameters, using out
keyword.

If D 15 a delegate that satisfies the above conditions and d1, d2, d3 and d4 are the instances of D,
then the statements

d3 = d1 + d2; //d3 refers to two methods

d4 = d3 - d2; //d4 refers to only d1 method
are valid provided that the delegate instances d1 and d2 have already been initialized with method
references and d3 and d4 contain null reference.

For a multicast delegate instance that was created by combining two delegates, the invocation list is
formed by concatenating the invocation list of the two operands of the addition operation. Delegates are
invoked in the order they are added.

Program 16.2 illustrates the application of multicast delegates. The program demonstrates the use of

both addition and removal of delegates. Note the order in which the delegates m3 and m4 invoke the
methods.

Program 16.2 | IMPLEMENTING MULTICAST DELEGATES

using System;

delegate void MDelegate();
class DM

{

static public void Display()

Console. WriteLine(“NEW DELHI™);
}
static public void Print{)

Console.WriteLine(“NEW YORK"),

1
class MTest
{
public static void Main()
{
MDelegate m1 = new MDelegate(DM. Display);
MDelegate m2 = new MDelegate (DM.Print);
MDelegate m3 = m1 + m2;
MDelegate m4 = mZ + m1;
MDelegate m5 = m3 - m2;
/linvoking delegates
m3();
m4();
M5();
1
3

. __|
The output of Program 16.2 would be:
HWEW DELHI
MEW YORK
MEW YORK
MEW DELHI
NEW DELHI

b. Briefly describe System. Console class and its various Console input and

output methods.
© IETE

(8)

16

DC69 C# & .NET | DEC 2015

Answer:
The methods for reading from and writing to the console are provided by the System.Console class.
This class gives us access to the standard input, standard output and standard error streams as shown in

Table 17.1.

Table 17.1 Input/Output streams

STREAM OBIECT REPRESENTS
Console.In Standard input
Console.Out Standard output
Console.Error Standard error

The standard input system Console.In gets input by default from the keyboard. We can also redirect
it to receive input from a file, The standard output stream Console.Out sends output to the screen by
default. We can also redirect the output to a file.

The standard error stream Console.Error usually sends error messages to the screen. Even when the
standard output is sent to a file, error messages, if any, will be displayed on the screen.

The console input stream object supports two methods for obtaining input from the keyboard:
= Read ()Returns a single character as int. Returns -1 if no more characters are available.
* ReadLine ()Returns a string containing a line of text. Returms null if no more lines are
available.

These methods can be invoked using either Console.In object or Console class itself. The following
code snippet reads a character from the keyboard and displays it on the screen.

int x = Console.Read ();
Console. WriteLine ((char) x);

We have used a casting operator (char) to X to convert it to a character type. Remember, x was read
as an int.

The following code reads entire line of text as a single string and displays it on the screen.

string str = Console.ReadLine();
Consale. WriteLine(str);
The console output stream supports two methods for writing to the console:
¢ Write () Outputs one or more values to the screen without a newline character
* WriteLine () Outputs one or more values to the screen (same as Write () method) but adds
a newline character at the end of the output

Both the methods have various overloaded forms for handling all the predefined types and therefore
we can easily output many different types of data. WriteLine() also allows us to output data in many
different formats (in a way, comparable to the printf method of C).

The Write() method sends information into a buffer. This buffer is not flushed until a newline (or
end-of-line) character is sent, As a result, this method prints output on one line until a newline character
is encountered. For example, the statements,

Console.Write(“Hello ");

Console.Write(“C Sharp!");
will display the words Hello C Sharp! on one line and wait for displaying of further information on the
same line. We may force the display to be brought to the next line by printing a newline character as
shown below:

Console, Write(*\n");

© IETE 17

DC69 C# & .NET

DEC 2015

For example, the statements
Console.Write(“Hello");
Console. Write(*\n");
Console. Write(*C Sharp!”);
will display the output in two lines as follows:
Hello
C Sharp!
The WriteLine() method, by contrast, takes the information provided and displays it on a single line
followed by a line feed (carriage return). This means that the statements
Console.WriteLine(*Hello”);
Console.WriteLine("C Sharp!"});

will produce the following output:
Hello
C Sharp!

Q.9 a. What are run-time errors? Give some examples. 4)
Answer:

sometimes, a program may compile successtully creating the .exe hle but may nat run properly. Such
programs may produce wrong results due to wrong logic or may terminate due to errors such as stack
overflow. Most CcOImmon run-time SITors arg:

s Dividing an integer by zero.

e Accessing an element that is out of the bounds of an array.

e Trying to store a value into an array of an incompatible class or type.

Passing a parameter that 1s not in a valid range or value for a method.
Attempting to use a negative size for an array,
Using a null object reference as a legitimate object reference to access a method or a variable.
* Converting an invalid string to a number or vice versa.
* Accessing a character that is out of bounds of a string, and so on.
When such errors are encountered, C# typically generates an error message and aborts the program.

b. Briefly describe the usage and purpose of finally statement while handling

exceptions. (6)
Answer:

© IETE

18

DC69 C# & .NET | DEC 2015

C# supports another statement known as a finally statement that can be used to handle an exception
that is not caught by any of the previous catch statements. A finally block can be used to handle any
exception generated within a try block. It may be added immediately after the try block or after the last
catch block shown as follows:

try try
£ {
3 }
finally catch (....)
£ {
i ¥
catch (....)
f
}
finally
f
1
When a finally block is defined, the program is Try block

guaranteed to execute, regardless of how control leaves
the try, whether it is due to normal termination, due
to an exception occurring or due to a jump statement.
Figure 18.3 illustrates this. As a result, we can use it
to perform certain house-keeping operations such as

. . Errorl No errors Error 2
closing files and releasing system resources.
In Program 18.4, we may include the last two
statements inside a finally block as shown below: |
finall .| Cateh Catch |,
(¥ block block2
int y = a[1]/a[0];
Console.WriteLine("y = " +y); 1
1 Finally
= block [~
This will produce the same output.
T
Leaving try block

Fig. 18.3 Execution paths of try-catch-
finally blocks

c. Briefly describe the process of creating and starting up threads with an
example. (6)
Answer:

© IETE 19

DC69 C# & .NET | DEC 2015

A thread can be created in C# using the constructor of the Thread class. We need to pass the ThreadStart
delegate to the Thread class constructor along with the name of the method from which the execution
should start. The ThreadStart delegate is defined as:

public delegate void ThreadStart();

To create a new thread in a C# program, we can use the following statement:
Thread threadname = new Thread(new ThreadStart{methodname);

Here, threadname represents the name of the new thread and methodname is the name of the method
from which the execution starts.

For example, to create a thread t1, we can use the following code:
Thread t1 = new Thread{new ThreadStart(First);

If the method from which execution needs to start is defined in a class other than the
class in which the thread is created then we must use an object of that class to access the method.
The Start() method of the Thread class starts a new thread. Program 19.1 illustrates how a thread is
created and executed.

Program 19.1 | CREATING AND STARTING THREADS
L]

using System;
using System.Threading;
public class AOne
{
public void First()
{
Console.WriteLine(“First method of AOne class is running on T1 thread.");
Thread.Sleep(1000);
Console.WriteLine(“The First method called by T1 thread has ended.");
public static void Second()
{
Console. WriteLine("Second method of AOne class is running on T2 thread.”);
Thread.Sleep(2000);
Console.WriteLine(“The Second method called by T2 thread has ended.”);
}
!

© IETE 20

DC69

C# & .NET

DEC 2015

public class ThreadExp
{
public static int Main(String[] args)
{
Console.WriteLine(“Example of Threading”);
AOne a = new ADne();
Thread T1 = new Thread(new ThreadStart(a.First)); // Creating thread T1
T1.Start(); // Starting thread T1
Console.WriteLine(“T1 thread started.”);
Thread T2 = new Thread(new ThreadStart(AOne.5econd)); Creating T2
T2.Start(); Starting thread T2
Console.WriteLine(“T2 thread started.”);
return 0;

In the above C# program, two threads T1 and T2 have been created and started using the Start()
method of the Thread class. In case of T1 thread. the execution starts from First method defined in
the AOne class while in case of T2 thread the execution starts from Second method, which 1s a static

method. The output of the above program 1s:

Example of Threading

First method of AOne class is running on T1 thread.
Ti thread started.

Second method of AOne class is running on T2 thread.
T2 thread started.

The First method called by Tl thread has ended.

The Second method called by T2 thread has ended.
Press any key to continue . . .

TEXT BOOK

© IETE

Programming in C# - A Primer, E. Balagurusamy, Second Edition, TMH, 2008

21

