
DC62 DATABASE MANAGEMENT SYSTEMS DEC 2015

© IETE 1

 Q.2 a. In large organizations many people are involved in design, use and maintenance of
large databases with hundreds of users. Describe in detail the actors on the scene and
workers behind the scene. (8)

Answer:
Actors on the scene

1. Database administrator: In any organization where many persons use the same resources, there is a
need for a chief administrator to oversee and manage these resources. In a database environment, the
primary resource is the database itself and the secondary resource is the DBMS and related software.
Administering these resources is the responsibility of the database administrator (DBA). The DBA is
responsible for authorizing access to the database, for coordinating and monitoring its use, and for
acquiring software and hardware resources as needed. The DBA is accountable for problems such as
breach of security or poor system response time. In large organizations, the DBA is assisted by a staff that
helps carry out these functions.

2. Database designers are responsible for identifying the data to be stored in the database and for
choosing appropriate structures to represent and store this data. These tasks are mostly undertaken
before the database is actually implemented and populated with data. It is the responsibility of database
designers to communicate with all prospective database users, in order to understand their requirements,
and to come up with a design that meets these requirements. In many cases, the designers are on the
staff of the DBA and may be assigned other staff responsibilities after the database design is completed.
Database designers typically interact with each potential group of users and develop a view of the
database that meets the data and processing requirements of this group. These views are then analyzed
and integrated with the views of other user groups. The final database design must be capable of
supporting the requirements of all user groups.

3. End Users: End users are the people whose jobs require access to the database for querying, updating,
and generating reports; the database primarily exists for their use. There are several categories of end
users:

a. Casual end users occasionally access the database, but they may need different information each
time. They use a sophisticated database query language to specify their requests and are
typically middle- or high-level managers or other occasional browsers.

b. Naive or parametric end users make up a sizable portion of database end users. Their main job
function revolves around constantly querying and updating the database, using standard types of
queries and updates—called canned transactions—that have been carefully programmed and
tested.

c. Sophisticated end users include engineers, scientists, business analysts, and others who
thoroughly familiarize themselves with the facilities of the DBMS so as to implement their
applications to meet their complex requirements.

d. Standalone users maintain personal databases by using ready-made program packages that
provide easy-to-use menu- or graphics-based interfaces. An example is the user of a tax package
that stores a variety of personal financial data for tax purposes

Workers behind the scene
1. DBMS system designers and implementers are persons who design and implement the DBMS modules

and interfaces as a software package. A DBMS is a complex software system that consists of many
components or modules, including modules for implementing the catalog, query language, interface
processors, data access, concurrency control, recovery, and security. The DBMS must interface with other
system software, such as the operating system and compilers for various programming languages.

2. Tool developers include persons who design and implement tools—the software packages that facilitate
database system design and use, and help improve performance. Tools are optional packages that are
often purchased separately. They include packages for database design, performance monitoring, natural
language or graphical interfaces, prototyping, simulation, and test data generation. In many cases,
independent software vendors develop and market these tools.

3. Operators and maintenance personnel are the system administration personnel who are responsible for
the actual running and maintenance of the hardware and software environment for the database system.

 (5 marks for actors on the scene and 3 marks for actors behind the scene)

3

5

DC62 DATABASE MANAGEMENT SYSTEMS DEC 2015

© IETE 2

 b. What is three-schema architecture? Discuss its role in data independence. (8)
Answer:
The goal of the three-schema architecture is to separate the user applications and the physical

database. In this architecture, schemas can be defined at the following three levels:
1. The internal level has an internal schema, which describes the physical storage structure of the
database. The internal schema uses a physical data model and describes the complete details of
data storage and access paths for the database.
2. The conceptual level has a conceptual schema, which describes the structure of the whole
database for a community of users. The conceptual schema hides the details of physical storage
structures and concentrates on describing entities, data types, relationships, user operations, and
constraints. A high-level data model or an implementation data model can be used at this level.
3. The external or view level includes a number of external schemas or user views. Each external
schema describes the part of the database that a particular user group is interested in and hides
the rest of the database from that user group. A high-level data model or an implementation data
model can be used at this level.
The three-schema architecture can be used to explain the concept of data independence, which
can be defined as the capacity to change the schema at one level of a database system without
having to change the schema at the next higher level. We can define two types of data
independence:
1. Logical data independence is the capacity to change the conceptual schema without having to
change external schemas or application programs. We may change the conceptual schema to
expand the database (by adding a record type or data item), or to reduce the database (by
removing a record type or data item). In the latter case, external schemas that refer only to the
remaining data should not be affected. Only the view definition and the mappings need be
changed in a DBMS that supports logical data independence. Application programs that
reference the external schema constructs must work as before, after the conceptual schema
undergoes a logical reorganization. Changes to constraints can be applied also to the conceptual
schema without affecting the external schemas or application programs.
2. Physical data independence is the capacity to change the internal schema without having to
change the conceptual (or external) schemas. Changes to the internal schema may be needed
because some physical files had to be reorganized—for example, by creating additional access
structures—to improve the performance of retrieval or update. If the same data as before remains
in the database, we should not have to change the conceptual schema. For example, providing an
access path to improve retrieval of SECTION records by Semester and Year should not require a
query such as "list all sections offered in fall 1998" to be changed, although the query would be
executed more efficiently by the DBMS by utilizing the new access path.

(4 marks for three-schema architecture and 4 marks for role in data independence)

 Q.3 Being a database administrator, you are given the following requirements for a
simple database of the National Hockey League (NHL): the NHL has many teams,
each team has a name, a city, a coach, a captain, and a set of players, each player
belongs to only one team, each player has a name, a position, a skill level, and a set of
injury records, a team captain is also a player, a game is played between two teams
(referred to as host_team and guest_team) and has a date (such as May 11th, 2016)
and a score (such as 2 to 4).

 Construct an ER diagram for the NHL database and clearly indicate the cardinality
mappings as well as role indicators in your ER diagram. (16)

Answer:

4

4

DC62 DATABASE MANAGEMENT SYSTEMS DEC 2015

© IETE 3

Divide marks on the basis of entities identified and correct relationships and
attributes

Primary keys (3), Attributes (3), Entity set (3), Relationships (3), Weat Entity Set (2),
Connections (one to one) (one to many) (2)

 Q.4 a. Discuss the binary relational operations JOIN and DIVISION with examples. (12)
Answer:
The JOIN operation, denoted by , is used to combine related tuples from two relations into single tuples. This
operation is very important for any relational database with more than a single relation, because it allows us to process
relationships among relations. To illustrate join, suppose that we want to retrieve the name of the manager of each
department. To get the manager’s name, we need the department tuple. We do this by using the JOIN operation, and
then projecting the result over the necessary attributes, as follows:

DEPT_MGR←DEPARTMENT MGRSSN=SSN EMPLOYEE

RESULT← DNAME, LNAME, FNAME(DEPT_MGR)

The general form of a JOIN operation on two relations R(A1, A2, . . ., An) and S(B1, B2, . . ., Bm) is:

R <join condition>S
The result of the JOIN is a relation Q with n + m attributes Q(A1, A2, . . ., An, B1, B2, . . ., Bm) in that order; Q has one
tuple for each combination of tuples—one from R and one from S—whenever the combination satisfies the join condition. The
join condition is specified on attributes from the two relations R and S and is evaluated for each combination of tuples.
Each tuple combination for which the join condition evaluates to true is included in the resulting relation Q as a single
combined tuple.

A general join condition is of the form:

<condition> AND <condition> AND . . . AND <condition>

where each condition is of the form Ai Bj, Ai is an attribute of R, Bj is an attribute of S, Ai and Bj have the same
domain, and (theta) is one of the comparison operators {=, <, 1, >, , }. A JOIN operation with such a general join
condition is called a THETA JOIN. Tuples whose join attributes are null do not appear in the result. In that sense, the
join operation does not necessarily preserve all of the information in the participating relations.

The most common JOIN involves join conditions with equality comparisons only. Such a JOIN, where the only
comparison operator used is =, is called an EQUIJOIN. In the result of an EQUIJOIN we always have one or more
pairs of attributes that have identical values in every tuple. Because one of each pair of attributes with identical values is
superfluous, a new operation called NATURAL JOIN—denoted by *—was created to get rid of the second
(superfluous) attribute in an EQUIJOIN condition . The standard definition of NATURAL JOIN requires that the two
join attributes (or each pair of join attributes) have the same name in both relations. If this is not the case, a renaming
operation is applied first. In the following example, we first rename the DNUMBER attribute of DEPARTMENT to DNUM—
so that it has the same name as the DNUM attribute in PROJECT—then apply NATURAL JOIN:

7

DC62 DATABASE MANAGEMENT SYSTEMS DEC 2015

© IETE 4

PROJ_DEPT←PROJECT * (DNAME, DNUM,MGRSSN,MGRSTARTDATE)(DEPARTMENT)

The attribute DNUM is called the join attribute. In the PROJ_DEPT relation, each tuple combines a PROJECT tuple with
the DEPARTMENT tuple for the department that controls the project, but only one join attribute is kept.
The DIVISION Operation

The DIVISION operation denoted by is useful for a special kind of query that sometimes occurs in database
applications. An example is "Retrieve the names of employees who work on all the projects that ‘John Smith’ works on."
To express this query using the DIVISION operation, proceed as follows. First, retrieve the list of project numbers that
‘John Smith’ works on in the intermediate relation SMITH_PNOS:

SMITH← FNAME=’John’ AND LNAME=’Smith’(EMPLOYEE)

SMITH_PNOS← PNO(WORKS_ON ESSN=SSN SMITH)

Next, create a relation that includes a tuple <PNO, ESSN> whenever the employee whose social security number is
ESSN works on the project whose number is PNO in the intermediate relation SSN_PNOS:

SSN_PNOS← ESSN,PNO (WORKS_ON)

Finally, apply the DIVISION operation to the two relations, which gives the desired employees’ social security
numbers:

SSNS(SSN) ←SSN_PNOS ÷ SMITH_PNOS

RESULT← FNAME, LNAME(SSNS * EMPLOYEE)
In general, the DIVISION operation is applied to two relations R(Z) ÷ S(X), where X Z. Let Y = Z - X (and hence
Z = X D Y); that is, let Y be the set of attributes of R that are not attributes of S. The result of DIVISION is a
relation T(Y) that includes a tuple t if tuples tR appear in R with tR[Y] = t, and with tR[X] = tS for every tuple tS in S.
This means that, for a tuple t to appear in the result T of the DIVISION, the values in t must appear in R in
combination with every tuple in S
(7 marks for Join operation with examples and 5 marks for division operation with examples.
Deduct 50% marks if examples not given)

 b. Outline the approaches used for mapping of binary 1:1 relationship in ER to
relational database schema. (4)

Answer:
For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that

correspond to the entity types participating in R. There are three possible approaches:
1. Foreign Key approach: Choose one of the relations-say S-and include a foreign key in S the

primary key of T. It is better to choose an entity type with total participation in R in the role of
S. Example: 1:1 relation MANAGES is mapped by choosing the participating entity type
DEPARTMENT to serve in the role of S, because its participation in the MANAGES
relationship type is total.

2. Merged relation option: An alternate mapping of a 1:1 relationship type is possible by merging the
two entity types and the relationship into a single relation. This may be appropriate when both
participations are total.

3. Cross-reference or relationship relation option: The third alternative is to set up a third relation R
for the purpose of cross-referencing the primary keys of the two relations S and T representing
the entity types.

4 Marks for any of two options

 Q.5 a. Explain with an example, how SQL implement the entity integrity and referential
integrity constraints of the relational data model. (8)

Answer:
The entity integrity constraint states that no primary key value can be null. This is because the
primary key value is used to identify individual tuples in a relation; having null values for the
primary key implies that we cannot identify some tuples. For example, if two or more tuples
had null for their primary keys, we might not be able to distinguish them.

2

4

5

DC62 DATABASE MANAGEMENT SYSTEMS DEC 2015

© IETE 5

Key constraints and entity integrity constraints are specified on individual relations. The
referential integrity constraint is specified between two relations and is used to maintain the
consistency among tuples of the two relations. Informally, the referential integrity constraint
states that a tuple in one relation that refers to another relation must refer to an existing tuple in
that relation. For example, the attribute DNO of EMPLOYEE gives the department number for
which each employee works; hence, its value in every EMPLOYEE tuple must match the
DNUMBER value of some tuple in the DEPARTMENT relation.
To define referential integrity more formally, we first define the concept of a foreign key. The
conditions for a foreign key, given below, specify a referential integrity constraint between the
two relation schemas R1 and R2. A set of attributes FK in relation schema R1 is a foreign key
of R1 that references relation R2 if it satisfies the following two rules:
1. The attributes in FK have the same domain(s) as the primary key attributes PK of R2; the
attributes FK are said to reference or refer to the relation R2.
2. A value of FK in a tuple t1 of the current state r1(R1) either occurs as a value of PK for
some tuple t2 in the current state r2(R2) or is null. In the former case, we have t1[FK] =
t2[PK], and we say that the tuple t1 references or refers to the tuple t2. R1 is called the
referencing relation and R2 is the referenced relation.
In a database of many relations, there are usually many referential integrity constraints.
Referential integrity constraints typically arise from the relationships among the entities
represented by the relation schemas. For example, In the EMPLOYEE relation, the attribute
DNO refers to the department for which an employee works; hence, we designate DNO to be a
foreign key of EMPLOYEE, referring to the DEPARTMENT relation. This means that a value
of DNO in any tuple t1 of the EMPLOYEE relation must match a value of the primary key of
DEPARTMENT—the DNUMBER attribute—in some tuple t2 of the DEPARTMENT
relation, or the value of DNO can be null if the employee does not belong to a department.
Thus the tuple for employee ‘John Smith’ references the tuple for the ‘Research’ department,
indicating that ‘John Smith’ works for this department.
(4 marks for the entity integrity and referential integrity constraints each with examples.
Deduct 50% marks if examples not given)

 b. Discuss with example how GROUP BY clause works. What is the difference between
the WHERE and HAVING clause? (8)

Answer:

A query in SQL can consist of up to six clauses, but only the first two—SELECT and FROM—are
mandatory. The clauses are specified in the following order, with the clauses between square
brackets [. . .] being optional:

SELECT <attribute and function list>
FROM <table list>
[WHERE <condition>]
[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]
[ORDER BY <attribute list>];
The SELECT-clause lists the attributes or functions to be retrieved. The FROM-clause specifies all

relations (tables) needed in the query, including joined relations, but not those in nested
queries. The WHERE-clause specifies the conditions for selection of tuples from these
relations, including join conditions if needed. GROUP BY specifies grouping attributes,
whereas HAVING specifies a condition on the groups being selected rather than on the
individual tuples. The built-in aggregate functions COUNT, SUM, MIN, MAX, and AVG are
used in conjunction with grouping, but they can also be applied to all the selected tuples in a
query without a GROUP BY clause. For example, we may want to find the average salary of

4

2

2

2

DC62 DATABASE MANAGEMENT SYSTEMS DEC 2015

© IETE 6

employees in each department or the number of employees who work on each project. In these
cases we need to group the tuples that have the same value of some attribute(s), called the
grouping attribute(s), and we need to apply the function to each such group independently.
SQL has a GROUP BY-clause for this purpose. The GROUP BY-clause specifies the
grouping attributes, which should also appear in the SELECT-clause, so that the value
resulting from applying each function to a group of tuples appears along with the value of the
grouping attribute(s). For example

Query 1:For each department, retrieve the department number, the number of employees in the
department, and their average salary.
SELECT DNO, COUNT (*), AVG (SALARY)
FROM EMPLOYEE
GROUP BY DNO;
Or
Query 2:For each project, retrieve the project number, the project name, and the number of
employees who work on that project.
SELECT PNUMBER, PNAME, COUNT (*)
FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO
GROUP BY PNUMBER, PNAME;
Sometimes we want to retrieve the values of these functions only for groups that satisfy certain
conditions. For example, suppose that we want to modify Query 2 so that only projects with more
than two employees appear in the result. SQL provides a HAVING-clause, which can appear in
conjunction with a GROUP BY-clause, for this purpose. HAVING provides a condition on the group
of tuples associated with each value of the grouping attributes; and only the groups that satisfy the
condition are retrieved in the result of the query as shown in query 3.

Query 3: For each project on which more than two employees work, retrieve the project
number, the project name, and the number of employees who work on the project.
SELECT PNUMBER, PNAME, COUNT (*)
FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO
GROUP BY PNUMBER, PNAME
HAVING COUNT (*) > 2;

Thus a query is evaluated conceptually by applying first the FROM-clause (to identify all tables
involved in the query or to materialize any joined tables), followed by the WHERE-clause, and then
GROUP BY and HAVING.

(Deduct 50% marks if examples not given)

 Q.6 An invoice management system stores the invoice details as follows:

Invoice
No.

Invoice
date

Order
no

Challan
no

Cust
no

Cust
name

Item
no

Item
desc.

QTY
sold

rate Discount Invoice
value

112 12/8/2014 1 1 C1 SRIKANT I1 PEPSI 2 25 NIL 75
112 12/8/2014 2 1 C1 SRIKANT I2 BUTTER 1 60 NIL 75
113 16/8/2014 1 1 C4 KAVITA I4 BREAD 1 22 NIL 22
114 16/8/2014 1 1 C1 SRIKANT I8 BISCUIT 2 60 NIL 92
114 16/8/2014 2 1 C1 SRIKANT I2 PEPSI 4 25 NIL 92
Apply normalization until you cannot decompose the invoice relational table further. State reasons
behind each decomposition. (16)

2

2

DC62 DATABASE MANAGEMENT SYSTEMS DEC 2015

© IETE 7

Answer:
First Normal form

Invoice Table
Invoice
No.

Invoice
date

Order
no

Challan
no

Cust
no

Cust name Invoice
value

112 12/8/2014 1 1 C1 SRIKANT 75
113 16/8/2014 1 1 C4 KAVITA 22
114 16/8/2014 1 1 C1 SRIKANT 92

Invoice Items
Invoice
No.

Item
no

Item
desc.

QTY
sold

rate Discount

112 I1 PEPSI 2 25 NIL

112 I2 BUTTER 1 60 NIL
113 I4 BREAD 1 22 NIL
114 I8 BISCUIT 2 60 NIL

114 I2 PEPSI 4 25 NIL

Second Normal Form

Invoice Table
Invoice
No.

Invoice
date

Order
no

Challan
no

Cust
no

Cust name Invoice
value

112 12/8/2014 1 1 C1 SRIKANT 75
113 16/8/2014 1 1 C4 KAVITA 22

114 16/8/2014 1 1 C1 SRIKANT 92

Invoice Items
Invoice
No.

Item
no

QTY
sold

Discount

112 I1 2 NIL
112 I2 1 NIL
113 I4 1 NIL

114 I8 2 NIL
114 I2 4 NIL

Items table
Item
no

Item
desc.

rate

I1 PEPSI 25
I2 BUTTER 60

I4 BREAD 22

4+2

4

DC62 DATABASE MANAGEMENT SYSTEMS DEC 2015

© IETE 8

I8 BISCUIT 60
I2 PEPSI 25

Third Normal Form

Invoice Table
Invoice
No.

Invoice
date

Order
no

Challan
no

Cust
no

Invoice
value

112 12/8/2014 1 1 C1 75
113 16/8/2014 1 1 C4 22

114 16/8/2014 1 1 C1 92

Customer Table
Cust
no

Cust name

C1 SRIKANT
C4 KAVITA
C1 SRIKANT

Invoice Items
Invoice
No.

Item
no

QTY
sold

Discount

112 I1 2 NIL
112 I2 1 NIL
113 I4 1 NIL

114 I8 2 NIL
114 I2 4 NIL

Items table
Item
no

Item
desc.

rate

I1 PEPSI 25
I2 BUTTER 60
I4 BREAD 22

I8 BISCUIT 60
I2 PEPSI 25

[4 marks for each normal form and 4+2 marks for justification for all]

 Q.7 a. What is multivalued dependency? When does it arise and what type of constraints
does it specify? Explain with example. (8)

Answer:
Definition: A multivalued dependency (MVD) X —>> Y specified on relation schema R, where X

and Y are both subsets of R, specifies the following constraint on any relation state r of R: If
two tuples t1 and t2 exist in r such that t1[X] = t2[X], then two tuples t3 and t4 should also
exist in r with the following properties, where we use Z to denote (R 2 (X υ Y)):

• t3[X] = t4[X] = t1[X] = t2[X].
2

4+2

DC62 DATABASE MANAGEMENT SYSTEMS DEC 2015

© IETE 9

• t3[Y] = t1[Y] and t4[Y] = t2[Y].
• t3[Z] = t2[Z] and t4[Z] = t1[Z].

An MVD X —>> Y in R is called a trivial MVD if (a) Y is a subset of X, or (b) X υ Y
= R.

 Multivalued dependencies are a consequence of first normal form (1NF) which disallowed
an attribute in a tuple to have a set of values. If we have two or more multivalued
independent attributes in the same relation schema, we get into a problem of having to
repeat every value of one of the attributes with every value of the other attribute to keep the
relation state consistent and to maintain the independence among the attributes involved.
This constraint is specified by a multivalued dependency.

 For example, consider the relation EMP shown in Figure 15.04(a). A tuple in this EMP
relation represents the fact that an employee whose name is ENAME works on the project
whose name is PNAME and has a dependent whose name is DNAME. An employee may
work on several projects and may have several dependents, and the employee’s projects and
dependents are independent of one another (Note 6). To keep the relation state consistent,
we must have a separate tuple to represent every combination of an employee’s dependent
and an employee’s project. This constraint is specified as a multivalued dependency on the
EMP relation. Informally, whenever two independent 1:N relationships A:B and A:C are
mixed in the same relation, an MVD may arise.

 (4 marks for definition and 4 marks for next part)

 b. Define Join dependencies. Explain fifth normal form with the help of an example. (8)
Answer:
Definition: A join dependency (JD), denoted by JD(R1, R2, ..., Rn), specified on relation schema R,

specifies a constraint on the states r of R.
 The constraint states that every legal state r of R should have a non-additive join

decomposition into R1, R2, ..., Rn; that is, for every such r we have

 * (R1(r), R2(r), ..., Rn(r)) = r

 A join dependency JD(R1, R2, ..., Rn), specified on relation schema R, is a trivial JD if one of
the relation schemas Ri in JD(R1, R2, ..., Rn) is equal to R.

Definition: A relation schema R is in fifth normal form (5NF) (or Project-Join Normal Form
(PJNF)) with respect to a set F of functional, multivalued, and join dependencies if,

 for every nontrivial join dependency JD(R1, R2, ..., Rn) in F+ (that is, implied
by F),

 every R i is a superkey of R.

3

2

3
+
2

DC62 DATABASE MANAGEMENT SYSTEMS DEC 2015

© IETE 10

AnyExample

(3 marks for definition and 5 marks for next part]

 Q.8 a. Discuss the techniques that allow a hash file to expand and shrink dynamically.
Highlight advantages and disadvantages of each. (8)

Answer:
Hashing techniques are adapted to allow the dynamic growth and shrinking of the number of file
records. These techniques include the following: dynamic hashing, extendible hashing, and linear
hashing. Both dynamic and extendible hashing use the binary representation of the hash value
h(K) in order to access a directory. In dynamic hashing the directory is a binary tree. In extendible
hashing the directory is an array of size 2d where d is called the global depth.
Extendible Hashing :In extendible hashing, a type of directory—an array of 2d bucket addresses—
is maintained, where d is called the global depth of the directory. The integer value corresponding to
the first (high-order) d bits of a hash value is used as an index to the array to determine a directory
entry, and the address in that entry determines the bucket in which the corresponding records are
stored. However, there does not have to be a distinct bucket for each of the 2d directory locations.
Several directory locations with the same first d’ bits for their hash values may contain the same
bucket address if all the records that hash to these locations fit in a single bucket. A local depth d’—
stored with each bucket—specifies the number of bits on which the bucket contents are based.
The main advantage of extendible hashing that makes it attractive is that the performance of the file
does not degrade as the file grows, as opposed to static external hashing where collisions increase
and the corresponding chaining causes additional accesses. In addition, no space is allocated in
extendible hashing for future growth, but additional buckets can be allocated dynamically as needed.
The space overhead for the directory table is negligible. The maximum directory size is 2k, where k
is the number of bits in the hash value. Another advantage is that splitting causes minor
reorganization in most cases, since only the records in one bucket are redistributed to the two new
buckets. The only time a reorganization is more expensive is when the directory has to be doubled
(or halved). A disadvantage is that the directory must be searched before accessing the buckets

4

2

3

3

DC62 DATABASE MANAGEMENT SYSTEMS DEC 2015

© IETE 11

themselves, resulting in two block accesses instead of one in static hashing. This performance
penalty is considered minor and hence the scheme is considered quite desirable for dynamic files.
 Linear Hashing: The idea behind linear hashing is to allow a hash file to expand and shrink its
number of buckets dynamically without needing a directory. Suppose that the file starts with M buckets
numbered 0, 1, . . . , M - 1 and uses the mod hash function h(K) = K mod M; this hash function is called
the initial hash function . Overflow because of collisions is still needed and can be handled by
maintaining individual overflow chains for each bucket. However, when a collision leads to an overflow
record in any file bucket, the first bucket in the file—bucket 0—is split into two buckets: the original
bucket 0 and a new bucket M at the end of the file. The records originally in bucket 0 are distributed
between the two buckets based on a different hashing function (K) = K mod 2M. A key property of the
two hash functions and is that any records that hashed to bucket 0 based on will hash to either bucket 0
or bucket M based on ; this is necessary for linear hashing to work. As further collisions lead to overflow
records, additional buckets are split in the linear order 1, 2, 3, If enough overflows occur, all the
original file buckets 0, 1, . . . , M - 1 will have been split, so the file now has 2M instead of M buckets,
and all buckets use the hash function . Hence, the records in overflow are eventually redistributed into
regular buckets, using the function via a delayed split of their buckets. There is no directory; only a value
n—which is initially set to 0 and is incremented by 1 whenever a split occurs—is needed to determine
which buckets have been split. To retrieve a record with hash key value K, first apply the function to K; if
(K) < n, then apply the function on K because the bucket is already split. Initially, n = 0, indicating that
the function applies to all buckets; n grows linearly as buckets are split.

Advantage: No directory concept, Split may not happen at the bucket at which overflow happens.
Gives good results for equality search (under uniform distribution assumption). Disadvantage: Poor
performance under skewed distribution – as many buckets may be nearly empty

 b. Explain how does a B-tree differ from a B+ tree with the help of an example? Why is
a B+ tree usually preferred as an access structure to a data file? (8)

Answer:
Because of the insertion and deletion problem, most multi-level indexes use B-tree or B+-tree data
structures, which leave space in each tree node (disk block) to allow for new index entries. These
data structures are variations of search trees that allow efficient insertion and deletion of new search
values. In B-Tree and B+-Tree data structures, each node corresponds to a disk block. Each node is
kept between half-full and completely full. An insertion into a node that is not full is quite efficient;
if a node is full the insertion causes a split into two nodes. Splitting may propagate to other tree
levels. A deletion is quite efficient if a node does not become less than half full. If a deletion causes a
node to become less than half full, it must be merged with neighboring nodes. In a B-tree, pointers to
data records exist at all levels of the tree whereas in a B+-tree, all pointers to data records exists at
the leaf-level nodes. A B+-tree can have less levels (or higher capacity of search values) than the

1

3

2

2

DC62 DATABASE MANAGEMENT SYSTEMS DEC 2015

© IETE 12

corresponding B-tree, thus it is more preferred. Example

 Q.9 a. What is meant by the term heuristic optimization? Discuss the main heuristics that
are applied during query optimization. (6)

Answer:
Cost-based optimization is expensive, even with dynamic programming. Systems may use heuristics

to reduce the number of choices that must be made in a cost-based fashion. Heuristic
optimization transforms the query-tree by using a set of rules that typically (but not in all
cases) improve execution performance:

• Perform selection early (reduces the number of tuples)
• Perform projection early (reduces the number of attributes)

2

4

DC62 DATABASE MANAGEMENT SYSTEMS DEC 2015

© IETE 13

• Perform most restrictive selection and join operations before other similar operations.
Some systems use only heuristics, others combine heuristics with partial cost-based optimization.
Direction in heuristics is to reduce the size of intermediate results.
The main heuristic is to first apply the operations that reduce the size of intermediate results
E.g., Apply SELECT and PROJECT operations before applying the JOIN or other binary operations.
General heuristic optimization Algorithm

 1- Push selections down
 2- Apply more restrictive selections first

 Selectivity estimated by DBMS
 3- Combine cross products and selections to become joins
 4- Push projections down

The main heuristics that are applied during query optimization.
1. Deconstruct conjunctive selections into a sequence of single selection operations (Equiv.

rule 1.).
2. Move selection operations down the query tree for the earliest possible execution (Equiv.

rules 2, 7a, 7b, 11).
3. Execute first those selection and join operations that will produce the smallest relations

(Equiv. rule 6).
4. Replace Cartesian product operations that are followed by a selection condition by join

operations (Equiv. rule 4a).

5. Deconstruct and move as far down the tree as possible lists of projection attributes,
creating new projections where needed (Equiv. rules 3, 8a, 8b, 12).
6. Identify those subtrees whose operations can be pipelined, and execute them using
pipelining). (6)

 b. Discuss the cost components for a cost function that is used to estimate query
execution cost. Which cost components are used most often as the basis for cost
functions? Discuss the use of cost function with the help of an example. (10)

Answer:
The cost of executing a query includes the following components:

1. Access cost to secondary storage: This is the cost of searching for, reading, and writing data
blocks that reside on secondary storage, mainly on disk. The cost of searching for records in a
file depends on the type of access structures on that file, such as ordering, hashing, and
primary or secondary indexes. In addition, factors such as whether the file blocks are
allocated contiguously on the same disk cylinder or scattered on the disk affect the access
cost.

2. Storage cost: This is the cost of storing any intermediate files that are generated by an
execution strategy for the query.

3. Computation cost: This is the cost of performing in-memory operations on the data buffers
during query execution. Such operations include searching for and sorting records, merging
records for a join, and performing computations on field values.

4. Memory usage cost: This is the cost pertaining to the number of memory buffers needed
during query execution.

5. Communication cost: This is the cost of shipping the query and its results from the database
site to the site or terminal where the query originated.

3

4

DC62 DATABASE MANAGEMENT SYSTEMS DEC 2015

© IETE 14

For large databases, the main emphasis is on minimizing the access cost to secondary storage. Simple
cost functions ignore other factors and compare different query execution strategies in terms of the
number of block transfers between disk and main memory. For smaller databases, where most of the
data in the files involved in the query can be completely stored in memory, the emphasis is on
minimizing computation cost. In distributed databases, where many sites are involved,
communication cost must be minimized also. It is difficult to include all the cost components in a
(weighted) cost function because of the difficulty of assigning suitable weights to the cost
components. That is why some cost functions consider a single factor only—disk access.
A simple example to illustrate how estimates cost may be used. Suppose that the EMPLOYEE file
has = 10,000 records stored in = 2000 disk blocks with blocking factor = 5 records/block and the
following access paths:

1. A clustering index on SALARY, with levels = 3 and average selection cardinality = 20.
2. A secondary index on the key attribute SSN, with = 4 (= 1).
3. A secondary index on the nonkey attribute DNO, with = 2 and first-level index blocks = 4.

There are = 125 distinct values for DNO, so the selection cardinality of DNO is sDNO = =
80.

4. A secondary index on SEX, with = 1. There are = 2 values for the sex attribute, so the average
selection cardinality is = = 5000.

We illustrate the use of cost functions with the following examples:
(OP1): sSSN=‘123456789’(EMPLOYEE)
(OP2): sDNO>5(EMPLOYEE)
(OP3): sDNO=5(EMPLOYEE)
(OP4): sDNO=5 AND SALARY>30000 AND SEX=‘F’(EMPLOYEE)
The cost of the brute force (linear search) option S1 will be estimated as = = 2000 (for a selection on
a non key attribute) or = = 1000 (average cost for a selection on a key attribute). For OP1 we can use
either method S1 or method S6a; the cost estimate for S6a is = + 1 = 4 + 1 = 5, and it is chosen over
Method S1, whose average cost is = 1000. For OP2 we can use either method S1 (with estimated cost
= 2000) or method S6b (with estimated cost = + + = 2 + (4/2) + (10,000/2) = 5004), so we choose the
brute force approach for OP2. For OP3 we can use either method S1 (with estimated cost = 2000) or
method S6a (with estimated cost = + = 2 + 80 = 82), so we choose method S6a.
Finally, consider OP4, which has a conjunctive selection condition. We need to estimate the cost of
using any one of the three components of the selection condition to retrieve the records, plus the
brute force approach. The latter gives cost estimate = 2000. Using the condition (DNO = 5) first
gives the cost estimate = 82. Using the condition (SALARY > 30,000) first gives a cost estimate = +
= 3 + (2000/2) = 1003. Using the condition (SEX = ‘F’) first gives a cost estimate = + = 1 + 5000 =
5001. The optimizer would then choose method S6a on the secondary index on DNO because it has
the lowest cost estimate. The condition (DNO = 5) is used to retrieve the records, and the remaining
part of the conjunctive condition (SALARY > 30,000 AND SEX = ‘F’) is checked for each selected
record after it is retrieved into memory.

(2+3+5 marks for each part)
TEXT BOOK

I Fundamentals of Database Systems, Elmasri, Navathe, Somayajulu, Gupta, Pearson
Education, 2006

4

3

