
DC59/DC109 ANALYSIS & DESIGN OF INFORMATION SYSTEMS DEC 2015

© IETE 1

 Q.2 a. What do you mean by system analysis and design? Discuss. (8)
Answer:

Systems development can generally be thought of as having two major components: Systems
analysis and Systems design. System design is the process of planning a new business system or
one to replace or complement an existing system. But before this planning can be done, we
must thoroughly understand the old system and determine how computers can best be used to
make its operation more effective. System analysis, then, is the process of gathering and
interpreting facts, diagnosing problems, and using the information to recommend
improvements to the system. This is the job of the systems analyst.
Systems analysts do more than solve current problems. They are frequently called upon to help
handle the planned expansion of a business. In the case of the clothing store, the systems study
is future oriented, since no system currently exists. Analysts assess as carefully as possible what
the future needs of the business will be and what changes should be considered to meet these
needs. In this instance and in most others, analysts may recommend alternatives for improving
the situation. Usually more than one strategy is possible. Working with managers and
employees in the organization, systems analysts recommend which alternative to adopt, based
on such concerns as the suitability of the solution to the particular organization and setting, as
well as the employee support the solution is likely to have. Sometimes the time required to
develop one alternative, compared with others, is the most critical issue. Costs and benefits are
also important determinants. In the end, management, which will pay for and use the result,
actually decides which alternative to accept. Once this decision is made, a plan is developed to
implement the recommendation. The plan includes all systems design features, such as new
data capture needs, file specifications, operating procedures, equipment and personnel needs.
The systems design is like the blueprint for a building: it specifies all the features that are to be
in the finished product.

2 marks for defining SAD and 6 marks for discussions.

 b. What is meant by a System? What are the characteristics of a System? What
are the elements of a System? Explain in detail. (8)

Answer:
The term system is derived form the Greek word systema, which means an organized
relationship among functioning units or components. A system exists because it is designed to
achieve one or more objectives. We come into daily contact with the transportation system, the
telephone system, the accounting system, the production system, and, for over two decades,
the computer system. Similarly, we talk of the business system and of the organization as a
system consisting of interrelated departments (subsystems) such as production, sales,
personnel, and an information system. None of these subsystems is of much use as a single,
independent unit. When they are properly coordinated, however, the firm can function
effectively and profitably. There are more than a hundred definitions of the word system, but
most seem to have a common thread that suggests that a system is an orderly grouping of
interdependent components linked together according to a plan to achieve a specific objective.
The word component may refer to physical parts (engines, wings of aircraft, car), managerial
steps (planning, organizing and controlling), or a system in a multi level structure. The
component may be simple or complex, basic or advanced. They may be single computer with a
keyboard, memory, and printer or a series of intelligent terminals linked to a mainframe. In
either case, each component is part of the total system and has to do its share of work for the
system to achieve the intended goal. This orientation requires an orderly grouping of the
components for the design of a successful system.

DC59/DC109 ANALYSIS & DESIGN OF INFORMATION SYSTEMS DEC 2015

© IETE 2

The study of systems concepts, then, has three basic implications:
1. A system must be designed to achieve a predetermined objective.
2. Interrelationships and interdependence must exist among the components.
3. The objectives of the organization as a whole have a higher priority than the objectives of its
subsystems.

Characteristics of a System
Our definition of a system suggests some characteristics that are present in all systems:
organization (order), interaction, interdependence, integration and a central objective.
i. Organization: Organization implies structure and order. It is the arrangement of

components that helps to achieve objectives. In the design of a business system, for
example, the hierarchical relationships starting with the president on top and leading
downward to the blue – collar workers represents the organization structure. Such an
arrangement portrays a system – subsystem relationship, defines the authority
structure, specifies the formal flow of communication and formalizes the chain of
command. Like – wise, a computer system is designed around an input device, a central
processing unit, an output device and one or more storage units. When linked together
they work as a whole system for producing information.

ii. Interaction: Interaction refers to the manner in which each component functions with
other components of the system. In an organization, for example, purchasing must
interact with production, advertising with sales and payroll with personnel. In a
computer system, the central processing unit must interact with the input device to
solve a problem. In turn, the main memory holds programs and data that the arithmetic
unit uses for computation. The interrelationship between these components enables
the computer to perform.

iii. Interdependence: Interdependence means that parts of the organization or computer
system depend on one another. They are coordinated and linked together according to
a plan. One subsystem depends on the input of another subsystem for proper
functioning: that is, the output of one subsystem is the required input for another
subsystem. This interdependence is crucial in systems work. An integrated information
system is designed to serve the needs of authorized users (department heads,
managers, etc.) for quick access and retrieval via remote terminals. The
interdependence between the personnel subsystem and the organization’s users is
obvious. In summary, no subsystem can function in isolation because it is dependent on
the data (inputs) it receives from other subsystems to perform its required tasks. Figure
1: Organization Structure

DC59/DC109 ANALYSIS & DESIGN OF INFORMATION SYSTEMS DEC 2015

© IETE 3

iv. Integration: Integration refers to the holism of systems. Synthesis follows analysis to

achieve the central objective of the organization. Integration is concerned with how a
system is tied together. It is more than sharing a physical part or location. It means that
parts of the system work together within the system even though each part performs a
unique function. Successful integration will typically produce a synergistic effect and
greater total impact than if each component works separately.

v. Central objective: The last characteristic of a system is its central objective. Objectives
may be real or stated. Although a stated objective may be the real objective, it is not
uncommon for an organization to state one objective and operate to achieve another.
The important point is that users must know the central objective of a computer
application early in the Formal Organizational positions President Vice- President Sales
Vice- President Production Vice- President Accounting Department Head Assembly
Departing Head Painting Lines of Authority Workers Workers analysis for a successful
design and conversion. Political as well as organizational considerations often cloud the
real objective. This means that the analyst must work around such obstacles to identify
the real objective of the proposed change.

Elements of a System
In most cases, systems analysts operate in a dynamic environment where change is a way of life.
The environment may be a business firm, a business application, or a computer system. To
reconstruct a system, the following key elements must be considered:
1. Outputs and inputs.
2. Processor(s).
3. Control.
4. Feedback.
5. Environment.
6. Boundaries and interface.

2marks for defining system,
4 marks for characteristics of a system,

2 marks for element of system.

 Q.3 a. Explain the concept of Object Oriented Analysis and Design. What are its

purposes? What is Object Modeling? (8)

DC59/DC109 ANALYSIS & DESIGN OF INFORMATION SYSTEMS DEC 2015

© IETE 4

Answer:
Object-oriented analysis and design (OOAD) is a popular technical approach to analyzing, designing an
application, system, or business by applying the object-oriented paradigm and visual modeling
throughout the development life cycles to foster better stakeholder communication and product quality.
According to the popular guide Unified Process, OOAD in modern software engineering is best
conducted in an iterative and incremental way. Iteration by iteration, the outputs of OOAD activities,
analysis models for OOA and design models for OOD respectively, will be refined and evolve
continuously driven by key factors like risks and business value.
The purpose of any analysis activity in the software life-cycle is to create a model of the system's
functional requirements that is independent of implementation constraints.
The main difference between object-oriented analysis and other forms of analysis is that by the object-
oriented approach we organize requirements around objects, which integrate both behaviors
(processes) and states (data) modeled after real world objects that the system interacts with. In other or
traditional analysis methodologies, the two aspects: processes and data are considered separately. For
example, data may be modeled by ER diagrams, and behaviors by flow charts or structure charts.
The primary tasks in object-oriented analysis (OOA) are:
• Find the objects
• Organize the objects
• Describe how the objects interact
• Define the behavior of the objects
• Define the internals of the objects
Common models used in OOA are use cases and object models. Use cases describe scenarios for
standard domain functions that the system must accomplish. Object models describe the names, class
relations (e.g. Circle is a subclass of Shape), operations, and properties of the main objects. User-
interface mockups or prototypes can also be created to help understanding.
During object-oriented design (OOD), a developer applies implementation constraints to the conceptual
model produced in object-oriented analysis. Such constraints could include the hardware
and software platforms, the performance requirements, persistent storage and transaction, usability of
the system, and limitations imposed by budgets and time. Concepts in the analysis model which is
technology independent, are mapped onto implementing classes and interfaces resulting in a model of
the solution domain, i.e., a detailed description of how the system is to be built on concrete
technologies.
Object-oriented modeling (OOM) is a common approach to modeling applications, systems, and
business domains by using the object-oriented paradigm throughout the entire development life cycles.
OOM is a main technique heavily used by both OOA and OOD activities in modern software engineering.
Object-oriented modeling typically divides into two aspects of work: the modeling of dynamic behaviors
like business processes and use cases, and the modeling of static structures like classes and
components. OOA and OOD are the two distinct abstract levels (i.e. the analysis level and the design
level) during OOM. The Unified Modeling Language (UML) and SysML are the two popular international
standard languages used for object-oriented modeling.
The benefits of OOM are:

i. Efficient and effective communication: Users typically have difficulties in understanding
comprehensive documents and programming language codes well. Visual model diagrams can
be more understandable and can allow users and stakeholders to give developers feedback on
the appropriate requirements and structure of the system. A key goal of the object-oriented
approach is to decrease the "semantic gap" between the system and the real world, and to have
the system be constructed using terminology that is almost the same as the stakeholders use in
everyday business. Object-oriented modeling is an essential tool to facilitate this.

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Unified_Process
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Flowchart
http://en.wikipedia.org/wiki/Structure_chart
http://en.wikipedia.org/wiki/Object_model
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/SysML

DC59/DC109 ANALYSIS & DESIGN OF INFORMATION SYSTEMS DEC 2015

© IETE 5

ii. Useful and stable abstraction: Modeling helps coding. A goal of most modern software
methodologies is to first address "what" questions and then address "how" questions, i.e. first
determine the functionality the system is to provide without consideration of implementation
constraints, and then consider how to make specific solutions to these abstract requirements,
and refine them into detailed designs and codes by constraints such as technology and budget.
Object-oriented modeling enables this by producing abstract and accessible descriptions of both
system requirements and designs, i.e. models that define their essential structures and
behaviors like processes and objects, which are important and valuable development assets
with higher abstraction levels above concrete and complex source code.

4 marks for OOAD
4 marks for object modeling

 b. What are the essential elements of a design pattern? (8)
Answer:
In general, a pattern has four essential elements:

i. The pattern name is a handle we can use to describe a design problem, its solutions, and
consequences in a word or two. Naming a pattern immediately increases our design vocabulary.
It lets us design at a higher level of abstraction. Having a vocabulary for patterns lets us talk
about them with our colleagues, in our documentation, and even to ourselves. It makes it easier
to think about designs and to communicate them and their trade-offs to others. Finding good
names has been one of the hardest parts of developing our catalog.

ii. The problem describes when to apply the pattern. It explains the problem and its context. It
might describe specific design problems such as how to represent algorithms as objects. It might
describe class or object structures that are symptomatic of an inflexible design. Sometimes the
problem will include a list of conditions that must be met before it makes sense to apply the
pattern.

iii. The solution describes the elements that make up the design, their relationships,
responsibilities, and collaborations. The solution doesn't describe a particular concrete design or
implementation, because a pattern is like a template that can be applied in many different
situations. Instead, the pattern provides an abstract description of a design problem and how a
general arrangement of elements (classes and objects in our case) solves it.

iv. The consequences are the results and trade-offs of applying the pattern. Though consequences
are often unvoiced when we describe design decisions, they are critical for evaluating design
alternatives and for understanding the costs and benefits of applying the pattern. The
consequences for software often concern space and time trade-offs. They may address language
and implementation issues as well. Since reuse is often a factor in object-oriented design, the
consequences of a pattern include its impact on a system's flexibility, extensibility, or portability.
Listing these consequences explicitly helps you understand and evaluate them.

A design pattern names, abstracts, and identifies the key aspects of a common design structure that
make it useful for creating a reusable object-oriented design. The design pattern identifies the
participating classes and instances, their roles and collaborations, and the distribution of responsibilities.
Each design pattern Design Patterns: Elements of Reusable Object-Oriented Software focuses on a
particular object-oriented design problem or issue. It describes when it applies, whether it can be
applied in view of other design constraints, and the consequences and trade-offs of its use.

2 marks for each point

 Q.4 a. Define Data Modeling. Explain the process of Logical Data Modeling and
Physical Data Modeling. (8)

Answer:

DC59/DC109 ANALYSIS & DESIGN OF INFORMATION SYSTEMS DEC 2015

© IETE 6

Data modeling is a process used to define and analyze data requirements needed to support
the business processes within the scope of corresponding information systems in organizations.
Therefore, the process of data modeling involves professional data modellers working closely
with business stakeholders, as well as potential users of the information system.

According to Steve Hoberman, data modeling is the process of learning about the data, and the data
model is the end result of the data modeling process.[2]
There are three different types of data models produced while progressing from requirements to the
actual database to be used for the information system.[3] The data requirements are initially recorded
as a conceptual data model which is essentially a set of technology independent specifications about the
data and is used to discuss initial requirements with the business stakeholders. The conceptual model is
then translated into a logical data model, which documents structures of the data that can be
implemented in databases. Implementation of one conceptual data model may require multiple logical
data models. The last step in data modeling is transforming the logical data model to aphysical data
model that organizes the data into tables, and accounts for access, performance and storage details.
Data modeling defines not just data elements, but also their structures and the relationships between
them.[4]
Data modeling techniques and methodologies are used to model data in a standard, consistent,
predictable manner in order to manage it as a resource. The use of data modeling standards is strongly
recommended for all projects requiring a standard means of defining and analyzing data within an
organization, e.g., using data modeling:
• to assist business analysts, programmers, testers, manual writers, IT package selectors,

engineers, managers, related organizations and clients to understand and use an agreed semi-
formal model the concepts of the organization and how they relate to one another

• to manage data as a resource
• for the integration of information systems
• for designing databases/data warehouses (aka data repositories)
Data modeling may be performed during various types of projects and in multiple phases of projects.
Data models are progressive; there is no such thing as the final data model for a business or application.
Instead a data model should be considered a living document that will change in response to a changing
business. The data models should ideally be stored in a repository so that they can be retrieved,
expanded, and edited over time. Whitten et al. (2004) determined two types of data modeling:[5]
• Strategic data modeling: This is part of the creation of an information systems strategy, which

defines an overall vision and architecture for information systems is defined.Information
engineering is a methodology that embraces this approach.

• Data modeling during systems analysis: In systems analysis logical data models are created as
part of the development of new databases.

Data modeling is also used as a technique for detailing business requirements for specific databases. It is
sometimes called database modeling because a data model is eventually implemented in a database.
Logical data models represent the abstract structure of a domain of information. They are often
diagrammatic in nature and are most typically used in business processes that seek to capture things of
importance to an organization and how they relate to one another. Once validated and approved, the
logical data model can become the basis of a physical data model and inform the design of a database.
Logical data models should be based on the structures identified in a preceding conceptual data model,
since this describes the semantics of the information context, which the logical model should also
reflect. Even so, since the logical data model anticipates implementation on a specific computing
system, the content of the logical data model is adjusted to achieve certain efficiencies.
The term 'Logical Data Model' is sometimes used as a synonym of 'domain model' or as an alternative to
the domain model. While the two concepts are closely related, and have overlapping goals, a domain

http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Requirement
http://en.wikipedia.org/wiki/Business_process
http://en.wikipedia.org/wiki/Steve_Hoberman
http://en.wikipedia.org/wiki/Data_model
http://en.wikipedia.org/wiki/Data_model
http://en.wikipedia.org/wiki/Data_modeling#cite_note-2
http://en.wikipedia.org/wiki/Data_modeling#cite_note-RS001-3
http://en.wikipedia.org/wiki/Conceptual_schema
http://en.wikipedia.org/wiki/Conceptual_modeling
http://en.wikipedia.org/wiki/Logical_data_model
http://en.wikipedia.org/wiki/Physical_data_model
http://en.wikipedia.org/wiki/Physical_data_model
http://en.wikipedia.org/wiki/Data_modeling#cite_note-4
http://en.wikipedia.org/wiki/Jeffrey_L._Whitten
http://en.wikipedia.org/wiki/Data_modeling#cite_note-WBD04-5
http://en.wikipedia.org/wiki/Information_engineering
http://en.wikipedia.org/wiki/Information_engineering
http://en.wikipedia.org/wiki/Systems_analysis
http://en.wikipedia.org/wiki/Requirement
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Data_model
http://en.wikipedia.org/wiki/Physical_data_model
http://en.wikipedia.org/wiki/Conceptual_data_model
http://en.wikipedia.org/wiki/Synonym
http://en.wikipedia.org/wiki/Domain_model

DC59/DC109 ANALYSIS & DESIGN OF INFORMATION SYSTEMS DEC 2015

© IETE 7

model is more focused on capturing the concepts in the problem domain rather than the structure of
the data associated with that domain.
A physical data model (or database design) is a representation of a data design which takes into account
the facilities and constraints of a given database management system. In the lifecycle of a project it
typically derives from a logical data model, though it may be reverse-engineered from a
given database implementation. A complete physical data model will include all the database
artifacts required to create relationships between tables or to achieve performance goals, such
asindexes, constraint definitions, linking tables, partitioned tables or clusters. Analysts can usually use a
physical data model to calculate storage estimates; it may include specific storage allocation details for a
given database system.

2 marks for defining Data Modeling
3 marks for Logical Data Modeling

3 marks for Physical Data Modeling

 b. Give an overview of Requirement Analysis phase. What are the issues
associated with it? (8)

Answer:
Requirements analysis in systems engineering and software engineering, encompasses those
tasks that go into determining the needs or conditions to meet for a new or altered product or
project, taking account of the possibly conflicting requirements of the
various stakeholders, analyzing, documenting, validating and managing software or system
requirements.

Requirements analysis is critical to the success of a systems or software project. The requirements
should be documented, actionable, measurable, testable, traceable, related to identified business needs
or opportunities, and defined to a level of detail sufficient for system design.
Conceptually, requirements analysis includes three types of activities:
• Eliciting requirements:(e.g. the project charter or definition), business process documentation,

and stakeholder interviews. This is sometimes also called requirements gathering.
• Analyzing requirements: determining whether the stated requirements are clear, complete,

consistent and unambiguous, and resolving any apparent conflicts.
• Recording requirements: Requirements may be documented in various forms, usually including

a summary list and may include natural-language documents, use cases, user stories, or process
specifications.

Requirements analysis can be a long and tiring process during which many delicate psychological skills
are involved. New systems change the environment and relationships between people, so it is important
to identify all the stakeholders, take into account all their needs and ensure they understand the
implications of the new systems. Analysts can employ several techniques to elicit the requirements from
the customer. These may include the development of scenarios (represented as user stories in agile
methods), the identification of use cases, the use of workplace observation or ethnography,
holding interviews, or focus groups (more aptly named in this context as requirements workshops, or
requirements review sessions) and creating requirements lists. Prototyping may be used to develop an
example system that can be demonstrated to stakeholders. Where necessary, the analyst will employ a
combination of these methods to establish the exact requirements of the stakeholders, so that a system
that meets the business needs is produced.[citation needed] Requirements quality can be improved
through these and other methods
• Visualization. Using tools that promote better understanding of the desired end-product such as

visualization and simulation.
• Consistent use of templates. Producing a consistent set of models and templates to document

the requirements.

http://en.wikipedia.org/wiki/Database_design
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Project_lifecycle
http://en.wikipedia.org/wiki/Logical_data_model
http://en.wikipedia.org/wiki/Reverse-engineer
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/w/index.php?title=Database_artifact&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Database_artifact&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Relationships_between_table&action=edit&redlink=1
http://en.wikipedia.org/wiki/Index_(database)
http://en.wikipedia.org/w/index.php?title=Partitioned_table&action=edit&redlink=1
http://en.wikipedia.org/wiki/Cluster_(computing)
http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Requirement
http://en.wikipedia.org/wiki/Stakeholder_(corporate)
http://en.wikipedia.org/wiki/Requirements_elicitation
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/User_story
http://en.wikipedia.org/wiki/User_story
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Ethnography
http://en.wikipedia.org/wiki/Interview
http://en.wikipedia.org/wiki/Focus_group
http://en.wikipedia.org/wiki/Prototyping
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed

DC59/DC109 ANALYSIS & DESIGN OF INFORMATION SYSTEMS DEC 2015

© IETE 8

• Documenting dependencies. Documenting dependencies and interrelationships among
requirements, as well as any assumptions and congregations.

Requirements analysis issues
i. Stakeholder issues

Steve McConnell, in his book Rapid Development, details a number of ways users can inhibit
requirements gathering:
• Users do not understand what they want or users don't have a clear idea of their requirements
• Users will not commit to a set of written requirements
• Users insist on new requirements after the cost and schedule have been fixed
• Communication with users is slow
• Users often do not participate in reviews or are incapable of doing so
• Users are technically unsophisticated
• Users do not understand the development process
• Users do not know about present technology
This may lead to the situation where user requirements keep changing even when system or product
development has been started.

ii. Engineer/developer issues
Possible problems caused by engineers and developers during requirements analysis are:
• Engineer/developer starts coding/implementation immediately before they really understand

the whole requirement from analyst, which usually causes lots of defect fixing or reworking in
test/verification phase.

• Technical personnel and end-users may have different vocabularies. Consequently, they may
wrongly believe they are in perfect agreement until the finished product is supplied.

• Engineers and developers may try to make the requirements fit an existing system or model,
rather than develop a system specific to the needs of the client.

• Analysis may often be carried out by engineers or programmers, rather than personnel with the
domain knowledge to understand a client's needs properly.

iii. Attempted solutions
One attempted solution to communications problems has been to employ specialists in business or
system analysis.
Techniques introduced in the 1990s like prototyping, Unified Modeling Language (UML), use cases,
and Agile software development are also intended as solutions to problems encountered with previous
methods.
Also, a new class of application simulation or application definition tools have entered the market. These
tools are designed to bridge the communication gap between business users and the IT organization —
and also to allow applications to be 'test marketed' before any code is produced. The best of these tools
offer:
• electronic whiteboards to sketch application flows and test alternatives
• ability to capture business logic and data needs
• ability to generate high fidelity prototypes that closely imitate the final application
• interactivity
• capability to add contextual requirements and other comments
• ability for remote and distributed users to run and interact with the simulation

4 marks for explaining Requirement Analysis Phase
2+2 marks for explaining the issues

 Q.5 Write short notes on the following: (8+8)
 (i) Model Driven Approach
 (ii) Rapid Application Development

http://en.wikipedia.org/wiki/Software_prototyping
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Application_Simulation_Software
http://en.wikipedia.org/wiki/Electronic_whiteboard

DC59/DC109 ANALYSIS & DESIGN OF INFORMATION SYSTEMS DEC 2015

© IETE 9

Answer:
a. MDA approach

One of the main aims of the MDA is to separate design from architecture. As the concepts and
technologies used to realize designs and the concepts and technologies used to realize architectures
have changed at their own pace, decoupling them allows system developers to choose from the best
and most fitting in both domains. The design addresses the functional (use case) requirements while
architecture provides the infrastructure through which non-functional requirements like scalability,
reliability and performance are realized. MDA envisages that the platform independent model (PIM),
which represents a conceptual design realizing the functional requirements, will survive changes in
realization technologies and software architectures.
MDA tools
Basically, an MDA tool is a tool used to develop, interpret, compare, align, measure, verify, transform,
etc. models or metamodels. In the following section "model" is interpreted as meaning any kind of
model (e.g. a UML model) or metamodel (e.g. the CWM metamodel). In any MDA approach we have
essentially two kinds of models: initial models are created manually by human agents while derived
models are created automatically by programs. For example an analyst may create a UML initial model
from its observation of some loose business situation while a Java model may be automatically derived
from this UML model by a Model transformation operation.
An MDA tool may be one or more of the following types:
Creation Tool

A tool used to elicit initial models and/or edit derived models.
Analysis Tool

A tool used to check models for completeness, inconsistencies, or error and warning conditions.
Also used to calculate metrics for the model.

Transformation Tool
A tool used to transform models into other models or into code and documentation.

Composition Tool
A tool used to compose (i.e. to merge according to a given composition semantics) several
source models, preferably conforming to the same metamodel.

Test Tool
A tool used to "test" models as described in Model-based testing.

Simulation Tool
A tool used to simulate the execution of a system represented by a given model. This is related
to the subject of model execution.

Metadata Management Tool
A tool intended to handle the general relations between different models, including the
metadata on each model (e.g. author, date of creation or modification, method of creation
(which tool? which transformation? etc.)) and the mutual relations between these models (i.e.
one metamodel is a version of another one, one model has been derived from another one by a
transformation, etc.)

Reverse Engineering Tool
A tool intended to transform particular legacy or information artifact portfolios into full-fledged
models.

Some tools perform more than one of the functions listed above. For example, some creation tools may
also have transformation and test capabilities. There are other tools that are solely for creation, solely
for graphical presentation, solely for transformation, etc.
One of the characteristics of MDA tools is that they mainly take models (e.g. MOF models or
metamodels) as input and generate models as output[citation needed]. In some cases however the

http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Model_transformation
http://en.wikipedia.org/wiki/Model-based_testing
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed

DC59/DC109 ANALYSIS & DESIGN OF INFORMATION SYSTEMS DEC 2015

© IETE 10

parameters may be taken outside the MDA space like in model to text or text to model transformation
tools.

b. Rapid application development (RAD) is both a general term used to refer to alternatives to the
conventional waterfall model of software development as well as the name for James Martin's
approach to rapid development. In general, RAD approaches to software development put less
emphasis on planning tasks and more emphasis on development. In contrast to the waterfall
model, which emphasizes rigorous specification and planning, RAD approaches emphasize the
necessity of adjusting requirements in reaction to knowledge gained as the project progresses.
This causes RAD to use prototypes in addition to or even sometimes in place of design
specifications. RAD approaches also emphasize a flexible process that can adapt as the project
evolves rather than rigorously defining specifications and plans correctly from the start. In
addition to James Martin's RAD methodology, other approaches to rapid development
include Agile methods and the spiral model. RAD is especially well suited (although not limited
to) developing software that is driven by user interface requirements. Graphical user interface
builders are often called rapid application development tools.

The advantages of RAD include:
• Better Quality. By having users interact with evolving prototypes the business functionality from

a RAD project can often be much higher than that achieved via a waterfall model. The software can
be more usable and has a better chance to focus on business problems that are critical to end users
rather than technical problems of interest to developers.

• Risk Control. Although much of the literature on RAD focuses on speed and user involvement a
critical feature of RAD done correctly is risk mitigation. It's worth remembering that Boehm initially
characterized the spiral model as a risk based approach. A RAD approach can focus in early on the
key risk factors and adjust to them based on empirical evidence collected in the early part of the
process. E.g., the complexity of prototyping some of the most complex parts of the system.

• More projects completed on time and within budget. By focusing on the development of
incremental units the chances for catastrophic failures that have dogged large waterfall projects is
reduced. In the Waterfall model it was common to come to a realization after six months or more of
analysis and development that required a radical rethinking of the entire system. With RAD this kind
of information can be discovered and acted upon earlier in the process.

The disadvantages of RAD include:
• The risk of a new approach. For most IT shops RAD was a new approach that required

experienced professionals to rethink the way they worked. Humans are virtually always averse to
change and any project undertaken with new tools or methods will be more likely to fail the first
time simply due to the requirement for the team to learn.

• Requires time of scarce resources. One thing virtually all approaches to RAD have in common is
that there is much more interaction throughout the entire life-cycle between users and developers.
In the waterfall model, users would define requirements and then mostly go away as developers
created the system. In RAD users are involved from the beginning and through virtually the entire
project. This requires that the business is willing to invest the time of application domain experts.
The paradox is that the better the expert, the more they are familiar with their domain, the more
they are required to actually run the business and it may be difficult to convince their supervisors to
invest their time. Without such commitments RAD projects will not succeed.

• Less control. One of the advantages of RAD is that it provides a flexible adaptable process. The
ideal is to be able to adapt quickly to both problems and opportunities. There is an inevitable trade-
off between flexibility and control, more of one means less of the other. If a project (e.g. life-critical
software) values control more than agility RAD is not appropriate.

• Poor design. The focus on prototypes can be taken too far in some cases resulting in a "hack and
test" methodology where developers are constantly making minor changes to individual

http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Agile_methods
http://en.wikipedia.org/wiki/Spiral_model
http://en.wikipedia.org/wiki/Graphical_user_interface_builder
http://en.wikipedia.org/wiki/Graphical_user_interface_builder
http://en.wikipedia.org/wiki/Life-critical_system
http://en.wikipedia.org/wiki/Life-critical_system

DC59/DC109 ANALYSIS & DESIGN OF INFORMATION SYSTEMS DEC 2015

© IETE 11

components and ignoring system architecture issues that could result in a better overall design. This
can especially be an issue for methodologies such as Martin's that focus so heavily on the User
Interface of the system.

• Very large systems. RAD typically focuses on small to medium-sized project teams. The other
issues cited above (less design and control) present special challenges when using a RAD approach
for very large scale systems

4 marks for MDA approach
4 marks for RDA approach

 Q.6 a. What is the role of Class Diagram in Object Oriented Modelling? (8)
Answer:

The class diagram is the main building block of object oriented modelling. It is used both
for general conceptual modelling of the systematics of the application, and for detailed
modelling translating the models into programming code. Class diagrams can also be
used for data modeling. The classes in a class diagram represent both the main objects,
interactions in the application and the classes to be programmed.

A class with three sections.
In the diagram, classes are represented with boxes which contain three parts:
• The top part contains the name of the class. It is printed in bold and centered, and the first letter

is capitalized.
• The middle part contains the attributes of the class. They are left-aligned and the first letter is

lowercase.
• The bottom part contains the methods the class can execute. They are also left-aligned and the

first letter is lowercase.
In the design of a system, a number of classes are identified and grouped together in a class diagram
which helps to determine the static relations between those objects. With detailed modelling, the
classes of the conceptual design are often split into a number of subclasses.
In order to further describe the behaviour of systems, these class diagrams can be complemented by
a state diagram or UML state machine.
UML provides mechanisms to represent class members, such as attributes and methods, and additional
information about them.
To specify the visibility of a class member (i.e., any attribute or method), these notations must be placed
before the member's name:
+ Public

- Private

Protected

/ Derived (can be combined with one of the others)

~ Package
The UML specifies two types of scope for members: instance and classifier and these last are
represented by underlined names.

http://en.wikipedia.org/wiki/Object_oriented
http://en.wikipedia.org/wiki/Conceptual_model
http://en.wikipedia.org/wiki/Programming_code
http://en.wikipedia.org/wiki/Data_modeling
http://en.wikipedia.org/wiki/File:BankAccount1.svg
http://en.wikipedia.org/wiki/State_diagram
http://en.wikipedia.org/wiki/UML_state_machine
http://en.wikipedia.org/wiki/File:BankAccount1.svg�

DC59/DC109 ANALYSIS & DESIGN OF INFORMATION SYSTEMS DEC 2015

© IETE 12

• Classifier members are commonly recognized as “static” in many programming languages. The
scope is the class itself.
• Attribute values are equal for all instances
• Method invocation does not affect the instance’s state

• Instance members are scoped to a specific instance.
• Attribute values may vary between instances
• Method invocation may affect the instance’s state (i.e., change instance’s attributes)

To indicate a classifier scope for a member, its name must be underlined. Otherwise, instance scope is
assumed by default.

4 marks for explaining without example
Full marks for explaining with example

 b. Explain the role of Implementation phase in System Development. (8)
Answer:

Implementation Phase
The implementation phase is less creative than system design. It is primarily concerned with user
training site preparation, and file conversion. When the candidate system is linked to terminals or
remote sites, the telecommunication network and tests of the network along with the system are also
included under implementation. During the final testing, user acceptance is tested, followed by user
training. Depending on the nature of the system, extensive user training may be required. Conversion
usually takes place at about the same time the user is being trained or later. In the extreme, the
programmer is falsely viewed as someone who ought to be isolated from other aspects of system
development. Programming is itself design work, however. The initial parameters of the candidate
system should be modified as a result of programming efforts. Programming provides a “ reality test” for
the assumptions made by the analyst. It is therefore a mistake to exclude programmers from the initial
system design.
System testing checks the readiness and accuracy of the system to access, update and retrieve data
from new files. Once the programs become available, test data are read into the computer and
processed against the file(s) provided for testing. If successful, the program(s) is then run with “ live”
data. Otherwise, a diagnostic procedure is used to locate and correct errors in the program. In most
conversions, parallel run is conducted where the new system runs simultaneously with the “old” system.
This method, though costly, provides added assurance against errors in the candidate system and also
gives the user staff an opportunity to gain experience through operation. In some cases, however,
parallel processing in not practical. For example, it is not plausible to run parallel two online point-of-
sale (POS) systems for a retail chain. In any case, after the candidate system proves itself, the old system
is phased out.

Marks to be awarded based on explanation (Answer is too subjective)

 Q.7 a. What are the four types of UML diagrams? (8)
Answer:
UML Diagram is divided into four types:

i. Activity Diagrams - a generic flow chart used much in business modelling and sometimes in use case
modelling to indicate the overall flow of the use case. This diagram type replaces the need for
dataflow diagrams but is not a main diagram type for the purposes of analysis and design.

ii. State Machine Diagrams - in information systems these tend to be used to descibe the lifecycle
of an important data entity. In real-time systems they tend to be used to describe state dependent
behaviour

iii. Component Diagrams - show the types of components, their interfaces and dependencies in the
software architecture that is the solution to the application being developed.

DC59/DC109 ANALYSIS & DESIGN OF INFORMATION SYSTEMS DEC 2015

© IETE 13

iv. Deployment Diagrams - show actual computing nodes, their communication relationships and
the processes or components that run on them.

UML can be used to model a business, prior to automating it with computers. The same basic UML
syntax is used; however, a number of new symbols are added, in order to make the diagrams more
relevant to the business process world. A commonly-used set of these symbols is available in current
versions of Rational Rose. The most commonly used UML extensions for web applications were
developed by Jim Conallen. You can access his own website to learn more about them by following the
link. These symbols are also available in current versions of Rational Rose. UML is designed to be
extended in this way. Extensions to the syntax are created by adding 'stereotypes' to a model element.
The stereotype creates a new model element from an existing one with an extended, user-defined
meaning. User defined symbols, which replace the original UML symbol for the model element, can then
be assigned to the stereotype. UML itself uses this mechanism, so it is important to know what
stereotypes are predefined in UML in order not to clash with them when creating new ones.

4 marks for explanation
4 marks for diagrams

 b. Write in brief:
 (i) System Maintenance
 (ii) System Evaluation (8)
Answer:
SYSTEM MAINTENANCE
 Once the system is installed, the MIS job has just begun. Computer systems are constantly changing.
Hardware upgrades occur continually, and commercial software tools may change every year. Users
change jobs. Errors may exist in the system. The business changes, and management and users demand
new information and expansions. All of these actions mean the system needs to be modified. The job of
overseeing and making these modifications is called software maintenance. The pressures for change
are so great that in most organizations today as much as 80 per cent of the MIS staff is devoted to
modifying existing programs. These changes can be time consuming and difficult. Most major systems
were created by teams of programmers and analysts over a long period. In order to make a change to a
program, the programmer has to understand how the current program works. Because the program was
written by many different people with varying styles, it can be hard to understand. Finally, when a
programmer makes a minor change in one location, it can affect another area of the program, which can
cause additional errors or necessitate more changes. One difficulty with software maintenance is that
every time part of an application is modified, there is a risk of adding defects (bugs). Also, over time the
application becomes less structured and more complex, making it harder to understand. These are some
of the main reasons why the year 2000 alterations were so expensive and time consuming. At some
point, a company may decide to replace or improve the heavily modified system. There are several
techniques for improving an existing system, ranging from rewriting individual sections to restructuring
the entire application.. The difference lies in scope-how much of the application needs to be modified.
Older applications that were subject to modifications over several years tend to contain code that is no
longer used, poorly documented changes, and inconsistent naming conventions. These applications are
prime candidates for restructuring, during which the entire code is analyzed and reorganized to make it
more efficient. More important, the code is organized, standardized, and documented to make it easier
to make changes in the future.
SYSTEM EVALUATION
 An important phase in any project is evaluating the resulting system. As part of this evaluation, it is also
important to assess the effectiveness of the particular development process. There are several
questions to ask. Were the initial cost estimates accurate? Was the project completed on time? Did
users have sufficient input? Are maintenance costs higher than expected? Evaluation is a difficult issue.
How can you as a manager tell the difference between a good system and a poor one? In some way, the

DC59/DC109 ANALYSIS & DESIGN OF INFORMATION SYSTEMS DEC 2015

© IETE 14

system should decrease costs, increase revenue, or provide a competitive advantage. Although these
effects are important, they are often subtle and difficult to measure. The system should also be easy to
use and flexible enough to adapt to changes in the business. If employees or customers continue to
complain about a system, it should be re-examined. A system also needs to be reliable. It should be
available when needed and should produce accurate output. Error detection can be provided in the
system to recognize and avoid common problems. Similarly, some systems can be built to tolerate
errors, so that when errors arise, the system recognizes the problem and works around it. For example,
some computers exist today that automatically switch to backup components when one section fails,
thereby exhibiting fault tolerance.

4 marks for system maintenance
4 marks for system evaluation

 Q.8 a. What are the phases or processes in User Interface Design? (8)
Answer:
User interface design requires a good understanding of user needs. There are several phases and
processes in the user interface design, some of which are more demanded upon than others, depending
on the project.
Functionality requirements gathering – assembling a list of the functionality required by the system to
accomplish the goals of the project and the potential needs of the users.
User and task analysis – a form of field research, it's the analysis of the potential users of the system by
studying how they perform the tasks that the design must support, and conducting interviews to
elucidate their goals. Typical questions involve:
What would the user want the system to do?
How would the system fit in with the user's normal workflow or daily activities?
How technically savvy is the user and what similar systems does the user already use?
What interface look & feel styles appeal to the user?
Information architecture – development of the process and/or information flow of the system (i.e. for
phone tree systems, this would be an option tree flowchart and for web sites this would be a site flow
that shows the hierarchy of the pages).
Prototyping – development of wire-frames, either in the form of paper prototypes or simple interactive
screens. These prototypes are stripped of all look & feel elements and most content in order to
concentrate on the interface.
Usability inspection – letting an evaluator inspect a user interface. This is generally considered to be
cheaper to implement than usability testing, and can be used early on in the development process since
it can be used to evaluate prototypes or specifications for the system, which usually can't be tested on
users. Some common usability inspection methods include cognitive walkthrough, which focuses the
simplicity to accomplish tasks with the system for new users, heuristic evaluation, in which a set of
heuristics are used to identify usability problems in the UI design, and pluralistic walkthrough, in which a
selected group of people step through a task scenario and discuss usability issues.
Usability testing – testing of the prototypes on an actual user—often using a technique called think
aloud protocol where you ask the user to talk about their thoughts during the experience. User interface
design testing allows the designer to understand the reception of the design from the viewer’s
standpoint, and thus facilitates creating successful applications.
Graphical user interface design – actual look and feel design of the final graphical user interface (GUI). It
may be based on the findings developed during the user research, and refined to fix any usability
problems found through the results of testing.

2 marks for each point with a maximum of 8 marks

http://en.wikipedia.org/wiki/User_analysis
http://en.wikipedia.org/wiki/Field_research
http://en.wikipedia.org/wiki/Workflow
http://en.wikipedia.org/wiki/Information_architecture
http://en.wikipedia.org/wiki/Website_wireframe
http://en.wikipedia.org/wiki/Paper_prototypes
http://en.wikipedia.org/wiki/Usability_inspection
http://en.wikipedia.org/wiki/Cognitive_walkthrough
http://en.wikipedia.org/wiki/Heuristic_evaluation
http://en.wikipedia.org/wiki/Pluralistic_walkthrough
http://en.wikipedia.org/wiki/Usability_testing
http://en.wikipedia.org/wiki/Think_aloud_protocol
http://en.wikipedia.org/wiki/Think_aloud_protocol
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Look_and_feel
http://en.wikipedia.org/wiki/Graphical_user_interface

DC59/DC109 ANALYSIS & DESIGN OF INFORMATION SYSTEMS DEC 2015

© IETE 15

 b. What are the principles of User Interface Design? (8)
Answer:
The principles of user interface design are intended to improve the quality of user interface design.
According to Larry Constantine and Lucy Lockwood in their usage-centered design, these principles are:
• The structure principle: Design should organize the user interface purposefully, in meaningful

and useful ways based on clear, consistent models that are apparent and recognizable to users,
putting related things together and separating unrelated things, differentiating dissimilar things and
making similar things resemble one another. The structure principle is concerned with overall user
interface architecture.

• The simplicity principle: The design should make simple, common tasks easy, communicating
clearly and simply in the user's own language, and providing good shortcuts that are meaningfully
related to longer procedures.

• The visibility principle: The design should make all needed options and materials for a given task
visible without distracting the user with extraneous or redundant information. Good designs don't
overwhelm users with alternatives or confuse with unneeded information.

• The feedback principle: The design should keep users informed of actions or interpretations,
changes of state or condition, and errors or exceptions that are relevant and of interest to the user
through clear, concise, and unambiguous language familiar to users.

• The tolerance principle: The design should be flexible and tolerant, reducing the cost of mistakes
and misuse by allowing undoing and redoing, while also preventing errors wherever possible by
tolerating varied inputs and sequences and by interpreting all reasonable actions.

• The reuse principle: The design should reuse internal and external components and behaviors,
maintaining consistency with purpose rather than merely arbitrary consistency, thus reducing the
need for users to rethink and remember.

According to Jef Raskin in his book The Humane Interface, there are two laws of user interface design,
based on the fictional laws of robotics created by Isaac Asimov:
• First Law: A computer shall not harm your work or, through inactivity, allow your work to come

to harm.
• Second Law: A computer shall not waste your time or require you to do more work than is

strictly necessary.
Jef Raskin also mentions that "users should set the pace of an interaction," meaning that a user should
not be kept waiting unnecessarily.

One mark for each point

 Q.9 a. What are the four common system conversion strategies? (8)
Answer:

http://en.wikipedia.org/wiki/Larry_Constantine
http://en.wikipedia.org/wiki/Jef_Raskin
http://en.wikipedia.org/wiki/The_Humane_Interface
http://en.wikipedia.org/wiki/Three_Laws_of_Robotics
http://en.wikipedia.org/wiki/Isaac_Asimov
http://en.wikipedia.org/wiki/Jef_Raskin

DC59/DC109 ANALYSIS & DESIGN OF INFORMATION SYSTEMS DEC 2015

© IETE 16

2 marks for explaining each conversion strategy

b. Explain the three levels of System Acceptance Test. (8)

Answer:

DC59/DC109 ANALYSIS & DESIGN OF INFORMATION SYSTEMS DEC 2015

© IETE 17

3 marks for explaining each level of testing with a maximum of 8 marks

TEXT BOOK

I. Systems Analysis and Design Methods, Jeffrey L Whitten, Lonnie D Bentley, Seventh Edition,
TMH, 2007

	Requirements analysis issues
	i. Stakeholder issues
	iii. Attempted solutions
	a. MDA approach
	MDA tools

