CT31 OPERATING SYSTEMS | DEC 2015

Q.1 a. Whatis kernel? Differentiate the micro kernel from the macro kernel.
Answer:
a. Kernel is the core and essential part of the operating system. It provides basic service

for all essential parts of operating system.

Micro kernel : run services those are minimal for OS performance. In this kernel All
other operations are performed by processor
Macro kernel: it is a combination of micro and monolithic kernel(having the whole

OS code as single executable image).

b. Explain the concurrency of process execution in a single processor environment
and parallelism in shared-memory multiprocessor environment.
Answer:
Concurrency and Parallelism

In a multithreaded process on a single processor, the processor can switch execution
resources between threads, resulting in concurrent execution.

Concurrency indicates that more than one thread is making progress, but the threads
are not actually running simultaneously. The switching between threads happens
quickly enough that the threads might appear to run simultaneously.

In the same multithreaded process in a shared-memory multiprocessor environment,
each thread in the process can run concurrently on a separate processor, resulting in

parallel execution, which is true simultaneous execution.

c. Why synchronization hardware is not a feasible solution in the Multi processor
environment? And which is the proper alternate?
Answer:
The critical section problem could be solved easily in a single-processor

environment, by disallowing interrupts to occur while a shared variable or resource is
being modified

In this manner, we could be sure that the current sequence of instructions would be
allowed to execute in order without pre-emption. Unfortunately, this solution is not
feasible in a multiprocessor environment

Disabling interrupt on a multiprocessor environment can be time consuming as the
message is passed to all the processors

This message transmission lag, delays entry of threads into critical section and
the system efficiency decreases

© IETE 1

CT31 OPERATING SYSTEMS | DEC 2015

The alternate solution to this is to use MutexLock

d. What are the different strategies involved in address binding of instructions and
data to memory addresses?
Answer:
Address binding of instructions and data to memory addresses

It can happen at three different stages

Compile time: If memory location known a priori, absolute code can be generated
Needs to recompile the code if starting location changes

Load time: if memory location is not known at compile time, relocatable code has to
be generated Execution time: Binding delayed until run time if the process can be
moved during its execution from one memory segment to another

Need hardware support for address maps (e.g., base and limit registers)

e. In the layered approach to file system which organizes storage on disk drives,
what are the roles of logical file system and file organization module?
Answer:
The roles of logical file system, file organization module

The file organization module

knows about files and their logical blocks, and how they map to physical
blocks on the disk.
In addition to translating from logical to physical blocks, the file organization module
also maintains the list of free blocks, and allocates free blocks to files as needed.
The logical file system

deals with all of the meta data associated with a file (UID, GID, mode, dates,
etc), i.e. everything about the file except the data itself.
This level manages the directory structure and the mapping of file names to file
control blocks, FCBs, which contain all of the meta data as well as block number

information for finding the data on the disk.

f. Write down the definition of a distributed system and explain the naming and
transparency of the distributed file system.
Answer:
The roles of logical file system, file organization module

The file organization module

© IETE 2

CT31 OPERATING SYSTEMS | DEC 2015

knows about files and their logical blocks, and how they map to physical
blocks on the disk.
In addition to translating from logical to physical blocks, the file organization module
also maintains the list of free blocks, and allocates free blocks to files as needed.
The logical file system

deals with all of the meta data associated with a file (UID, GID, mode, dates,
etc), i.e. everything about the file except the data itself.
This level manages the directory structure and the mapping of file names to file
control blocks, FCBs, which contain all of the meta data as well as block number

information for finding the data on the disk.

g. What is meant by language based protection in systems? (7x4)
Answer:
Language based protection

Specification of protection in a programming language allows the high-level
description of policies for the allocation and use of resources.

Language implementation can provide software for protection enforcement when
automatic hardware-supported checking is unavailable.

Interpret protection specifications to generate calls on whatever protection system is

provided by the hardware and the operating system.

Q.2 Explain how the thread creation differs from the process creation and which is
costlier? 4)
Answer:

When a new thread is created it shares

its code section, data section and operating system resources like open files
with other threads. But it is allocated its own stack, register set and a program counter.

The creation of a new process differs from that of a thread mainly in the fact that all
the shared resources of a thread are needed explicitly for each process.

So though two processes may be running the same piece of code they need to have
their own copy of the code in the main memory to be able to run.

Two processes also do not share other resources with each other. This makes the
creation of a new process very costly compared to that of a new thread.

© IETE 3

CT31 OPERATING SYSTEMS | DEC 2015

b. Briefly state how the process synchronization happens in Windows XP. (3)
Answer:
Synchronization in Windows

Owner thread releases mutex lock

@ signaled

Thread acquires mutex lock

Fig: Mutex dispatcher object

c. Compare the logical and physical address spaces 4)
Answer:
Logical Versus Physical Address Space

The address generated by the CPU is a logical address, whereas the address actually
seen by the memory hardware is a physical address

Addresses bound at compile time or load time have identical logical and physical
addresses

Addresses created at execution time, however, have different logical and physical
addresses In this case the logical address is also known as a virtual address,

The set of all logical addresses used by a program composes the logical address
space, and the set of all corresponding physical addresses composes the physical

address space

d. Briefly explain the role of Memory Management Unit with a simple schematic
that shows dynamic relocation using a relocation register. (7

Answer:
The run time mapping of logical to physical addresses is handled by the memory-

management unit, MMU. The MMU can take on many forms. One of the

simplest is a modification of the base-register scheme

The base register is termed as relocation register, whose value is added to every

memory request at the hardware level.user programs never see physical addresses.

© IETE 4

CT31 OPERATING SYSTEMS | DEC 2015

User programs work entirely in logical address space, and any memory references or
manipulations are done using purely logical addresses. Only when the address gets

sent to the physical memory chips is the physical memory address generated.

Reloc.
Reg

Logica 10000 Physical Memory

| addr. addr.

CPU =/+\ >

340 U 10340

MMU
Fig: Dynamic relocation using a relocation register
Q.3 a. Explain the Peterson's solution to the critical section problem. 9

Answer:
Peterson’s solution to critical section problem

Peterson's Solution is a classic software-based solution to the critical section
problem. it illustrates a number of important concepts.

Peterson's solution is based on two processes, Pi and Pj, which alternate
between their critical sections and remainder sections.

Peterson's solution requires two shared data items:

int turn - Indicates whose turn it is to enter into the critical section. If turn =
=i, then process i is allowed into their critical section.

Boolean flag[2] - Indicates when a process wants to enter into their critical
section. When process i wants to enter their critical section, it sets flag[i] to
true.

Do{

© IETE 5

CT31 OPERATING SYSTEMS | DEC 2015

Flag[i]=TRUE;

Turn=j;

While(Flag[j]==TRUE && Turn ==j);

Critical section;

Flag[i]=FALSE;

Remainder section;
IWhile(TRUE);
From the code, the entry and exit sections are enclosed in boxes.

In the entry section, process i first raises a flag indicating a desire to enter
the critical section.

Then turn is set tojto allow the other process to enter their critical
section if process j so desires.

The while loop is a busy loop (notice the semicolon at the end), which
makes process i wait as long as process j has the turn and wants to enter the
critical section.

Process i lowers the flag[i] in the exit section, allowing process j to
continue if it has been waiting.

b. Describe the necessary requirements a solution to the critical section problem
must satisfy. 9)
Answer:

To prove that the solution is correct, the conditions listed below have to be
examined:

Mutual exclusion - If one process is executing their critical section when
the other wishes to do so, the second process will become blocked by the
flag of the first process. If both processes attempt to enter at the same time,
the last process to execute "turn = j" will be blocked.

© IETE 6

CT31 OPERATING SYSTEMS | DEC 2015

Progress - Each process can only be blocked at the while if the other
process wants to use the critical section (flag[j] = = true), and it is the
other process's turn to use the critical section (turn==7j).

If both of those conditions are true, then the other process (j) will be
allowed to enter the critical section, and upon exiting the critical section,
will set flag[j] to false, releasing process I.

The shared variable turn assures that only one process at a time can be
blocked, and the flag variable allows one process to release the other when
exiting their critical section.

Bounded Waiting - As each process enters their entry section, they set the
turn variable to be the other processes turn. Since no process ever sets it
back to their own turn, this ensures that each process will have to let the
other process go first at most one time before it becomes their turn again.

The instruction "turn = j" is atomic, that is it is a single machine instruction
which cannot be interrupted.

Q.4 a. Apply the FIFO Page replacement policy on the following reference string and
find the number of page faults
(i) if 3 frames are used

(ii) if 4 frames are used (4+4)
1 2 3 4 1 2 5 1 2 3 4 5
Answer:
a. If3 frames are used then
[1 |4 [5]9 page -

«,7 | faults
2 1 3

3 2 1 MR SR i b =7

If 4 frames are used
[1 s | 4 l[Jp:s'__J,'c—
_| faults

= SRR |
3 ‘

If frames are increased to 4, then number of page faults also increases, to 10.

© IETE 7

CT31 OPERATING SYSTEMS

DEC 2015

b. Briefly explain the following criteria to compare CPU scheduling algorithms:

(i) CPU utilization

(i) Throughput

(iii) Turnaround time

(iv) Waiting time

(v) Response time
Answer:

a"f ifferent CTU scheduling algorithms have different properties, and the choice
of a particular algorithm may favor one class of processes over another. In
chonsing which algorithm to use In a particular situation, we must consider
the properties of the vanous algorithms.

Many eriteria have been suggested for c‘nrnp;lﬁng CPU scheduling algo-
rithms. Which characteristics are used for comparison can make a substantial
difference in which algorithm is judged to be best. The criteria include the
following

CPU utilization. We want to keep the CI'U as busy as possible. Concep-
tnally, CPU utilizabion can range from ¢ to 100 pareent. In a real system, it
should range from 40 percent (for a lightly loaded system] to 90 percent
(for a heavily used system), =

Throughput. If the C"U is busy executing processes, then work is being
done, Une measure of work 15 the number ol provesses that are completed
per time unit, called throughput. Foe long processes, this rate may be one
process per hour; for short transactions, it may be 10 processes per seconid.

Turnaround time. From the point of view of a particular process, the
important criterion is how long it takes to execute that process. The interval
from the time of submission of o process bo the time of completion is the
frernaronnd Hme, Tumarownd time is the sum of the perods spent waiting
to get into memory, waiting in the ready queue, executing on the CPU, and
doing 1/0.

Waiting time. The CPU scheduling algorithm does not affect the amount
ol time during which a process executes or does 170 it affects only the
amount of lime that a process spends wailing in the ready gueue. Nﬂfnrb
tirre is the sam of the periods spent waiting im the ready queuse.

Response time. In an interactive system, turmarcund time may nol be
the best criterion. Often, a process can produce some output fairly early
and can continue computing new results while previous results are being
putput to the user. Thus, another measure is the time from the submission
of a request until the first response s produced. This measure, called
resportse Hme, is the bmwe it fakes to starl responding, not the time il takes
tn output the response. The mumaround fime is generally limited by the
speed of the outpul device.

[tis desirable to maximize CPU utilization and throughput and to minimize
furnaround e, waiting bime, and response ime. In most cases, we optimize
the average measure. However, under some circumstances, it is desirable

(2x5)

© IETE 8

CT31 OPERATING SYSTEMS | DEC 2015

to optimize: the muinimum or maxunum values rather than the average. Fou
mpie, o guaraniee that all use el pood service, we may want O minir
'| £ Maxmmum respomse me
mveshigators have suggested that, for nteractive systems (su h as tin
I I % i 15], 1t ImMore unp irtant o munoamiEe Phe INTFrrce n th
bime than o minirmze the average nes 1S BT A system with reasonabis
ind predictable response time may be considered more desirable than a system
13t 15 faster n the averag: bt & |'|Z_:'_i|.'-. variable, Howewer, Little work has
n CPLU=-scheduling algorithms that minimize variang
v owe discuss various CPU=schoedulme aleorithms o the following section
e will illustrate their operation. An accurate illustration should invoalve ma
PrisCesses, eacll DEINgE i Sequence ol sevi ral hundred CPPU bursts and 1O burst
mpliciby o eh, we consider only one CPL - burst (i milbsesconds) pe
1 MU examples, L measare Gf comparisan 15 the average wailing

time. More sborate evaluation mechanisms are discussed i Secton 5.7
Q.5 a. Describe how the two-memory access problem is solved by the use of fast-look
up cache called TLBs and in a simple paging system. What information is stored
in a typical TLB table entry? Explain. 4)
Answer:
The implementation of page-table is done in the following way:

Page table is kept in main memory.
Page-table base register (PTBR) points to the page table.
Page-table length register (PRLR) indicates size of the page table.

In this scheme every data/instruction access requires two memory accesses. One for
the page table and one for the data/instruction.

The two-memory access problem can be solved by the use of a special fast-lookup
hardware cache called associative memory or translation look-aside buffers (TLBS).
A set of associative registers is built of high-speed memory where each register
consists of two parts: a key and a value. When the associative registers are
presented with an item, it is compared with all keys simultaneously. If the item is

found, the corresponding value field is the output.
A typical TLB table entry consists of page number and frame number,

when a logical address is generated by the CPU, its page number is presented to a set
of associative registers that contain page number along with their corresponding frame

numbers.

If the page number is found in the associative registers, its frame number is available
and is used to access memory. If the page number is not in the associated registers, a
memory reference to the page table must be made. When the frame number is

© IETE 9

CT31 OPERATING SYSTEMS | DEC 2015

obtained, it can be used to access memory and the page number along with its frame

number is added to the associated register

Logical
addr
CPU P ﬂ
Pge. Frame
num num
™ \\ TLB hit
o—
l
F
A
Phy.
L addr
»
TLB Miss
Pg. Table
physical
memory
b. Consider the following set of processes, with the length of CPU burst given in
milliseconds:
Process Burst Time Priority

P 10 3

P, 1 1

P, 2 3

P, 1 4

R 5 2
The processes are assumed to have arrived in the order B, R,, P,, P, and P, all
at time 0.

© IETE 10

CT31 OPERATING SYSTEMS | DEC 2015

Q) Draw four Gantt charts that illustrate the execution of these processes
using: FCFS, SJF, nonpreemptive priority (a smaller priority number implies a

higher priority) and RR (quantum = 2) 4)
(i) What is the turnaround time of each process for each of the scheduling
algorithms in part (i)? (25x4)
Answer:
I | | |
| [_I-‘-',

© IETE 11

CT31 OPERATING SYSTEMS | DEC 2015

Q.6 a. (i) Why the location independence plays a critical role in naming structure of

DFS system?
(i) Detail the different cache update polices such as write-through, delayed-
write in distributed systems. (3+3)
Answer:
(i) Location independence

file name does not need to be changed when the file’s physical storage location

changes.
Better file abstraction.

Promotes sharing the storage space itself.

© IETE 12

CT31 OPERATING SYSTEMS | DEC 2015

Separates the naming hierarchy form the storage-devices hierarchy.
(i) Cache Update Policies

Write-through — write data through to disk as soon as they are placed on any cache.

Reliable, but poor performance.

Delayed-write — modifications written to the cache and then written through to the
server later. Write accesses complete quickly; some data may be overwritten before

they are written back, and so need never be written at all.

Poor reliability; unwritten data will be lost whenever a user machine

crashes.

Variation — scan cache at regular intervals and flush blocks that have been

modified since the last scan.

Variation — write-on-close, writes data back to the server when the file is

closed. Best for files that are open for long periods and frequently modified.

b. (i) Draw the schematic that shows the components of a Linux Operating
System.
(i) Brief about the Linux kernel modules. (3+3)
Answer:
(i) The components of a Linux Operating System

System .
User utility _
management User process compilers
programs
programs

System shared libraries

Linux kernel

Loadable kernel modules

© IETE 13

CT31 OPERATING SYSTEMS | DEC 2015

(ii) Kernel Modules:

The Sections of kernel code that can be compiled, loaded, and unloaded

independent of the rest of the kernel.

A kernel module may typically implement a device driver, a file system, or a

networking protocol.

The module interface allows third parties to write and distribute, on their own terms,

device drivers or file systems that could not be distributed under the GPL.

Kernel modules allow a Linux system to be set up with a standard, minimal kernel,

without any extra device drivers built in.
Three components to Linux module support:
module management
driver registration
conflict resolution

c. Explain symmetric encryption method. (6)
Answer:

© IETE 14

CT31 OPERATING SYSTEMS | DEC 2015

;";'fl'l a symmetric encryption algorithm, the same key is used to encrypt and o
decrypl. That is, E{k) can be derived from D(k), and vice versa. Therefore, the
secrecy of E(k) must be protected to the same extent as that of D(k).

For the past 20 years or s, the most commonly used syimmeltric encryption
[algorithm in the United Slates for civilian applicabions has been the data-
[encryption standard (DES) adopted by the Mational Institute of Standands
[and Technology (NBET) DES works by taking a 64-bit value and a 56-bit
talu-}r and performing a series of transformations. These transformations are

‘based on substitution and permuatation operations, as is generally the case
| for symmetric encryption transformations. Some of the transformations are
| black-box transformations, in that their algorithms are hidden. In fact, these
socalled “S-boxes™ are classified by the United States government. Messages
longer than 64 bits are broken into 64-bil chunks, and a shorter block is padded

to fill out the block. Because DES works on a chunk of bits at a time, s a

known as a bleck cipher. If the same key is used for encrypting an extended

amount of data, it becomes vulnerable to attack. Consider, for example, that
the same source block would result in the same ciphertext if the same key and
encryption algorithm were used. Therefore, the chunks anre not fust encrypted

{ bul also XORed with the previous dphertext block before encryption. This is
known as cipher-block chaining.

ES 1s now considered insecure for many applications because its keys can
| be exhaustively searched with moderate computing resources. Rather than
[giving up on DES, though, NIST created a modification called triple DES, in
I ‘which the DES algorithm is repeated three times (two encryplions and one

decryption) on the same plaintext using two or three keys—for example,

£ = Fika) D0k WE (K Wm1). When three keys are used, the e ive key length
is 168 bits. Triple DES is in widespread use tﬂda]'.-.

In 2001, NIST adopted a new encryption algorithm, called the advanced
I encryption standard (AES), to replace DES. AES is annther symmetric block

cipher. It can use key lengths of 128, 192, and 256 bits and works on 128-bil

blocks. It works by performing 10 to 14 munds of transiormations on & matrix

{ formed from a block. Generally, the algorithm is compact and éfficient.

I Thereare several other symmetric block encryption algorithms in use today

{ that bear mentioning. The twofish algorithm is fast, compact, and easy to
mmplement. It can use a variable key length of up o 256 bits and works on
128-bit blocks. RCS can vary in key length, number of transformations, and
block size. Because it uscs only basic computational aperations, it ¢an run on a

| wide variety of CPUSs.

: ®RC4 is pechaps the most common stream cphber, A stream cipher s
designed to encrvpt and decrypt a stream of bytes or bits rather than a block.

I This is useful when the length of a communication would make a block cipher
too slow. The key is input into a pseudo-randomi-bit generator, which is an
algorithm that attempts to produce random bits. The output of the generator

when t'edakgytua kevstream. A keystream is an infinite set of keys that
used for the input plaintext stream. RC4 is used in encryphng steams of
such as in WEP, the wireless LAN protocol. It is also used in comm
between web browsers and web servers, as we discuss below. Un
RC4 as used in WEP (IEEE standard 802.11) has been found ity b
reasonable amount of computer time. In fact. RC4 itself has vulnerahbil

—_————

Q.7 a. Explain indexed allocation method for blocks on disk. (10)
Answer:

© IETE 15

CT31 OPERATING SYSTEMS | DEC 2015

Linked allocation solves the external-fragmentation and size-declaration prob-

lems of contiguous allocation. However, in the absence of a FAT, linked

allocation canmiot support efficient direct access, smce the pointers to the blodks

are scattered with the blocks themselves all over the disk and must be retrieved

in order. Indexed allocation solves this problem by bringing all the pointers
ether into ome location: the index block.

Each file has its own index block. which is an array of disk-block addresses.
The i** entry in the index block points to the i** block of the file. The directory
contains the address of the index block (Figure 11.8). To find and read the /ih
bloack, we use the pointer in the i'" index-block entry. This scheme is similar to
the paging scheme described in Section 8.4.

Figura 11.8 Indexad alocation of disk space.

When the file i created, all pointers in the index block are set to mil.
the ith block is first written, a block is obtained from the free-space mana
and its address is put in the ith index-block entry.

Indexed allocation supports direct acoess, without suffering from ex
fragmentation, because any froewe block on the disk can satisfy a request for
space. Indexed allocation does suffer from wasted space, however The poin
overhead of the index block Is generally greater than the pointer averhead of
linked allocation. Consider a common case in which we have a file of only ons.
or two blocks. With linked allocation, we lose the space of only one pointer per’
block. With indexed allocation, an entire index block must be allocated, -l'."‘!-m.,
if only one or two pointers will be non-mil.

This point raises the question of how large the index block should be. i-.w:rjr'
file must have an index block, so we want the index block 1o be as small a8
possible, If the index block is too small, however. it will not be able to hold
enough pointers for a large file, and a mechaniam will have (o be available to
deal with this issue. Mechanisms for this pugpose include the following: |

¢ Linked scheme. An index block is normally one disk block. Thus, it can
be read and written directly by itself. To allow for large files. we can link
together several index blocks. For example, an index block might contain a
small header giving the name of the file and a set of the first 100 disk-block
addresses. The next address (the last word in the index block) is wil (fora
small file) or is a pointer to another index block (for a large file).

= Multilevel index. A variant of the linked representation is to use a first-
level index block to point to a set of second-jevel index blocks, which in
turn paint to the file blocks. To access a block, the operating system uses
Live first-level index to find a second-level index block and then uses that

© IETE 16

CT31

OPERATING SYSTEMS

DEC 2015

block to find the desired data block, This approach could be continued 1o
a third or fourth level, depending on the desired maximum file size. With
4,09-byte blocks, we could store 1,24 4-byte pointers in an index block.,
Two levels of indexes allow 1,048,576 data blocks and a file size of up to 4
G,

Combined scheme. Another alternative, used in the UFS, is to keep the
first, say, 15 pointers of the index block in the file’s inode. The first 12
of these pointers point to direct blocks; that is, they contain addresses of
blocks that contain data of the file. Thus, the data for small files {of no more
than 12 blocks) do not need a separate index block, If the block size is 4 KB,
then up to 48 KB of data can be accessed directly. The next three pointers
point to indirect blocks. The first points to a single indirect block, which
is an index block containing not data but the addresses of blocks that do
contain data. The second points to a double indirect block, which contiins
the address of a block that contains the addresses of blocks that contain
pointers to the actual data blocks. The last pointer contains the address
ot a triple indirect block. Under this method, the number of blocks thal
can be allocated to a file exceeds the amount of space addressable by the
4-byte file painters used by many operating syslems. A 32-bit file pointer
reaches only 2% bytes, or 4 GB. Many UNJX implementations, including
Solaris and 1BM's AIX, now suppart up to 64-bit file pointers. Painters of
this size allow files and file systems to be terabytes in size. A UNIX inode
15 shown in Figure 11,9,

Indexed-allocation schemes suffer from some of the same performance

problems as does linked allocation. Specifically, the index blocks can be cached
in memory, but the data blocks may be spread all over a volume.

maoda .
| owners(2)
limestamps (3) o
ai:nﬁ;;ctwn_ 'm
—{daiE])
: —={ dala]

triple indirect

\\

Figure 11.8 The LINIX Inode.

b. Explain the main characteristics of_ _
(i) real time systems (ii) multimedia systems

Answer:

© IETE

(4+4)

17

CT31 OPERATING SYSTEMS

DEC 2015

In this sechion, we discuss the features necessary for dﬂ-ipmfngl'l
system that su.ppirts real-time processes. Before we begin,
consider what is typically net peeded for a real-time system; We
by examining several features provided in many of the upenl‘!ﬂ
discussed so far in this text, including Linux, UNIX, and the va "F‘.;
of Windows. These systems typically provide support for the followin
* A variety of peripheral devices such as graphical displays, €, and
drives

* Protection and security mechanisms

* Multiple users

Supporting these fealures often results in a sophisbica ted —and k
For example, Windows XF has over forty million lines ufsuurm
contrast, a t_l,rpia:nl real-time operating system usually has a very s
often wrilten in thousands rather than milliens of lines of source ¢
would not expect these simple systems to include the features listed
But why don’t real-time systems provide these features, whkh :
to standard desktop and mrﬂysterns? There are several reasons
are most prominent. First, because most real-time systems szn'ri
purpose, they simply do not require many of the features found in a'de
PC. Consider a digital wristwatch: It ﬂbﬂ:}ualy has no need 1o suppd
disk drive or DVD, let alone virual memery. Furthermore, a typical n
systemn does not include the notion of a user: The system simply &
a small number of tasks, which often await input from han:lwln! ¥
(sensors, vision identification, and so forth). Second, the features so
by standard desktop operaling systems are impossible to prov itiew "
processors and large amounts of memory. Both of these are unavs
real-lime systems due to space constraints, as explained earlier. In
many real-time systems lack sufficient space to support peripheral d
ar graphical displays, although some systems may suppoct file s !
nunvulal_ﬁememar} (NVRAM). Third, supparting features comnion nst .;_'_
desktop computing environments would greatly increase the cost of re
systems, which could make such systems economically impractical.
Additional considerations apply when considering virtual meme -J;E_
real-time system. Providing virtual memory features és described in Chaph
require the svstem include a Memory management unit ['MMU',I f _
logical to physical addresses, However, MMUs typically increase §
and pnwer consumptlion of the system. In addition, the time requing

1
i
'1
..
iy

© IETE

18

CT31 OPERATING SYSTEMS | DEC 2015

physical
MEmpy

Figure 18.2 Address transiation in real-time systams.

franslale logical addresses to physical addresses —especially in the case of a
dranslation look-aside buffer (T1.8) miss —miay be prohibitive ina hard real-time
vimnment. In the following we examine several appracches for transkating
ddresses in real-time systems
~ Figure 192 illustrates three different strategies for managing address
ftranslation available to designers of real-time operating systems. In this
rio, the CPU generates logical address L that must be mapped to
sical address P. The first approach is to bypass logical addresses and
(hive the CPU generate physical addresses directly. This technique —known
85 real-addressing mode— does not employ virtual memory techniques and
18 effectively stating that I equals L. One problem with real-addressing mode
Sthe absence of memory protection between processes. Real-addressing mode
y also require that programmers specify the physical location where their
grams are loaded into memory. However, the benefit of this approach
al the system is quite fast, as no time is spent on address translation.
Real-addressing mode is quite common in embedded systems with hard
feaktime constraints. In fact, some real-time operating systems running on
SMICTOprocessors containing an MMU actually disable the MMU 1o pain the
perlurmance benefit of referencing physical addresses directly.
A second strategy for translating addresses is to use an approach similar
to the: dynamic relocation register shown in Figure 8.4. In this scenario, a
relocation register R js set to the memaory location where a program is loaded.
The physical address P is generated by adding the contents of the relocation
© registe Rto L.Some real-time systems configure the MMU to perform this way.
IThe obvious benefit of this strategy is that the MMU can easily translate logical
‘addresses to physical addresses using P = L + R. However, this system still
-~ suffers from a lack of memory protection between processes,
© The last approach is for the real-time system to provide full virtual memory
Munctionality as described in Chapter 9. In this instance, address translation
fakes place via page tables and a translaton look-aside buffer, or TLE. In
paddition to allowing a program to be loaded at any memory location, this
| Strategy also provides memory protection between processes. For systems
\without attached disk drives, demand paging and swapping may not be
‘possible. However, systems. may provide such features using NVRAM flash

memory. The LynxOS and OnCore Systems are examples of e
systems providing full support for virtual memory. A '

© IETE 19

CT31

OPERATING SYSTEMS

DEC 2015

" The demands of multimedia systems are unlike the demands of traditional

applications. In general, multimedia systems may have the following charac
leriatics:

Multimedia files can be quite large. Fur example, o 100-minute MFEC-]
video file requires approximately 1.125 GB of storage space; 100 minutes
of high-definition television (HDTV) requires approximately 15 GB of
storage. A scrver storing hundreds or thousands of digital video files
may thus require several terabytes of storage.

Coitinuoos medma May requine very h11_=|'a data raled Consider -I|H1I.1|
video, in which a frame of color video is displayed al a resolution of
8O0 = 600, If we use 24 bits to represent the color of each pixel (which
allows us to have 2%, or roughly 16 million, different colors), a single
trame requires 800 = 600 < 24 = 11 520, (000 bits of data. If the frames are
displayed ata rate of 30 frames per second, a bandwidth in excess of 345
?'r'[:l-]'r-. 15 |Lu:|1:|:'r|11

Multimedia applications are sensifive to tming ﬁﬂ.if.:-‘, dut‘ll‘lH playback.
Once a conbnuous-media hle 158 delivered to a client, delivery must
continue at a certain rate during playback of the medis; otherwise, the
listener or viewer will be subjected to pauses during the presentation

-

TEXT BOOK

Johnwiley & Sons (Asia) Pte Ltd
Il. Modern Operating Systems” Andre S Tanenbaum(2009) Pearson Education

© IETE

20

Operating System Principles, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne(2009),

