Q. 1 a. Show that the truth values of the following compound proposition is independent of the truth values of their components

$$
\{p \Lambda(p \rightarrow q)\} \rightarrow q
$$

Answer:

\mathbf{P}	\mathbf{Q}	$\mathbf{p} \rightarrow \mathbf{q}$	$\mathbf{r} \equiv\{\mathbf{p} \boldsymbol{\Lambda}(\mathbf{p} \rightarrow \mathbf{q})\}$	$\mathbf{r} \rightarrow \mathbf{q}$
0	0	1	0	1
0	1	1	0	1
1	0	0	0	1
1	1	1	1	1

b. If A, B, C are finite sets, prove the extended addition principle

$$
|\mathbf{A} \cup \mathbf{B} \cup \mathbf{C}|=|\mathbf{A}|+|\mathbf{B}|+|\mathbf{C}|-|\mathbf{A} \cap \mathbf{B}|-|\mathbf{B} \cap \mathbf{C}|-|\mathbf{A} \cap \mathbf{C}|+|\mathbf{A} \cap \mathbf{B} \cap \mathbf{C}|
$$

Answer:

$$
\begin{aligned}
& |\mathbf{A} \cup \mathbf{B} \cup \mathbf{C}|=|\mathbf{A} \cup \mathbf{D}| \text { where } \mathbf{D}=|\mathbf{B} \cup \mathbf{C}| \\
& =|\mathbf{A}|+|\mathbf{D}|-|\mathbf{A} \cap \mathbf{D}| \\
& =|\mathbf{A}|+|\mathbf{B} \cup \mathbf{C}|-|\mathbf{A} \cap(\mathrm{B} \cup \mathbf{C})| \\
& =|\mathbf{A}|+|\mathbf{B}|+|\mathbf{C}|-|\mathbf{B} \cap \mathbf{C}|-|\mathbf{A} \cap \mathbf{B} \cup(\mathbf{A} \cap \mathbf{C})| \\
& =|\mathbf{A}|+|\mathbf{B}|+|\mathbf{C}|-|\mathbf{B} \cap \mathbf{C}|-|\mathbf{A} \cap \mathbf{B}|-|\mathbf{A} \cap \mathbf{C}|+\mid(\mathbf{A} \cap \mathbf{B}) \cap(\mathbf{A} \cap \mathbf{C}) \\
& =|\mathbf{A}|+|\mathbf{B}|+|\mathbf{C}|-|\mathbf{B} \cap \mathbf{C}|-|\mathbf{A} \cap \mathbf{C}|-|\mathbf{A} \cap \mathbf{B}|+|\mathbf{A} \cap \mathbf{B} \cap \mathbf{C}|
\end{aligned}
$$

c The digraph of a relation R on the set $\{1,2,3\}$ is as given below. Determine whether R is an equivalence relation or not?

Answer: $(3,3)$ is not in R
d. Draw the Hasse diagram representing the positive divisors of 36 .

Answer:

e. State and prove Demorgan's law in Boolean algebra B.

Answer: Let a be any element of a Boolean algebra B then $\mathrm{a}+\mathrm{x}=1$ and $\mathrm{a} . \mathrm{x}=0$ then $\mathrm{x}=\mathrm{a}$
f. Give an example of a graph that has
(i) An Euler Circuit but no Hamiltonian cycle
(ii)An Hamiltonian cycle but no Euler circuit

Answer:

(i) edabcd be

(ii) a b c de a
g. Give a regular expression for the language of all strings in $\{0,1,2\}^{*}$ containing exactly two 2 's.
Answer:
$(0+1)^{*} 2(0+1)^{*} 2(0+1)^{*}$

Q. 2 a. Obtain PDNF of following:

$(P \vee(R \rightarrow \sim(Q \vee P))) \wedge R$ without using truth table.
Answer: $(P \wedge R \wedge Q) v \quad(P \wedge R \wedge \sim Q) v(\sim Q \wedge \sim P \wedge R)$

b. Show that Q is a valid conclusion for the premises:

$$
\begin{equation*}
\sim S, \quad P \vee(Q \wedge R), \quad P \leftrightarrow S \tag{5}
\end{equation*}
$$

Answer:
pf
$\mathrm{P} \leftrightarrow \mathrm{S}$
$\mathrm{P} \rightarrow \mathrm{S} \quad \wedge \mathrm{S} \rightarrow \mathrm{P}$
$\mathrm{P} \rightarrow \mathrm{S}$
$\sim \mathrm{S} \rightarrow \sim \mathrm{P}$
$\sim \mathrm{P}$
$\mathrm{PV}(\mathrm{Q} \wedge \mathrm{R})$
$(\mathrm{Q} \wedge \mathrm{R})$
Q
c. Let A be any set and $P(A)$ be the power set of A. Show that it is a lattice under the partial order defined as $X \leq Y \leftrightarrow X \subseteq Y$.

Answer:

\subseteq is known to be partial order set on $\mathrm{P}(\mathrm{A})$.Consider $\mathrm{X}, \mathrm{Y} \in \mathrm{P}(\mathrm{A})$.now we need to show that $\sup \{\mathrm{X}, \mathrm{Y}\}=\mathrm{X} V \mathrm{Y}$ exists.
By def, X VY must contain X and Y. Further if any other set contains X and Y, it must contain $X V Y$.Thus it is clear that $X V Y$ has to be $X \cup Y$. Similarly $X \wedge Y=\inf \{X, Y\}=X \cap Y$. Thus $\mathrm{P}(\mathrm{A})$ is a lattice.

Q. 3 a. Show that if any 5 numbers are chosen from $\{1$ to 8$\}$, then two of them will add upto 9.

Answer:

Consider the pairs $(1,8),(2,7), ?(3,6),(4,5)$ which are four in number.if we chose five numbers from 1 to eight by pigeon hole principle two of them must belong to one of the above pairs.Hence their sum must be nine.
b. Show that:

$$
\begin{equation*}
\forall \mathbf{P}(\mathbf{x}) \wedge \exists \mathbf{Q}(\mathbf{x}) \Rightarrow \exists(\mathbf{P}(\mathbf{X}) \wedge \mathbf{Q}(\mathbf{X})) \tag{6}
\end{equation*}
$$

Answer:

$\forall \mathrm{P}(\mathrm{x}) \quad$ simplification
$P(a) \quad U S$
$\exists \mathrm{Q}(\mathrm{x})$ simplification
Q(a) ES
$P(a) \wedge Q(a)$
$\exists(P(X) \wedge Q(X)) \quad E G$
c. Let $f: R \rightarrow R$ be defined as
$f(x)=2 x-3$ if $x \leq 9$
$=x^{2}-4 x+7$, if $9<x<100$
$=\cos \Pi x \quad$ if $100 \leq x$
Find $f(7), f(8), f(9), f(10)$ and $f(100)$
Answer:
$f(7)=11, f(8)=13$
$f(9)=15, f(10)=67 f(100)=\cos 100 \Pi=(-1)^{100}=1$

Q. 4 a. If L 1 and L 2 are regular languages ever Σ show that $\mathrm{L} 1 \cup \mathrm{~L} 2$ is regular.

Answer:

Construct new automata with $\mathrm{Q}=\mathrm{Q} 1 \mathrm{X}$ Q2 $\mathrm{q} 0=(\mathrm{q} 1, \mathrm{q} 2)$ and $\mathrm{F}=\mathrm{F} 1 \mathrm{X}$ F2
Transition function is defined as
$\delta((u, v), \mathrm{x})=(\delta 1(\mathrm{u}, \mathrm{x}), \delta 2(\mathrm{v}, \mathrm{x}))$
Where Q1,Q2 are starting states of first and second automata,q1 and q2 are respective starting states,F1 and F2 are final states of two automata. $(\delta 1, \delta 2)$ are respective transition functions.
b. Construct a finite automata to accept all the strings of odd lengths on the alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.

Answer: Construct a finite automata to accept all the strings of odd lengths on the alphabet \{a,b,c\}.

c. Traverse the tree using

(i) Preorder traversal
(ii) Inorder traversal
(iii) Post order traversal

Answer:

(i) Preorder traversal abdefcghikj
(ii) Inorder traversal dbfeagckigh
(iii) Preorder traversal dfebgkijhca

Q. 5 a. In a tree (with two or more vertices), prove that there are at least two pendant vertices.

Answer:

Sum of the degrees of n vertices of the tree of size n, is $2(n-1)$. Now $2(n-1)$ degrees are to be divided amongst n vertices so that no vertex is of degrezero.If all the vertices are of degree 2 then sum of degrees of all vertices will be $2 n$,which is not true..If there is only one vertex of degree one, then the sum of degrees of all vertices will be $2 \mathrm{n}-1$ which is also not true. If there are two vertices of degree 1 then this sum will be $2 \mathrm{n}-2$.
Hence at least two nodes of degree one is possible.
b. Define isomorphism of graphs. Verify following graphs for isomorphism.

Answer:

The above two graphs are not isomorphic :only node of degree 3 in first graph has one pendant vertex as adjacent, but in the other graph vertex of degree three node 3 has only one adjacent pendant vertex.
c. Define a spanning tree of a graph. Does every graph have a spanning tree? Find the minimum spanning tree of the following graph using Kruskal's algorithm.
(8)

Answer:

Q. 6 a. Explain how Binary Search method fails to find 43 in the following given sorted array:
8, 12, 25, 26, 35, 48, 57, 78, 86, 93, 97, 108, 135, 168, 201

Answer:

The value to be searched is 43 . As explained earlier, in the first iteration
low $=1$, high $=15$ and mid $=8$
As $43<\mathrm{A}[8]=78$, therefore, as in part (i)
low $=1$, high $=8-1=7$ and $\mathrm{mid}=4$
As $43>A[4]=26$, the algorithm makes another iteration in which
low $=\operatorname{mid}+1=5$ high $=7$ and (new) mid $=(5+7) / 2=6$
Next, as $43<\mathrm{A}[6]=48$, the algorithm makes another iteration, in which
low $=5 \mathrm{high}=6-1=5$ hence $\mathrm{mid}=5$, and $\mathrm{A}[5]=35 \mathrm{As} 43>\mathrm{A}[5]$, hence value $\neq \mathrm{A}[5]$.
But, at this stage, low is not less than high and hence the algorithm returns -1 , indicating failure to find the given value in the array.
b. How can the output of the Floyd-Warshall algorithm be used to detect the presence of a negative-weight cycle?
Answer:
One could just run the normal FLOYD-WARSHALL algorithm one extra iteration to see if any of the d values change. If there are negative cycles, then some shortest-path cost will be cheaper. If there are no such cycles, then no d values will change because the algorithm gives the correct shortest paths.

> c. Define Cartesian product on sets. For the given sets $X=\{1,2\}, Y=\{a, b, c\}$ and $Z=\{c, d\}$, find $(X \times Y) \cap(X \times Z)$.

Answer:

Given $X=\{1,2\}, Y=\{a, b, c\}$ and $Z=\{c, d\}$, then

$$
\begin{aligned}
& X \times Y=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c)\} \\
& X \times Z=\{(1, c),(1, d),(2, c),(2, d)\}
\end{aligned}
$$

Q. 7 a. Draw the ordered rooted tree that represent the expression

$((\mathrm{x}+\mathrm{y}) \uparrow 2)+((\mathrm{x}-4) / 3)$.
How do you find the equivalent prefix and postfix expressions from the tree?(6)
Answer:

Given $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ as $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$.
fis not one-one: clearly f is not a one-one function as $f(x)=|x|=x=|-x|=f(-x)$ but $x \neq-x$.
For eg. $|2|=2$ and $|-2|=2$ but $2 \neq-2$
f is not onto: A function is said to be onto if Range $(f)=$ co domain of (f). Here the co-domain is R (real line) and range of function $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ for all x in R .

Range $(\mathrm{f})=\{|\mathrm{x}|$; for all x in R$\}=\{+$ ve x ; for all x in R as $|\mathrm{x}|$ gives +ve values $\}=\mathrm{R}^{+} Y$
Clearly Range $(\mathrm{f})=\mathrm{R}^{+} \neq$co-domain $(\mathrm{f})=\mathrm{R}$.
Hence f is neither one-one nor onto function.

b. Prove that deterministic and nondeterministic finite automata are equivalent.(6)

Answer:

c. Define regular expression. (i) Let $L=\left\{w \in\{a, b\}^{*}:|w| \equiv_{3} 0\right\}$. List the first six elements in a lexicographic enumeration of L. (ii) $L=\left\{w \in\{a, b\}^{*}\right.$: all prefixes of w end in a\}. List the elements of L.

Answer:

ع, aaa, aab, aba, abb, baa
(ii) $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right.$: all prefixes of w end in a$\}$.List the elements of L .
$L=\varnothing$, since ε is a prefix of every string and it doesn't end in a. So all strings are not in L, including a and aa.

