CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

Q.1 a. Explain the role of concurrency control software in DBMS with an example.
Answer:
Concurrency control software in DBMS ensures that several users trying to update
the same data do so in a controlled manner so that the result of the updates is
correct. For example, when several reservation clerks try to assign a seat on an
airline flight, the DBMS should ensure that each seat can be accessed by only one
clerk at a time for assignment to a passenger.

b. Define participation constraints with respect to entity in DBMS.
Answer:
The participation constraint specifies whether the existence of an entity depends on
its being related to another entity via the relationship type. This constraint specifies
the minimum number of relationship instances that each entity can participate in.

c. Define Tuple, Attribute, Relation, and Domain in the context of relational
model.
Answer:
In a relational model:

e Tuple: A row is called a tuple.

e Attribute: A column header is called an attribute.

e Relation: The table is called a relation.

e Domains: The data type describing the types of values that can appear in each column is
represented by a domain of possible values.

d. Write a short note on Structured Query Language.
Answer:
Structured query language (SQL) is a database sublanguage that is used in querying, updating, and

managing relational databases. It has statements for data definition, query, and update. Hence it is both
DDL and DML. In addition, it has facilities for defining views on the database, for specifying security and
authorization, for defining integrity constraints, and for specifying transaction controls. It has also rules
for embedding SQL statements into a general purpose programming language such as Java or COBOL.

e. Explain the three commands used to modify the database.
Answer:
The three commands used to modify the database are:

e INSERT Command: INSERT is used to add a single tuple to a relation. We must specify the
relation name and the list of values for the tuple. The values should be listed in the same order
in which the corresponding attributes were specified in the CREATE TABLE command.

o DELETE Command: The DELETE command removes tuples from a relation. It includes a WHERE
clause, similar to that used in SQL query, to select the tuples to be deleted. Tuples are explicitly
deleted from only one table at a time.

© IETE 1

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

e UPDATE Command: The UPDATE command is used to modify attribute values of one or more
selected tuples. A WHERE clause in the UPDATE command selects the tuples to be modified
from the single relation.

f. Explain the two levels at which the “goodness” of relation schemas can be
measured.
Answer:
The two levels at which the “goodness” of relation schemas can be measured are:

o Logical (or conceptual) level: At this level, the quality of the design is measured on the basis of-
how users interpret the relation schemas and the meaning of their attributes. Having good
relation schema at this level enables users to understand clearly the meaning of the data in the
relations, and hence to formulate their queries correctly.

¢ Implementation (or storage) level:At this level, the quality of the design is measured on the
basis of-how the tuples in a base relation are stored and updated. This level applies only to the
schemas of base relations- which will be physically stored as files.

g. Write a short note on Boyce-Codd normal form (BCNF). (7x4)
Answer:
BCNF is a stricter form than 3NF. Every relation in BCNF is also in 3NF; however, a relation in 3NF is not

necessarily in BCNF. A relation R is in BCNF if whenever a nontrivial functional dependency
X —> A holds in R, then X is a super key of R.

Q.2 a. Define database management system. What are the functions performed by a
typical DBMS? (6)
Answer:
A database management system is a collection of programs that enables users to create and maintain a

database. The DBMS is hence a general purpose software system that performs the following functions:

o Defining a database: It involves specifying the data types, structures and constraints for the
data to be stored in the database.

e Constructing the database: It is the process of storing the data itself on some storage medium
that is controlled by the DBMS.

e Manipulating a database: It includes such functions such as querying the database to retrieve
specific data, updating the database to reflect changes in the mini world, and generating reports
from the data.

e Sharing a database: It allows multiple users and programs to access the database concurrently.

e Data Security & Integrity: The DBMS contains functions which handle the
security and integrity of data in the application. These can be easily invoked by the
application and hence the application programmer need not code these functions in
his/her programs.

e Data Recovery & Concurrency: Recovery of data after a system failure and
concurrent access of records by multiple users are also handled by the DBMS.

© IETE 2

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

b. Explain the three-schema architecture of database systems. (6)
Answer:
The three-schema architecture is a convenient tool with which the user can visualize the schema

levels in the database system. The goal of the three-schema architecture is to separate the user
applications and the physical database. In this architecture, schemas can be defined at the following
three levels:

o Internal Level: The internal level has internal schemas, which describes the physical storage
structure of the database. The internal schema uses a physical model and describes the
complete details of data storage and access paths for the database.

e Conceptual Level: The conceptual level has conceptual schema which describes the
structure of the whole database for a community of users. The conceptual schema hides the
details of physical storage structures and concentrates on describing entities, data types,
relationships, user operations, and constraints. Usually, a representational data model is
used to describe the conceptual schema when a database system is implemented.

e External/View Level: The external or view level includes a number of external schemas or
user views. Each external schema describes the part of the database that a particular user
group is interested in and hides the rest of the database from that user group.

c. Define Data manipulation Language (DML). Explain the different types of
DMLs. (6)
Answer:
Once the database schemas are completed and the database is populated with data, users must

have some means to manipulate the database. Typical manipulations include retrieval, insertion,
deletion, and modification of the data. The DBMS provides a set of operations or a language called
the data manipulation language (DML) for these purposes. The two main types of DMLs are:

e High-level or Non-Procedural DML: It can be used on its own to specify complex database
operations in a concise manner. Many DBMSs allow high-level DML statements either to be
entered interactively from a display monitor or terminal or to be embedded in a general-
purpose programming language. In a later case, DML statements must be identified within
the program so that they can be extracted by a pre-compiler and processed by the DBMS.
High-level DMLs such as SQL can specify and retrieve many records in a single DML
statement. A query in a high-level DML often specifies which data to retrieve rather than
how to retrieve it.

o Low-level or Procedural DBL: It must be embedded in a general-purpose programming
language. This type of DML typically retrieves individual records or objects from the
database and processes each separately.

Q.3 a. Define Entity Types, Entity Sets, and Value Sets. (6)
Answer:
A database usually contains group of entities that are similar. These entities share the same

attributes, but each entity has its own value(s) for each attribute.

© IETE 3

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

e Entity Type: An entity type defines a collection (or set) of entities that have the same
attributes.

e Entity Set: The collection of all entities of a particular entity type in the database at any
point in time is called an entity set.

e Value Set: each simple attribute of an entity type is associated with a value set (or
domain of values), which specifies the set of values that may be assigned to that
attribute for each individual entity.

b. Explain weak entity and aggregation in ER Model. (6)

Answer:
Entity types that do not have key attributes of their own are called weak entity types. Entities

belonging to a weak entity type are identified by being related to specific entities from another
entity type in combination with one of their attribute values. A weak entity type always has a
total participation constraint (existence dependency) with respect to its identifying relationship,
because a weak entity cannot be identified without an owner entity. A weak entity type normally
has a partial key, which is the set of attributes that can uniquely identify weak entities that are
related to the same owner entity.

24.5 Aggregation

As defined thus far, a relationship set is an association between entity sets.
Sometimes, we have to model a relationship between a collection of entities
and relationships. Suppose that we have an entity set called Projects and that
each Projects entity is sponsored by one or more departments. The Spon-
sors relationship set captures this information. A department that sponsors a
project might assign employees to monitor the sponsorship. Intuitively, Moni
tors should be a relationship set that associates a Sponsors relationship (rather
than a Projects or Departments entity) with an Employees entity. However,
we have defined relationships to associate two or more entifies.

To define a relationship set such as Monitors, we introduce a new feature of
the ER model, called aggregation. Aggregation allows us to indicate that
a relationship set (identified through a dashed box) participates in another
relationship set. This is illustrated in Figure 2.13, with a dashed box around
Sponsors (and its participating entity sets) used to denote aggregation. This
effectively allows us to treat Sponsors as an entity set for purposes of defining

the Monitors relationship set.

© IETE 4

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

Figure 2.13 Aggregation

When should we use ageregation’” Intuitively, we use it when we need to ex
press a relationship among relationships. But can we not express relationships
involving other relationships without using aggregation? In our example, why
not make Sponsors a ternary relationship? The answer is that there are really
two distinct relationships, Sponsors and Monitors, each possibly with attributes
of its own. For instance, the Monitors relationship has an attribute unitil that
records the date until when the employee is appointed as the sponsorship mon-
itor. Compare this attribute with the attribute since of Sponsors, which is the
date when the sponsorship took eflect. The use of aggregation versus a ternary
relationship may also be guided by certain integrity constraints, as explained

in Section 2.5.4.

c. Explain conceptual database design. Give an illustration. (6)
Answer:
In the process of database design, after collecting and analyzing all the requirements, the next

step is to create a conceptual schema for the database by using a high-level conceptual data
model. This step is called conceptual design. The conceptual schema is a concise description of
the data requirements of the users and includes detailed descriptions of the entity types,
relationships, and constraints; these are expressed using the concepts provided by the high-level
data model. Because these concepts do not include implementation details, they are usually
easier to understand and can be used to communicate with non-technical users. The high-level
conceptual schema can also be used as a reference to ensure that all users’ requirements are met
© IETE 5

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

and that the requirements do not conflict. This approach enables the database designers to
concentrate on specifying the properties of the data without being concerned with the storage
details.

2.5 CONCEPTUAL DESIGN WITH THE ER MODEL
Developing an ER diagram presents several choices, including the following:

" Should a concept be modeled as an entity or an attribute?
= Should a concept be modeled as an entity or a relationship?

m What are the relationship sets and their participating entity sets? Should
we 1se binary or ternary relationships?

s Should we use aggregation?

© IETE 6

CT13

DATABASE MANAGEMENT SYSTEMS | DEC 2015

‘We now discuss the issues involved in making these choices.

2.5.1 Entity versus Attribute

© IETE

While identifying the attributes of an entity set, it is sometimes not clear
whether a property should be modeled as an attribute or as an entity set (and
related to the first entity set using a relationship set). For example, consider
adding address information to the Employees entity set. One option is to use
an attribute address. This oplion is appropriate if we need to record anly
one address per employee, and it suffices to think of an address as a string. An
alternative is to create an entity sel called Addresses and to record associations
between employees and addresses using a relationship (say, Has_Address). This
more complex alternative is necessary in two situations:

s We have to record more than one address for an employee.

B We want to capture the structure of an address in our ER diagram. For
example, we might break down an address into city, state, country, and
Zip code, in addition to a string for street information. By representing an
address as an entity with these attributes, we can support queries such as
“Find all employees with an address in Madison, WL.”

For another example of when to model a concept as an entity set rather than
an attribute, consider the relationship set (called Works_Ind) shown in Figure
2.14.

-~ y - S
_f_d-——'—'_'—a...,_“\- " from ; -__,l: '\ . o r —_ —_____“\
(orame) . il B il (dname)
S \\‘--_____,-/,r"’"_ ,.—-“"'- 3 e e S——
(, =) C :H\- \ fr C W) C budgel)
S - X / — Sr—
el /\ i el
| Evoses | Wors iné > Dopaimenis l

Figure 2.14 The Works Iud Relationship Set

It differs from the Works_In relationship set of Figure 2.2 only in that it has
attributes from and to, instead of since. Intuitively, it records the interval
during which an employee works for a department. Now suppose that it is
possible for an employee to work in a given department over more than one
period.

This possibility is ruled out by the ER diagram’s semantics, because a rela-
tionship is uniquely identified by the participating entities (recall from Section

7

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

2.3). The problem is that we want to record several values for the descriptive
attributes for each instance of the Works_In2 relationship. (This situation is
analogous to wanting to record several addresses for each employee.) We can
address this problem by introducing an entity set called, say, Duration, with
attributes from and to, as shown in Figure 2.15.

DD e S R
e

! e[——
Lty @

Figure 2.15 The Works_Ind Relationship Set

g

In some versions of the ER model, attributes are allowed to take on sets as
values. Given this feature, we could make Duration an attribute of Works_In,
rather than an entity set; associated with each Works_In relationship, we wonld
have a set of intervals. This approach is perhaps more intuitive than model-
ing Duration as an entity set. Nonetheless, when such set-valued attributes
are translated into the relational model, which does not support set-valued
attributes, the resulting relational schema is very similar to what we get by
regarding Duration as an entity set.

2.5.2 Entity versus Relationship

Jonsider the relationship set called Manages in Figure 2.6. Suppose that each
department manager is given a discretionary budget (dbudget), as shown in
Figure 2.16, in which we have also renamed the relationship set to Manages2.

T @ %é ?’

Employees Departmants

Figure 2.16 Entity versus Relationship
© IETE 8

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

Given a department, we know the manager, as well as the manager's starting
date and budget for that department. This approach is natural if we assume
that a manager receives a separate discretionary budget for each department
that he or she manages.

But what if the discretionary budget is a sum that covers all departments
managed by that emplovee? In this case, each Manages2 relationship that
involves a given employee will have the same value in the dbudget feld, leading
to redundant storage of the same information. Another problem with this
design is that it is misleading; it suggests that the budget is associated with
the relationship, when it is actually associated with the manager,

We can address these problems by introducing a new entity set called Managers
(which can be placed below Employees in an ISA hierarchy, to show that every
manager is also an employee). The attributes since and dbudget now describe
a manager entity, as intended. As a variation, while every manager has a
budget, each manager may have a different starting date (as manager) for each
department. In this case dbudget is an attribute of Managers, but since is an
attribute of the relationship set between managers and departments.

The imprecise nature of ER modeling can thus make it difficult to recognize
underlying entities, and we might associate attributes with relationships rather
than the appropriate entities. In general, such mistakes lead to redundant
storage of the same information and can cause many problems. We discuss
redundancy and its attendant problems in Chapter 19, and present a technique
called normalization to eliminate redundancies from tables.

2.5.3 Binary versus Ternary Relationships

Consider the ER diagram shown in Figure 2.17. It models a situation in which
an employee can own several policies, each policy can be owned by several
emplovees, and each dependent can be covered by several policies.

Suppose that we have the following additional requirements:

A policy cannot be owned jointly by two or more emplovees.
= Every policy must be owned by some employee.

» Dependents is a weak entity set, and each dependent entity is uniquely
identified by taking pname in conjunction with the pelicyid of a policy
entity (which, intuitively, covers the given dependent).

The first requirement suggests that we impose a key constraint on Policies with
respect to Covers, but this constraint has the unintended side effect that a

© IETE 9

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

<N 5 Cm
Figure 2.17 Policies as an Entity Set

policy can cover only one dependent. The second requirement suggests that we
impose a total participation constraint on Policies. This solution is aceeptable
if each policy covers at least one dependent. The third requirement forces us
to introduce an identifying relationship that is binary (in our version of ER
diagrams, although there are versions in which this is not the case).

Even ignoring the third requirement, the best way to model this situation is fo
use two binary relationships, as shown in Figure 2.18.

- ""-

\i/ : =202

Emplnmi -._/> Dependents

,-f
F_]

| 7”‘“‘
2,

(" poscyd

3 -
L = SR

e
Co
o eyt
Figure 2.18 Policy Revisited

© IETE 10

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

I'his example really has two relationships involving Policies, and our attempt

to use a single ternary relationship (Figure 2.17)

situations, however, where a relationship inherently associates more than two

is inappropriate. There are
entities. We have seen such an example in Figures 2.4 and 2.15.

As a typical example of a ternary relationship, consider entity sets Parts, Sup-
pliers, and Departments, and a relationship set Contracts (with descriptive
attribute gfy) that involves all of them. A contract specifies that a supplier will
supply (some quantity ot} a part to a department. This relationship cannot
be adequately captured by a collection of binary relationships (without the use
of ageregation). With binary relationships, we can denote that a supplier ‘can
supply’ certain parts, that a department ‘needs’ some parts, or that a depart-
ment ‘deals with' a certain supplier. No combination of these relationships

expresses the meaning of a contract adequately, for at least two reasons:

= The facts that supplier 5 can supply part P, that department D needs part
P, and that D will buy from S do not necessarily imply that department D
indeed buys part P from supplier S!

s We cannot represent the gty attribute of a contract cleanly.

Q.4 a. Define candidate Key and primary Key. (6)
Answer:
e Candidate Key: A candidate key is a unique identifier for a tuple (row) within a relation

(database table). The candidate key may be either simple (a single attribute) or composite (two
or more attributes). By definition, every relation must have at least one candidate key, but it is
possible for a relation to have more than one candidate key. If there is only one candidate key, it
automatically becomes the primary key for the relation. If there are multiple candidate keys, the
designer must designate one as the primary key.

o Primary Key: The key field that serves as the unique identifier of a specific tuple (row) in a
relation (database table). It is common to designate one of the candidate keys as the primary
key of the relation.

b. Explain Tuple Relational calculus. (6)
Answer:

Relational calculus is a query language for the relational model. In relational
calculus, we write one declarative expression to specify a retrieval request, and
hence there is no description of how to retrieve it. Therefore, relational calculus is
considered to be a non-procedural language. A calculus expression may be written
in different ways, but the way it is written has no bearing on how a query should
be evaluated. The tuple relational calculus is based on specifying a number of tuple
variables. Each tuple variable ranges over a particular database relation, meaning
that the variable may take as its value any individual tuple from that relation.

© IETE 11

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

c. Explain concurrency control techniques used in DBMS. (6)
Answer:

I n this chapter we discuss a number of concurrency
control techniques that are used to ensure the nonin-
terference or isolation property of concurrently executing transactions. Most of
these techniques ensure serializability of schedules (see Section 17.5), using proto-
cols (sets of rules) that guarantee serializability. One important set of protocols
employs the technique of locking data items to prevent multiple transactions from
accessing the items concurrently; a number of locking protocols are described in
Section 18.1. Locking protocols are used in most commercial DBMSs. Another set
of concurrency control protocols use timestamps. A timestamp is a unique identi-
fier for each transaction, generated by the system. Concurrency control protocols
that use timestamp ordering to ensure serializability are described in Section 18.2.
In Section 18.3 we discuss multiversion concurrency control protocols that use
multiple versions of a data item. In Section 18.4 we present a protocol based on
the concept of validation or certification of a transaction after it executes its
operations; these are sometimes called optimistic protocols.

Another factor that affects concurrency control is the granularity of the data
items—that is, what portion of the database a data item represents. An item can be
as small as a single attribute (field) value or as large as a disk block, or even a
whole file or the entire database. We discuss granularity of items in Section 18.5. In
Section 18.6 we discuss concurrency control issues that arise when indexes are used
to process transactions. Finally, in Section 18.7 we discuss some additional concur-
rency control issues.

© IETE 12

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

It is sufficient to cover Sections 18.1, 18.5, 18.6, and 18.7, and possibly 18.3.%
main emphasis is on introducing the concurrency control techniques that are i
most often in practice. The other techniques are mainly of theoretical interest.

18.1 Two-Phase Locking Techniques
for Concurrency Control

Some of the main techniques used to control concurrent execution of transactio
are based on the concept of locking data items. A lock is a variable associated wi
data item that describes the status of the item with respect to possible opel
that can be applied to it. Generally, there is one lock for each data item in the
base. Locks are used as a means of synchronizing the access by concurrent t
tions to the database items. In Section 18.1.1 we discuss the nature and
locks. Then, in Section 18.1.2 we present protocols that use locking to g
serializability of transaction schedules. Finally, in Section 18.1.3 we dis
problems associated with the use of locks—deadlock and starvation—and shoy
how these problems are handled.

18.1.1 Types of Locks and System Lock Tables

Several types of locks are used in concurrency control. To introduce locking ¢
cepts gradually, first we discuss binary locks, which are simple but restrictive ands
are not used in practice. Then we discuss shared/exclusive locks, which provide
more general locking capabilities and are used in practical database lockin
schemes. In Section 18.3.2 we describe a certify lock and show how it can be usedt
improve performance of locking protocols.

Binary Locks. A binary lock can have two states or values: locked and unlocks
(or 1 and 0, for simplicity). A distinct lock is associated with each database item X1f
the value of the lock on X is 1, item X cannot be accessed by a database operation thit
requests the item. If the value of the lock on X is 0, the item can be accessed when
requested. We refer to the current value (or state) of the lock associated with itemX
as lock(X). .

Two operations, lock_item and unlock_item, are used with binary locking. A transic
tion requests access to an item X by first issuing a lock_item(X) operation. If
LOCK(X) = 1, the transaction is forced to wait. If LOCK(X) = 0, it is set to | {the
transaction locks the item) and the transaction is allowed to access item X. When
the transaction is through using the item, it issues an unlock_item(X) operation, which
sets LOCK(X) to 0 (unlocks the item) so that X may be accessed by other transactions
Hence, a binary lock enforces mutual exclusion on the data item. A description of the
lock_item(X) and unlock_item{X) operations is shown in Figure 18.1.]

Notice that the lock_item and unlock_item operations must be implemented a
indivisible units (known as critical sections in operating systems); that is, no

© IETE 13

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

#LOCK(X) =0 (* item is unlocked *)
* then LOCK(X) < 1 (* lock the item *)

"~ begin

' wait (until LOCK(X) = 0

- and the lock manager wakes up the transaction);
~ gotoB

1 end;

'LOCK(X) « O; (* unlock the item *) Figure 1
ifa Wy transactions are waiting Lock and unlock operat
~ then wakeup one of the waiting transactions; for binary lo

LITHe

ng should be allowed once a lock or unlock operation is started until the
1 terminates or the transaction waits. In Figure 18.1, the wait command
the lock_item(X) operation is usually implemented by putting the transaction
queue for item X until X is unlocked and the transaction can be granted
it. Other transactions that also want to access X are placed on the same
Hence, the wait command is considered to be outside the lock_item operation.

that it is quite simple to implement a binary lock; all that is needed is a
valued variable, LOCK, associated with each data item X in the database. In
est form, each lock can be a record with three fields: <Data_item_name,
king_transaction> plus a queue for transactions that are waiting to access
The system needs to maintain only these records for the items that are
locked in a lock table, which could be organized as a hash file. Items not in
table are considered to be unlocked. The DBMS has a lock manager
tem to keep track of and control access to locks.

the simple binary locking scheme described here is used, every transaction must
bey the following rules:
1. A transaction T must issue the operation lock_item(X) before any
~ read_item(X) or write_item(X) operations are performed in T.

2. Atransaction T must issue the operation unlock_item(X) after all read_item(X)
- and write_item(X) operations are completed in T,
3. A transaction T will not issue a lock_item(X) operation if it already holds the
~ lock on item X'
4. A transaction T will not issue an unlock_item(X) operation unless it already
holds the lock on item X.

. This rule may be removed if we modify the lock_item (X) cperation in Figure 181 so that if the item is
aurently locked by the requesting transaction, the lock is granted.

© IETE 14

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

These rules can be enforced by the lock manager module of the DBMS. Between {h
lock_item({X) and unlock_item(X) operations in transaction T, T is said to
lock on item X. At most one transaction can hold the lock on a particular
Thus no two transactions can access the same item concurrently.

Shared/Exclusive (or Read/Write) Locks. The preceding binary locking scheme
is too restrictive for database items because at most, one transaction can hold
on a given item. We should allow several transactions to access the same item
they all access X for reading purposes only. However, if a transaction is to w
item X, it must have exclusive access to X. For this purpose, a different type o
called a multiple-mode lock is used. In this scheme—called shared/exclus
read/write locks—there are three locking operations: read_lock(X), write_lock
and unlock(X). A lock associated with an item X, LOCK(X), now has three poss
states: read-locked, write-locked, or unlocked. A read-locked item is also
share-locked because other transactions are allowed to read the item, whe
write-locked item is called exclusive-locked because a single transaction ex
sively holds the lock on the item.

One method for implementing the preceding operations on a read/write lock is &
keep track of the number of transactions that hold a shared (read) lock on an

in the lock table. Each record in the lock table will have four fields:<Data_item_na
LOCK, No_of_reads, Locking_transaction(s}>>. Again, to save space, the systemn
maintain lock records only for locked items in the lock table. The value (stat
LOCK is either read-locked or write-locked, suitably coded (if we assume no record
are kept in the lock table for unlocked items). If LOCK(X)=write-locked, the value:
locking_transaction(s) is a single transaction that holds the exclusive (write)
on X. If LOCK(X)=read-locked, the value of locking transaction(s) is a list of one ar
more transactions that hold the shared (read) lock on X, The three op
read_lock(X), write_lock(X), and unlock(X) are described in Figure 18.2.% As befo re,
each of the three operations should be considered indivisible; no interleavin
should be allowed once one of the operations is started until either the operation
terminates by granting the lock or the transaction is placed on a waiting queue for

the item. |

When we use the shared/exclusive locking scheme, the system must enforce the
following rules: '
1. A transaction T must issue the operation read_lock(X) or write_lock(X)
before any read_item(X) operation is performed in T.

2. A transaction T must issue the aperatmn write_lock(X) before any
write_item(X) operation is performed in T.

3. A transaction T must issue the operation unlock(X) after all read_item(X) and
write_item(X) operations are completed in T.*

2. These algorithms do not allow ypgrading or dewngrading of locks, as described later in this sechion
The reader can extend the algarithms to allow these additional operations. |

3. This rule may be relaxed fo allow a transaction to unlock an item, then lock it again later.

© IETE 15

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

begin LOCK(X) « “read-locked"”;
no_of_reads(X) ¢ 1
end
if LOCK(X) = “read-locked”
en no_of_reads(X) « no_of reads(X) + 1

wait {until LOCK(X) = “unlocked"
. and the lock manager wakes up the transaction);

else begin

8 wait {until LOCK(X) = “unlocked”
~ and the lock manager wakes up the transaction);
. goteB

#LOCK(X) = *write-locked"

~ then begin LOCK(X) « “unlocked";

wakeup one of the waiting transactions, if any

. end
glse it LOCK(X) = “read-locked"
~ then begin
A no_of_reads(X) « no_of_reads(X) — 1;
i if no_of_reads(X) =0
3 then begin LOCK(X] = “unlocked";

end

Figure 18.2

% ; v Locking and unlocking
wakeup one of the waiting transactions, if any operations for two-mode

(read-write or shared-
exclusive) locks.

(shared) lock or a write (exclusive) lock on item X, This rule may be
ed, as we discuss shortly.
transaction T" will not issue a write_lock(X) operation if it already holds a
read (shared) lock or write (exclusive) lock on item X. This rule may be
relaxed, as we discuss shortly.

© IETE

16

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

6. A transaction T will not issue an unlock(X) operation unless it already
a read (shared) lock or a write (exclusive) lock on item X. y

Conversion of Locks. Sometimes it is desirable to relax conditions 4 and 5 _
preceding list in order to allow lock conversion; that is, a transaction that alr
holds a lock on item X is allowed under certain conditions to convert the lock fie

R

one locked state to another. For example, it is possible for a transaction T to
read_lock(X) and then later to upgrade the lock by issuing a write_lock(X) o
If T is the only transaction holding a read lock on X at the time it issuest
~write_lock(X) operation, the lock can be upgraded; otherwise, the transaction ¢ u
wait. It is also possible for a transaction T to issue a write_lock(X) and then lat
downgrade the lock by issuing a read_lock(X) operation. When upgradi
downgrading of locks is used, the lock table must include transaction ide
the record structure for each lock (in the locking_transaction(s) field) to
information on which transactions hold locks on the item, The descriptions of!
read_lock(X) and write_lock(X) operations in Figure 18.2 must be changed appro
ately. We leave this as an exercise for the reader.

Using binary locks or read/write locks in transactions, as described earlier, does:
guarantee serializability of schedules on its own. Figure 18.3 shows an exam
where the preceding locking rules are followed but a nonserializable schedule
result. This is because in Figure 18.3(a) the items Y in T} and X in T, were unlog
too early. This allows a schedule such as the one shown in Figure 18.3(c) to o
which is not a serializable schedule and hence gives incorrect results. To guaras
serializability, we must follow an additional protocol concerning the positioning
locking and unlocking operations in every transaction. The best known proto
two-phase locking, is described in the next section. '

18.1.2 Guaranteeing Serializability by Two-Phase Locking
A transaction is said to follow the two-phase locking protocol if all locking ope

tions (read_lock, write_lock) precede the first unlock operation in the transactio
Such a transaction can be divided into two phases: an expanding or growing (fs
phase, during which new locks on items can be acquired but none can be releas

and a shrinking (second) phase, during which existing locks can be released but)
new locks can be acquired. If lock conversion is allowed, then upgrading of lo¢
(from read-locked to write-locked) must be done during the expanding ph ase, an
downgrading of locks (from write-locked to read-locked) must be done in|

shrinking phase. Hence, a read_lock(X) operation that downgrades an alrez dy he

write lock on X can appear only in the shrinking phase.

Transactions T, and T; of Figure 18.3(a) do not follow the two-phase locking prof
col because the write_lock(X) operation follows the unlock(Y) operation in)
similarly the write_lock(Y) operation follows the unlock(X) operation in
enforce two-phase locking, the transactions can be rewritten as T,” and T}

4. This is unrelated to the lwo-phase commit prolucol for recovery in distributed databases
(see Chapter 25).

© IETE 17

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015
(a) T T, (b) Initial values: X=20, ¥=30
read_lock(Y); read_lock(X); Result serial schedule T,
read_item(Y); read_item(X): followed by T,: X=50, ¥=80
unlock{¥); unlock({X);
write_lock(X); write_lock(Y): Result of serial schedule T,
read_item(X); read_item(¥): followed by T,: X=70, Y=50
X=X+Y Y=Y,
write_item(X); write_item(¥);
unlock(X}; unlack(¥):
g T T,
read lock({¥};
read_jtem(Y);
unlock{Y);
read__}ockl')(}; Result of schedule S:
read_item(X): X=50, ¥=50
unlock(X); (nonserializable)
Time write_lock(¥);
read_item(¥):
Y=X+Y
write_item({Y);
unlock(¥);
write_lock(X): . Figure 18.3
Foad. hembic): Transactions that do not obey two-
X ;=_j(+ Y. phase locking. (&) Two transactions T,
write_itemi(X): and T, (b) Results of possible serial
unlock(X): schedules of T, and T, (c) A nonserial-
izable schedule S that uses locks.

#n in Figure 18.4. Now, the schedule shown in Figure 18.3(c) is not permitted
T\ and T," (with their modified order of locking and unlocking operations)
er the rules of locking described in Section 18.1.1 because T, will issue its
tlock(X) before it unlocks item Y; consequently, when T, issues its read_lock(X),
forced to wait until T,” releases the lock by issuing an unlock (X) in the schedule.

n be proved that, if every transaction in a schedule follows the two-phase lock-
srotocol, the schedule is guaranteed to be serializable, obviating the need to test
ierializability of schedules, The locking mechanism, by enforcing two-phase
ing rules, also enforces serializability.

-phase locking may limit the amount of concurrency that can occur in a sched-
iecause a transaction T may not be able to releasc an item X after it is through

© IETE

18

CTi13 DATABASE MANAGEMENT SYSTEMS | DEC 2015
T T
read_lock(Y); read_lock({X):
read_item{Y); read_item{X):
write_lock(X); write_lock(Y);
unlock(Y) unlock(X)
Figure ?&4 ; b1 read_item(X); read_item(Y):
Transactions Ty and Ty, which are the Xi=X+Y. Y=X+V
same as T; and Ty of Figure 183, but write: itemiX): wiite: am(Y):
follow the two-phase locking protacol, unlock(X): unloc_k{}’};
Mote that they can produce a deadlock.

© IETE

using it if T must lock an additional item Y later; or conversely, T must loc
additional item Y before it needs it so that it can release X. Hence, X must re
locked by T until all items that the transaction needs to read or write have
locked; only then can X be released by T. Meanwhile, another transaction seek
access X may be forced to wait, even though T is done with X; conversely, i
locked earlier than it is needed, another transaction seeking to access Y is
wait even though T is not using Y yet. This is the price for gnaranteeing serial
ity of all schedules without having to check the schedules themselves.

Basic, Conservative, Strict, and Rigorous Two-Phase Locking. There area
number of variations of two-phase locking (2PL). The technique just described
known as basic 2PL. A variation known as conservative 2PL (or static 2P
requires a transaction to lock all the items it accesses before the transaction bheginé
execution, by predeclaring its read-set and write-set. Recall from Section 17.1.24
the read-set of a transaction is the set of all items that the transaction reads, s
write-set is the set of all items that it writes, If any of the predeclared items n
cannot be locked, the transaction does not lock any item; instead, it waits until 3
the items are available for locking. Conservative 2PL is a deadlock-free protocal,
we shall see in Section 18.1.3 when we discuss the deadlock problem. However,
difficult to use in practice because of the need to predeclare the read-set and
set, which is not possible in most situations.

In practice, the most popular variation of 2PL is strict 2PL, which guarantees
schedules (see Section 17.4). In this variation, a transaction T does not release
its exclusive (write) locks until after it commits or aborts. Hence, no other
tion can read or write an item that is written by T unless T has committed,
to a strict schedule for recoverability. Strict 2PL is not deadlock-free. A more re
tive variation of strict 2PL is rigorous 2PL, which also guarantees strict
In this variation, a transaction T does not release any of its locks (excl
shared) until after it commits or aborts, and so it is easier to implement than
2PL. Notice the difference between conservative and rigorous 2PL; the former
lock all its items before it starts so once the transaction starts it is in its sh
phase, whereas the latter does not unlock any of its items until after it terming
committing or aborting) so the transaction is in its expanding phase until it end

19

CT13 DATABASE MANAGEMENT SYSTEMS

DEC 2015

many cases, the concurrency control subsystem itself is responsible for generat-
ing the read_lock and write_lock requests. For example, suppose the system is to
e the strict 2PL protocol. Then, whenever transaction T issues a read_item(X),

tem calls the read_lock(X) operation on behalf of T. If the state of LOCK(X) is
ocked by some other transaction T, the system places T on the waiting
for item X; otherwise, it grants the read_lock(X) request and permits the
am(X) operation of T to execute. On the other hand, if transaction T issues a
em(X), the system calls the write_lock(X) operation on behalf of T. If the state
DCK(X) is write_locked or read_locked by some other transaction T”, the sys-
tm places T on the waiting queue for item X; if the state of LOCK(X) is read_locked
and T itself is the only transaction holding the read lock on X, the system upgrades
{he lock to write_locked and permits the write_item(X) operation by T; finally, if the
state of LOCK(X) is unlocked, the system grants the write_lock(X) request and
permits the write_item(X) operation to execute. After each action, the system must
update its lock table appropriately.

..a the two-phase locking protocol guarantees ser:ahzahﬂlty (that is, every
hedule that is permitted is serializable), it does not permit all possible serializable
hedules (that is, some serializable schedules will be prohibited by the protocol).
‘tmnally. the use of locks can cause two additional problems: deadlock and
vation. We discuss these problems and their solutions in the next section.

1.3 Dealing with Deadlock and Starvation

dlock occurs when each transaction T in a set of two or more transactions is
aiting for some item that is locked by some other transaction T” in the set. Hence,
transaction in the set is on a waiting queue, waiting for one of the other
Inansactions in the set to release the lock on an item. A simple example is shown in
Tigure 18.5(a), where the two transactions T,” and T, are deadlocked in a partial
schedule; T,” is on the waiting queue for X, which is locked by T,’, while T,’ is on the
waiting queue for Y, which is locked by T,". Meanwhile, neither T, nor T, nor any
other transaction can access items X and Y.

et

L
:5

dlock Prevention Protocols. One way to prevent deadlock is to use a dead-
prmntiun protocol.” One deadlock prevention protocol, which is used in
.:_:-—..-:~-. ative two-phase locking, requires that every transaction lock all the items it
needs in advance (which is generally not a practical assumption)—if any of the items
annot be obtained, none of the items are locked. Rather, the transaction waits and
M tries again to lock all the items it needs. Obviously this solution further limits
dmvcurrency A second protocol, which also limits concurrency, involves ﬂrdermg all
fhe items in the database and making sure that a transaction that needs several items
will lock them according to that order. This requires that the programmer (or the
g?ltem} is aware of the chosen order of the items, which is also not practical in the
database context.

8 These protocols are not generally used in practice, either because of unrealistic assumplions or
because of their possible overhead. Deadiock detection and timeouts (next section) are more practical.

© IETE

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

(a) 1_ 7k % (b) X
read_lock(Y); | +
read_item(¥); @ T,
read_lock(X):
Time read_item(X); + Y I
write_lock(X);
write_lock(¥);

Figure 18.5
lllustrating the deadlock problem. (a) A partial schedule of 7," and T’ that is
in a state of deadlock. (b) A wait-for graph for the partial schedule in (2},

A number of other deadlock prevention schemes have been proposed that makea
decision about what to do with a transaction involved in a possible deadlock
situation: Should it be blocked and made to wait or should it be aborted, or should
the transaction preempt and abort another transaction? These techniques use the
concept of transaction timestamp TS(T), which is a unique identifier assigned to
each transaction. The timestamps are typically based on the order in which trans
actions are started; hence, if transaction T, starts before transaction T, then
TS(T,) < TS(T,). Notice that the older transaction has the smaller timestamp value
Two schemes that prevent deadlock are called wait-die and wound-wait. Suppose
that transaction T; tries to lock an item X but is not able to because X is locked by
some other transaction T, with a conflicting lock. The rules followed by these
schemes are as follows:

® Wait-die. If TS(T,) < TS(T)), then (T; older than T)) T; is allowed to wai
otherwise (T; younger than T}) abort T; (T; dies) and restart it later with the
same timestamp.

8 Wound-wait. If TS(T;) <TS(T)), then (T; older than T}) abort T;(T; wounds
T;) and restart it later with the same timestamp; otherwise (T; younger
than T)Tis allowed to wait. |

In wait-die, an older transaction is allowed to wait on a younger transaction,
whereas a younger transaction requesting an item held by an older transaction is
aborted and restarted. The wound-wait approach does the opposite: A younger
transaction is allowed to wait on an older one, whereas an older transaction request-
ing an item held by a younger transaction preempts the younger transaction by
aborting it. Both schemes end up aborting the younger of the two transactions that
may be involved in a deadlock. It can be shown that these two techniques are
deadlock-free, since in wait-die, transactions only wait on younger transactions so
no cycle is created. Similarly, in wound-wait, transactions only wait on older trans-
actions so no cycle is created. However, both techniques may cause some transac-
tions to be aborted and restarted needlessly, even though those transactions may
never actually cause a deadlock,

© IETE 21

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

er group of protocols that prevent deadlock do not require timestamps. These
the no waiting (NW) and cautious waiting (CW) algorithms. In the no
g algorithm, if a transaction is unable to obtain a lock, it is immediately
ed and then restarted after a certain time delay without checking whether a
ock will actually occur or not. Because this scheme can cause transactions to
and restart needlessly, the cautious waiting algorithm was proposed to try
uce the number of needless aborts/restarts. Suppose that transaction T; tries
kan item X but is not able to do so because X is locked by some other transac-
-with a conflicting lock. The cautious waiting rules are as follows:

3 Cautmus waiting. If T, is not blocked (not waiting for some other locked
xtem], then T is hlocked and allowed to wait; otherwise abort T,.

’ﬂt shown that cautious waiting is deadlock-free, by considering the time b(T)
each blocked transaction T was blocked. If the two transactions T; and T,
ie both become blocked, and T, is waiting on T, then b(T;) < b(T,), since T, can
y wait on T, at a time when T; is not blocked. Hence, the bl-::n:kmg times form a
ordering on all blocked transactions, so no cycle that causes deadlock can occur.

eadlock Detection. A second, more practical approach to dealing with deadlock
dlock detection, where the system checks if a state of deadlock actually exists.
 solution is attractive if we know there will be little interference among the
actions—that is, if different transactions will rarely access the same items at the
time. This can happen if the transactions are short and each transaction locks
few items, or if the transaction load is light. On the other hand, if transac-
are long and each transaction uses many items, or if the transaction load is
eavy, it may be advantageous to use a deadlock prevention scheme.

Wple way to detect a state of deadlock is for the system to construct and main-
| 2 wait-for graph. One node is created in the wait-for graph for each transaction
is currently executing. Whenever a transaction T, is waiting to lock an item X
currently locked by a transaction T}, a directed edge (T, — T;) is created in the
~for graph. When T; releases the lock(s) on the items that T; was waiting for, the
ed edge is dropped from the wait-for graph. We have a state of deadlock if and
if the wait-for graph has a cycle. One problem with this approach is the matter
etermining when the system should check for a deadlock. Criteria such as the
ber of currently executing transactions or the period of time several transac-
ons have been waiting to lock items may be used. Figure 18.5(b) shows the wait-for
'_ forthe (partial) schedule shown in Figure 18.5(a). If the system is in a state of
ock, some of the transactions causing the deadlock must be aborted. Choosing
ch transacl:mns to abort is known as victim selection. The algorithm for victim
u--.- should generally avoid selecting transactions that have been running for a
g time and that have performed many updates, and it should try instead to select
| transactions that have not made many changes.

|]f ..

' Timeouts. Another simple scheme to deal with deadlock is the use of timeouts.
:m method is practical because of its low overhead and simplicity. In this method,

© IETE 22

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

if a transaction waits for a period longer than a system-defined timeout period, the
system assumes that the transaction may be deadlocked and aborts it—regardless of
whether a deadlock actually exists or not.

Starvation. Another problem that may occur when we use locking is starvation,
which occurs when a transaction cannot proceed for an indefinite period of time
while other transactions in the system continue normally. This may occur if the
waiting scheme for locked items is unfair, giving priority to some transactions over
others. One solution for starvation is to have a fair waiting scheme, such as usinga
first-come-first-served queue; transactions are enabled to lock an item in the order
in which they originally requested the lock. Another scheme allows some transac-
tions to have priority over others but increases the priority of a transaction the 1'
longer it waits, until it eventually gets the highest priority and proceeds. Starvation
can also occur because of victim selection if the algorithm selects the same transac-
tion as victim repeatedly, thus causing it to abort and never finish execution. The
algorithm can use higher priorities for transactions that have been aborted multiple
times to avoid this problem. The wait-die and wound-wait schemes discussed previ-
ously avoid starvation.

18.2 Concurrency Control Based
on Timestamp Ordering

The use of locks, combined with the 2PL protocol, guarantees serializability of
schedules. The serializable schedules produced by 2PL have their equivalent serial
schedules based on the order in which executing transactions lock the items they
acquire. If a transaction needs an item that is already locked, it may be forced to wait
until the item is released. A different approach that guarantees serializability
involves using transaction timestamps to order transaction execution for an equiva-
lent serial schedule, In Section 18.2.1 we discuss timestamps and in Section 18,2.2
we discuss how serializability is enforced by ordering transactions based on their
timestamps.

18.2.1 Timestamps

Recall that a timestamp is a unique identifier created by the DBMS to identify a
transaction. Typically, timestamp values are assigned in the order in which the
transactions are submitted to the system, so a timestamp can be thought of as the
transaction start time. We will refer to the timestamp of transaction T as TS(T).
Concurrency control techniques based on timestamp ordering do not use locks;
hence, deadlocks cannot occur.

Timestamps can be generated in several ways. One possibility is to use a counter that
is incremented each time its value is assigned to a transaction. The transaction time-
stamps are numbered 1, 2, 3, ... in this scheme. A computer counter has a finite max-
imum value, so the system must periodically reset the counter to zero when no

© IETE 23

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

' transactions are executing for some short period of time. Another way to implement
timestamps is to use the current date/time value of the system clock and ensure that
‘no two timestamp values are generated during the same tick of the clock.

-' 2.2 The Timestamp Ordering Algorithm

' schedule has the transactions in order of their timestamp values. This is called
timestamp ordering (TO). Notice how this differs from 2PL, where a schedule is
serializable by being equivalent to some serial schedule allowed by the locking proto-
¢ols. In timestamp ordering, however, the schedule is equivalent to the particular
serial arder corresponding to the order of the transaction timestamps. The algorithm
muat ensure that, for each item accessed by conflicting operations in the schedule, the
@ﬂ in which the item is accessed does not violate the serializability order. To do
lius, the algorithm associates with each database item X two timestamp (TS) values:

1. read_TS(X). The read timestamp of item X; this is the largest timestamp
among all the timestamps of transactions that have successfully read item
X—that is, read TS(X) = TS(T), where T is the youngest transaction that has
read X successfully.

2. write_TS(X). The write timestamp of item X; this is the largest of all the
timestamps of transactions that have successfully written item X—that is,
write_TS(X) = TS(T), where T is the youngest transaction that has written X
successfully.

‘Basic Timestamp Ordering (TO). Whenever some transaction T tries to issue a
read_item(X) or a write_item(X) operation, the basic TO algorithm compares the
timestamp of T with read_TS(X) and write_TS(X) to ensure that the timestamp
order of transaction execution is not violated. If this order is violated, then transac-
tion T is aborted and resubmitted to the system as a new transaction with a new
tmsmmp If T'is aborted and rolled back, any transaction T, that may have used a
value written by T must also be rolled back. Similarly, any transaction T, that may
have used a value written by T, must also be rolled back, and so on. This effect is
known as cascading rollback and is one of the problems associated with basic TO,
since the schedules produced are not guaranteed to be recoverable. An additional
protocol must be enforced to ensure that the schedules are recoverable, cascadeless,
or strict. We first describe the basic TO algorithm here. The concurrency control
algorithm must check whether conflicting operations violate the timestamp order-
ing in the following two cases:

1. Transaction T issues a write_item(X) operation:

a. Ifread_TS(X) > TS(T) or if write_TS{X) = TS(T), then abort and roll back
T and reject the operation. This should be done because some younger
transaction with a timestamp greater than TS(T)—and hence after T in

© IETE 24

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

the timestamp ordering—has already read or written the value of i
before T had a chance to write X, thus violating the timestamp orde

b. If the condition in part (a) does not occur, then execute the write_iten
operation of T and set write_TS(X) to TS(T).

2. Transaction T issues a read_item(X) operation:

a. If write_TS(X) > TS(T), then abort and roll back T and reject the opers-
tion. This should be done because some younger transaction with time-
stamp greater than TS(T)—and hence after T in the timestamp
ordering—has already written the value of item X before T had a cha
to read X.

b. If write_TS(X) < TS(T), then execute the read_jitem(X) operation of T and
set read_TS(X) to the larger of TS(T) and the current read_TS(X).

Hence, whenever the basic TO algorithm detects two conflicting operations that
occur in the incorrect order, it rejects the later of the two operations by aborting the
transaction that issued it. The schedules produced by basic TO are hence guaran-
teed to be conflict serializable, like the 2PL protocol. However, some schedules are
possible under each protocol that are not allowed under the other. Hence, neither
protocol allows all possible serializable schedules. As mentioned earlier, deadlock
does not occur with timestamp ordering. However, cyclic restart (and hence starva-
tion) may occur if a transaction is continually aborted and restarted.

Strict Timestamp Ordering (TO). A variation of basic TO called strict TO
ensures that the schedules are both strict (for easy recoverability) and (conflict)
serializable, In this variation, a transaction T that issues a read_item(X) or
write_item(X) such that TS(T) > write_TS(X) has its read or write operation delayed
until the transaction T” that wrote the value of X (hence TS(T’) = write_TS(X)) has
committed or aborted. To implement this algorithm, it is necessary to simulate the
locking of an item X that has been written by transaction T” until T” is either com-

mitted or aborted. This algorithm does not cause deadlock, since T waits for T’ only

if TS(T) >TS(T”).

Thomas’s Write Rule. A modification of the basic TO algorithm, known as
Thomas’s write rule, does not enforce conflict serializability; but it rejects fewer
write operations, by modifying the checks for the write_item(X) operation as follows:

1. If read_TS(X) > TS(T), then abort and roll back T and reject the operation.

2. If write_TS(X) > TS(T), then do not execute the write operation but continue
processing. This is because some transaction with timestamp greater than
TS(T)—and hence after 1" in the timestamp ordering—has already written
the value of X. Hence, we must ignore the write_item(X) operation of T
because it is already outdated and obsolete. Notice that any conflict arising
from this situation would be detected by case (1),

3. If neither the condition in part (1) nor the condition in part (2) occurs, then
execute the write_item(X) operation of T and set write_TS(X) to TS(T). |

© IETE 25

DEC 2015

CT13 DATABASE MANAGEMENT SYSTEMS
Multiversion Concurrency

\' Control Techniques

Other protocols for concurrency control keep the old values of a data item when the
@ 1§ updatcd These are known as multiversion concurrency control, because
several versions (values) of an item are maintained. When a transaction requires
dccess to an item, an appropriate version is chosen to maintain the serializability of

-15! currently executing schedule, if possible. The idea is that some read operations
'. nat would be rejected in other techniques can still be accepted by reading an older
tersion of the item to maintain serializability, When a transaction writes an item, it
Ljyﬂma new version and the old version of the item is retained. Some multiversion
urrency control algorithms use the concept of view serializability rather than
conflict serializability.
An obvious drawback of multiversion techniques is that more storage is needed to
| maintain multiple versions of the database items. However, older versions may
' have to be maintained anway—fnr example, for recovery purposes. In addition,
| some database applications require older versions to be kept to maintain a history of
the evolution of data item values. The extreme case is a temporal database (see
‘iﬁapter 24}, which keeps track of all changes and the times at which they occurred.
In such cases, there is no additional storage penalty for multiversion techniques,
since older versions are already maintained.

Several multiversion concurrency control schemes have been proposed. We discuss
’Et_fo&chemes here, one based on timestamp ordering and the other based on 2PL,

18.3.1 Multiversion Technique Based on Timestamp Ordering

In this method, several versions X, X, . . . , X; of each data item X are maintained.
‘For each version, the value of version X; and the following two timestamps are kept:

1. read_TS(X;). The read timestamp of X, is the largest of all the timestamps
of transactions that have successfully read version X

2. write_TS(X;). The write timestamp of X, is the timestamp of the transac-
tion that wrote the value of version X,.

Whenever a transaction T is allowed to execute a write_item(X) operation, a new
version X, of item X is created, with both the write_TS(X|,) and the read_TS(X,,,)
set to TS(T). Correspondingly, when a transaction T is allowed to read the value
of version X, the value of read_TS(X,) is set to the larger of the current read_TS(X;)
and TS(T).

To ensure serializability, the following rules are used:

1. If transaction T issues a write_item(X) operation, and version i of X has the
highest write_TS(X;) of all versions of X that is also less than or equal to
TS(T), and read_TS(X;) > TS(T), then abort and roll back transaction T; oth-
erwise, creatc a new version X; of X with rand_TS(X}-} = writa_TS{Xj} =T8(T).

© IETE

26

CT13 DATABASE MANAGEMENT SYSTEMS

DEC 2015

2. If transaction T issues a read_item(X) operation, find the version i of X thit
has the highest write_TS(X,) of all versions of X that is also less than or equl
to TS(T); then return the value of X, to transaction T, and set the valueof
read_TS(X;) to the larger of TS(T) and the current read_TS(X;).

As we can see in case 2, a read_item(X) is always successful, since it finds the appro-
priate version X, to read based on the write_TS of the various existing versions of }
In case 1, however, transaction T may be aborted and rolled back. This happensifT
attempts to write a version of X that should have been read by another transactios
T’ whose timestamp is read_TS(X;); however, T* has already read version X, which
was written by the transaction with timestamp equal to write_TS(X;). If this con i,'r
occurs, T is rolled back; otherwise, a new version of X, written by transaction T,
created. Notice that, if T is rolled back, cascading rollback may occur. Hence, o
ensure recoverability, a transaction T should not be allowed to commit until afterall

the transactions that have written some version that T has read have committed.

18.3.2 Multiversion Two-Phase Locking Using Certify Locks

In this multiple-mode locking scheme, there are three locking modes for an item:
read, write, and certify, instead of just the two modes (read, write) discussed previ-
ously. Hence, the state of LOCK(X) for an item X can be one of read-locked, write-
locked, certify-locked, or unlocked. In the standard locking scheme with only read
and write locks (see Section 18.1.1), a write lock is an exclusive lock. We can
describe the relationship between read and write locks in the standard scheme b
means of the lock compatibility table shown in Figure 18.6{a). An entry of i
means that if a transaction T holds the type of lock specified in the column header
on item X and if transaction T’ requests the type of lock specified in the row header
on the same item X, then T’ can obtain the lock because the locking modes are
compatible. On the other hand, an entry of No in the table indicates that the locks

are not compatible, so T” snust wait until T releases the lock.

In the standard locking scheme, once a transaction obtains a write lock on an item,
no other transactions can access that item. The idea behind multiversion 2PL is to.
allow other transactions T” to read an item X while a single transaction T holdsa
write lock on X. This is accomplished by allowing twe versions for each item X; one
version must always have been written by some committed transaction. The second
version X' is created when a transaction T acquires a write lock on the item. Other
transactions can continue to read the committed version of X while T holds the write
lock. Transaction T can write the value of X’ as needed, without affecting the value
of the committed version X. However, once T is ready to commit, it must obtaina
certify lock on all items that it currently holds write locks on before it can commit.
The certify lock is not compatible with read locks, so the transaction may have to
delay its commit until all its write-locked items are released by any reading transac-
tions in order to obtain the certify locks. Once the certify locks—which are exclusive
locks—are acquired, the committed version X of the data item is set to the value of |
version X', version X’ is discarded, and the certify locks are then released. The lock
compatibility table for this scheme is shown in Figure 18.6(b).

© IETE 27

!

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

(a) Read Write
Read Yes Mo
Write No No
(b) Read Write Certify
[Figure 18.6
Read Yes Yes No Lock compatibility tables.
(a) A compatibility table for
Write Yas No No read/write locking scheme.
. (b) A compatibility table for
Certify No No No read/write/certify locking
scheme.

In this multiversion 2PL scheme, reads can proceed concurrently with a single write
operation—an arrangement not permitted under the standard 2PL schemes. The
cost is that a transaction may have to delay its commit until it obtains exclusive
certify locks on all the items it has updated. It can be shown that this scheme avoids
cascading aborts, since transactions are only allowed to read the version X that was
written by a committed transaction. However, deadlocks may occur if upgrading of
aread lock to a write lock is allowed, and these must be handled by variations of the
techniques discussed in Section 18.1.3,

18.4 Validation (Optimistic) Concurrency
Control Techniques

In all the concurrency control techniques we have discussed so far, a certain degree
of checking is done before a database operation can be executed. For example, in
locking, a check is done to determine whether the item being accessed is locked. In
timestamp ordering, the transaction timestamp is checked against the read and
write timestamps of the item. Such checking represents overhead during transac-
tion execution, with the effect of slowing down the transactions.

In optimistic concurrency control techniques, also known as validation or certifi-
cation techniques, no checking is done while the transaction is executing. Several
proposed concurrency control methods use the validation technique. We will
describe only one scheme here. In this scheme, updates in the transaction are not
applied directly to the database items until the transaction reaches its end. During
transaction execution, all updates are applied to local copies of the data items that
are kept for the transaction.® At the end of transaction execution, a validation phase
checks whether any of the transaction’s updates violate serializability. Certain

6, Note that this can be considered as keeping multiple versions of itemsl|

© IETE 28

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

information needed by the validation phase must be kept by the system. If serialit-
ability is not violated, the transaction is committed and the database is updatd
from the local copies; otherwise, the transaction is aborted and then restarted later

There are three phases for this concurrency control protocol:

1. Read phase. A transaction can read values of committed data items from
the database. However, updates are applied only to local copies (versions}
the data items kept in the transaction workspace.

2. Validation phase. Checking is performed to ensure that serializability
not be violated if the transaction updates are applied to the database,

3. Write phase. If the validation phase is successful, the transaction update
are applied to the database; otherwise, the updates are discarded and the
transaction is restarted.

The idea behind optimistic concurrency control is to do all the checks at oncg
hence, transaction execution proceeds with a minimum of overhead until the vali-
dation phase is reached. If there is little interference among transactions, most will
be validated successfully. However, if there is much interference, many transactions
that execute to completion will have their results discarded and must be restarted
later. Under these circumstances, optimistic techniques do not work well, The tech-
niques are called optimistic because they assume that little interference will occur
and hence that there is no need to do checking during transaction execution.

The optimistic protocol we describe uses transaction timestamps and also requires
that the write_sets and read_sets of the transactions be kept by the system.
Additionally, start and end times for some of the three phases need to be kept for
each transaction. Recall that the write_set of a transaction is the set of items it writes,
and the read_set is the set of items it reads. In the validation phase for transaction Iy
the protocol checks that T; does not interfere with any committed transactions or
with any other transactions currently in their validation phase. The validation phase
for T; checks that, for each such transaction T; that is either committed or is init§
validation phase, one of the following conditions holds:

1. Transaction T; completes its write phase before T starts its read phase.

2. T, starts its write phase after T, completes its write phase, and the read_set of
T; has no items in common with the write_set of T

3. Both the read_set and write_set of T; have no items in common with the
write_set of T, and T; completes its read phase before T; completes its read
phase.

When validating transaction T, the first condition is checked first for each transac-
tion T}, since (1) is the simplest condition to check. Only if condition (1) is falseis
condition (2) checked, and only if (2) is false is condition (3)—the most complex o
evaluate—checked. If any one of these three conditions holds, there is no interfer-
ence and T, is validated successfully. If none of these three conditions holds, the
validation of transaction T; fails and it is aborted and restarted later because inter- |
ference may have occurred. '

© IETE 29

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

Q.5 a. Write a SQL query to find the salaries of all employees of the ‘Finance’
department, as well as the maximum salary, the minimum salary, and the
average salary in this department. €)]

Answer:
SELECT SUM (SALARY), MAX (SALARY), MIN (SALARY), AVG (SALARY)

FROM (EMPLOYEE JOIN DEPARTMENT ON DNO=DNUMBER)
WHERE DNAME="FINANCE’.

b. How general constraints can be specified by the users in SQL? Explain your
answer with an example. 9)
Answer:
In SQL, users can specify general constrains via declarative assertions, using the CREATE ASSERTION

statement of the DDL. Each assertion is given a constraint name and is specified via a condition similar to
the WHERE clause of an SQL. For example, to specify the constraint that “the salary of an employee
must not be greater than the salary of the manager of the department that the employee works for” in
SQL, users may write the following assertion:

CREATE ASSERTION SALARY_CONSTRAINT
CHECK (NOT EXISTS

(SELECT *
FROM EMPLOYEE E, EMPLOYEE M, DEPARTMENT D
WHERE E.SALARY> M.SALARY AND
E.DNO=D.NUMBER AND
D.MGRSSN=M.SSN));

The basic technique for writing such assertions is to specify a query that selects any tuples that violate
the desired condition. By including this query inside a NOT EXISTS clause, the assertion will specify that
the result of this query must be empty. Thus, the assertion is violated if the result of the query is not
empty.

Q.6 a. Explain functional dependency. Mention any three inference rules used in
functional dependencies. (3+3)
Answer:

© IETE 30

CT13 DATABASE MANAGEMENT SYSTEMS

DEC 2015

Functional Dependencies

The single most important concept in relational schema design theory is that of a
fanctional dependency. In this section we formally define the concept, and in
Section 10.3 we see how it can be used to define normal forms for relation schemas.

.1 Definition of Functional Dependency

A functional dependency is a constraint between two sets of attributes from the
database. Suppose that our relational database schema has n attributes A;, A,, . . .,
A, let us think of the whole database as being described by a single universal
glation schema R = {A,, A,, ..., A,}.7 We do not imply that we will actually store the

~ Definition. A functional dependency, denoted by X — Y, between two sets of
attributes X and Y that are subsets of R specifies a constraint on the possible
tuples that can form a relation state r of R. The constraint is that, for any two
tuples ¢, and ¢, in r that have t,[X] = t,[X], they must also have #,[Y] = t,[Y].

© IETE

31

CT13 DATABASE MANAGEMENT SYSTEMS

DEC 2015

This means that the values of the ¥ component of a tuple in r dep
determined by, the values of the X component; alternatively, the values
ponent of a tuple uniquely (or functionally) determine the values of t
nent. We also say that there is a functional dependency from X to ¥,
functionally dependent on X. The abbreviation for functional deper
f.d. The set of attributes X is called the left-hand side of the FD, and
right-hand side.

Thus, X functionally determines Y in a relation schema R if, and nnl]"
~ two tuples of r(R) agree on their X-value, they must necessarily
~ Y-value. Note the following:

B If a constraint on R states that there cannot be more than one tu
given X-value in any relation instance r(R)—that is, X is a ca ¢
R—this implies that X — Y for any subset of attributes ¥ of R (b
key constraint implies that no two tuples in any legal state r(R)
same value of X). '

® [f X - Yin R, this does not say whether or not Y — Xin R.

A functional dependency is a property of the semantics or meaning of
utes. The database designers will use their understanding of the semanl
attributes of R—that is, how they relate to one another—to specify the
dependencies that should hold on all relation states (extensions) r of
the semantics of two sets of attributes in R indicate that a functional de
should hold, we specify the dependency as a constraint. Relation ex
that satisfy the functional dependency constraints are called legal relation sta
legal extensions) of R. Hence, the main use of functional dependencis
describe further a relation schema R by specifying constraints on its att
must hold at all times. Certain FDs can be specified without referring tc
relation, but as a property of those attributes given their commonly
meaning. For example, {State, Driver_license_number} — Ssn should
adult in the United States. It is also possible that certain functional d
may cease to exist in the real world if the relationship changes. For exam
Zip_code — Area_code used to exist as a relationship between postal ca
phone number codes in the United States, but with the proliferation of 1
area codes it is no longer true. '

Consider the relation schema EMP_PROJ in Figure 10.3(b); from the se
the attributes, we know that the following functional dependencies shoul

a. Ssn — Ename
b. Pnumber — {Pname, Plocation |
c. {Ssn, Pnumber} — Hours

These functional dependencies specify that {a) the value of an empla
security number (Ssn) uniquely determines the employee name (Ename)
value of a project’s number (Pnumber) uniquely determines the project n
(Pname) and location (Plocation), and (c) a combination of Ssn and Prumber vall

© IETE

32

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

ly determines the number of hours the employee currently works on the
tper week (Hours). Alternatively, we say that Ename is functionally determined
functionally dependent on) Ssn, or given a value of Ssn, we know the value of
and s0 on.,

etional dependency is a property of the relation schema R, not of a particular
on state r of R. Therefore, an FD cannot be inferred automatically from a
tion extension r but must be defined explicitly by someone who knows the
it of the attributes of R. For example, Figure 10.7 shows a particular state of
CH relation schema. Although at first glance we may think that Text -
we cannot confirm this unless we know that it is true for all possible legal
TEACH. It is, however, sufficient to demonstrate a single counterexample to
¢ a functional dependency. For example, because ‘Smith’ teaches both *Data
and ‘Data Management, we can conclude that Teacher does not function-
ermine Course.

10.3 introduces a diagrammatic notation for displaying FDs: Each FD is
asa horizontal line. The left-hand-side attributes of the FD are connected
lines to the line representing the FD, while the right-hand-side attributes
d by arrows pointing toward the attributes, as shown in Figures 10.3(a)

22 Inference Rules for Functional Dependencies

ote by F the set of functional dependencies that are specified on relation
R, Typically, the schema designer specifies the functional dependencies that
gaemantically obvious; usually, however, numerous other functional dependencies
lin all legal relation instances among sets of attributes that can be derived from
i satisfy the dependencies in F, Those other dependencies can be inferred or

iiced from the FDs in F.

real life, it is impossible to specify all possible functional dependencies for a
Wen situation. For example, if each department has one manager, so that
kpl_no uniquely determines Mgr_ssn (Dept_no — Mgr_ssn), and a Manager has a
ique phone number called Mgr_phone (Mgr_ssn — Mgr_phone), then these two
bendencies together imply that Dept_no — Mgr_phone. This is an inferred FD and
ged not be explicitly stated in addition to the two given FDs, Therefore, formally it

TEACH Figure 10.7

‘Teacher Course Text A relation state of TEACH with a

Smith Data Struchires Bartrarn possible functional dependency

: : TEXT = COURSE. However,

Smith | Data Management | Martin TEACHER —» COURSE is ruled out
Hall Compilers Hoffman
Brown Data Structures Horowitz

© IETE 33

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

is useful to define a concept called closure that includes all w'-a.ii'-}';ﬁ_._
that can be inferred from the given set F. i

Definition. Formally, the set of all dependencies that include F a3
all dependencies that can be inferred from F is called the closure of |
denoted by F*. |

dependencies on the relation schema of Figure 10.3(a):

F = [Ssn — |{Ename, Bdate, Address, Dnumber} ,
Dnumber — {Dname, Dmgr_ssn} |

Some of the additional functional dependencies that we can infer fro
following: e

Sen — {Dname, Dmgr_ssn}
Ssn — Ssn
Dnumber — Dname

An FD X - Y is inferred from a set of dependencies F specified on R if X =

in every legal relation state r of R; that is, whenever r satisfies all the d
F, X - Y also holds in r. The closure F* of F is the set of all functional
that can be inferred from F. To determine a systematic way to infer d
we must discover a set of inference rules that can be used to infer new
from a given set of dependencies. We consider some of these inference
We use the notation F X — Y to denote that the functional dependency X
inferred from the set of functional dependencies F.

In the following discussion, we use an abbreviated notation when disc
tional dependencies. We concatenate attribute variables and drop the con
convenience. Hence, the FD {X,Y} — Z is abbreviated to XY — Z, and '
Z} - {U, V} is abbreviated to XYZ — UV, The following six rules IR1 throughlf
well-known inference rules for functional dependencies: '
IR1 (reflexive rule)”: If X Y,thenX 5 Y,
IR2 (augmentation rule)'®: {X - Y} EXZ - YZ.
IR3 (transitive rule): (XY, Y= Z} X Z,
IR4 (decomposition, or projective, rule): [X = YZ} X = Y.
IR5 (union, or additive, rule): {X — ¥, X » Z} EX - YZ.
IR6 (pseudotransitive rule): {X —» Y, WY > Z} FWX - Z,

9. The refiexive rule can also be stated as X — X, that is, any set of attributes functionally determines
itself,

10. The augmentation rule can also be stated as {X — ¥} EXZ — ¥ that is, augmenting 'Hia'
side attributes of an FD produces ancther valid FD. Ri

© IETE ‘ 34

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

reflexive rule (IR1) states that a set of attributes always determines itself or any
ifits subsets, which is obvious. Because IR1 generates dependencies that are always
such dependencies are called trivial. Formally, a functional dependency X — ¥
iial if X o Y; otherwise, it is nontrivial. The augmentation rule (IR2) says that
idding the same set of attributes to both the left- and right-hand sides of a depen-
dency results in another valid dependency, According to IR3, functional depende-
Bcies are transitive. The decomposition rule (IR4) says that we can remove
ittributes from the right-hand side of a dependency; applying this rule repeatedly
@n decompose the FD X = {A, A,, ..., A} into the set of dependencies {X - A,
Ay ..., X - A} The union rule (IR5) allows us to do the opposite; we can
wmbine a set of dependencies {X - A, X » A,, ..., X = A} into the single FD
K= {4, R Al

One cautionary note regarding the use of these rules. Although X - A and X — B
mplies X — AB by the union rule stated above, X — A, and Y — B does not imply that
&1 - AB. Also, XY - A does not necessarily imply either X = AorY - A.

Each of the preceding inference rules can be proved from the definition of
unctional dependency, either by direct proof or by contradiction. A proof by con-
tadiction assumes that the rule does not hold and shows that this is not possible.
We now prove that the first three rules IR1 through IR3 are valid. The second proof
by contradiction.

- Proof of IR1. Suppose that X 2 Y and that two tuples ¢, and ¢, exist in some
* relation instance r of R such that t; [X] = t, [X]. Then ,[Y] = t,[¥] because
X2 Y; hence, X - Y must hold in r.

{

" Proof of IR2 (by Contradiction). Assume that X — Y holds in a relation
instance r of R but that XZ - YZ does not hold. Then there must exist two
tu;pies tandt,inrsuchthat (1) t, [X] =1 [X],(2) f, [Y] =4 [Y], (3) 1, [XZ] =

; -f} [XZ], and (4) t, [YZ] # t, [YZ]. This is not possible because from (1) and (3)
: ‘we deduce (5) t, [Z] = t; [Z], and from (2) and (5) we deduce () 1, [¥Z] = ¢,
_. _I«F’Z], contradicting (4).

‘Proof of IR3. Assume that (1) X - Yand (2) Y — Z both hold in a relation r.

Then for any two tuples #, and t, in r such that f, [X] = t, [X], we must have (3)
1y [Y] =, [Y], from assumption (1); hence, we must also have (4) t, [Z] =, [Z],
* from (3) and assumption (2); hence, X — Z must hold in r.

Jiing similar proof arguments, we can prove the inference rules IR4 to IR6 and any
additional valid inference rules. However, a simpler way to prove that an inference
ile for functional dependencies is valid is to prove it by using inference rules that
ave already been shown to be valid. For example, we can prove IR4 through IR6 by
wsing IR1 through IR3 as follows.
© IETE 35

CT13 DATABASE MANAGEMENT SYSTEMS

DEC 2015

Proof of IR4 (Using IR1 through IR3).
1. X = YZ (given).
2. YZ - Y (using IR1 and knowing that ¥Z 2 Y).
3. X - Y (usingIR3 on 1 and 2).
Proof of IR5 (Using IR1 through IR3).
: X 5 Y (given).

1

2. X - Z (given).

3. X - XY (using IR2 on 1 by augmenting with X; notice that XX ;
4. XY - YZ (using IR2 on 2 by augmenting with Y).

5. X - YZ (using IR3 on 3 and 4).

Proof of IR6 (Using IR1 through IR3).

. X = Y (given).

. WY = Z (given).

WX — WY (using IR2 on 1 by augmenting with W).
4. WX = Z (using IR3 on 3 and 2).

w B o~

It has been shown by Armstrong (1974) that inference rules IR1 thro
sound and complete. By sound, we mean that given a set of functional d
F specified on a relation schema R, any dependency that we can in

cies in F. By complete, we mean that using IR1 through IR3 repeate
dependencies until no- more dependencies can be inferred results in t
set of all possible dependencies that can be inferred from F. In other words,
dependencies F*, which we called the closure of F, can be determined
using only inference rules IR1 through IR3. Inference rules IR1 thro
known as Armstrong’s inference rules.'’

Typically, database designers first specify the set of functional dependencie
can easily be determined from the semantics of the attributes of R; then If
and IR3 are used to infer additional functional dependencies that wi
on R. A systematic way to determine these additional functional dep
first to determine each set of attributes X that appears as a left-hand si _
functional dependency in F and then to determine the set of all attributes that
dependent on X,

Definition. For each such set of attributes X, we determine the set J.'*;,_:'_
utes that are functionally determined by X based on F; X" is called the closi
of X under F. Algorithm 10.1 can be used to calculate X*.

11. They are actually known as Armstrong's axioms. In the strict mathematical sense, the a
facts} are the functional depandencies in £, since we assume that they are correct, whereas IR thre
IR3 are the inference rufes for inferring new functional dependencies (new facts).

© IETE

36

CT13 DATABASE MANAGEMENT SYSTEMS

DEC 2015

Algorithm 10.1. Determining X*, the Closure of X under F
= X;

ColdX* = XY

. for each functional dependency Y - Z in F do
Xt D Ythen Xt :=Xtwu Z;

until (X* = oldX");

withm 10.1 starts by setting X* to all the attributes in X. By IR1, we know that all
seattributes are functionally dependent on X. Using inference rules IR3 and [R4,
ac i attributes to X', using each functional dependency in F. We keep going
h all the dependencies in F (the repeat loop) until no more attributes are
X* during a complete cycle (of the for loop) through the dependencies in F.
ample, consider the relation schema EMP_PROJ in Figure 10.3(b}; from the
tics of the attributes, we specify the following set F of functional dependen-

b that should hold on EMP_PROJ:

'F= [Ssn - Ename,
'T'f"Fnurnber — {Pname, Plocation},

|Ssn, Pnumber} — Hours)

ing Algorithm 10.1, we calculate the following closure sets with respect to F:

|8en} + = {Ssn, Ename|
{Pnumber} + = {Pnumber, Pname, Plocation|
{Ssn, Pnumber} + = [Ssn, Pnumber, Ename, Pname, Plocation, Hours|

(uitively, the set of attributes in the right-hand side in each line above represents
[those attributes that are functionally dependent on the set of attributes in the
fii-hand side based on the given set F.

b. Explain 2NF, 3NF and 4NF. Give an example for each.
Answer:

© IETE

(3x2)

37

CT13 DATABASE MANAGEMENT SYSTEMS

DEC 2015

General Definitions of Second
and Third Normal Forms

general, we want to design our relation schemas so that they have neither partial
i transitive dependencies because these types of dependencies cause the update
pmalies discussed in Section 10.1.2. The steps for normalization into 3NF rela-
s that we have discussed so far disallow partial and transitive dependencies on
imary key. These definitions, however, do not take other candidate keys of a
n, if any, into account. In this section we give the more general definitions of
nd 3NF that take all candidate keys of a relation into account. Notice that this
not affect the definition of 1NF since it is independent of keys and functional
ncies. As a general definition of prime attribute, an attribute that is part of
didate key will be considered as prime. Partial and full functional dependen-
d transitive dependencies will now be considered with respect to all candidate
gsof a relation.

)41 General Definition of Second Normal Form

' gfinition. A relation schema R is in second normal form (2NF) if every non-
prime attribute A in R is not partially dependent on any key of R.'®

fributes are part of the primary key. If the primary key contains a single attribute,
i test need not be applied at all. Consider the relation schema LOTS shown in
10.11(a), which describes parcels of land for sale in various counties of a

Suppose that there are two candidate keys: Property_id# and {County_name,

umbers are unique across counties for the entire state.

ssed on the two candidate keys Property_id# and {County_name, Lot#}, we know

at the functional dependencies FD1 and FD2 of Figure 10.11(a) hold. We choose

operty_id# as the primary key, so it is underlined in Figure 10.11(a), but no special

nsideration will be given to this key over the other candidate key. Suppose that the
lowing two additional functional dependencies hold in LOTS:

FD3: County_name — Tax_rate
- FD4: Area — Price

iwords, the dependency FD3 says that the tax rate is fixed for a given county (does
otvary lot by lot within the same county), while FD4 says that the price of a lot is
glermined by its area regardless of which county it is in. (Assume that this is the
ice of the lot for tax purposes.)

hie LOTS relation schema violates the general definition of 2NF because Tax_rate
i partially dependent on the candidate key {County_name, Lot#}, due to FDS3.

6. This definition can be restated as follows: A relation schema R is in 2NF if every nonprime attribute
inA s fully functionally dependent on every key of .

© IETE 38

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

@ Cand+d|ateKey
I 1
!LOTMS| ' [W"* IT]TITIMTM_[
Fo2 o i . Bory, of
FD3 f

FD4 1 T

(b)
LOTS1 LOTS2

| Property 6 [County neme | Lotk Area | Price | [Gouny pame [Tarrais |
FD1 % 4 I ; I FD3 l_—_f

FD4 ‘ ?

o LOTS1A | j] LOTS1B
| Property.jd# | County_name_| Lotw | Avea [Area [Price]
FD1 4 I } J; FD4 }
FD2

d
= LOTS 1NF
LOTS1 LOTS2 2NF
LOTS1A LOTS1B LOTS2 3NF
Figure 10.11

Normalization into 2NF and 3NF. (a) The LOTS relation with its tunctional dependencies FD1
through FD4. (b) Decomposing into the 2NF relations LOTS1 and LOTS?, {c) Decomposing LOTS 1
nto the 3NF relations LOTS 1A and LOTS1B. (d) Summary of the progressive normalization of LOTS.

© IETE 39

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

Io normalize LOTS into 2NF, we decompose it into the two relations LOTS1 and
0152, shown in Figure 10.11(b). We construct LOTS1 by removing the attribute
&t rate that violates 2NF from LOTS and placing it with County_name (the left-hand
Side of FD3 that causes the partial dependency) into another relation LOTS2. Both
011 and LOTS2 are in 2NF. Notice that FD4 does not violate 2NF and is carried

104.2 General Definition of Third Normal Form

' k Definition. A relation schema R is in third normal form (3NF) if, whenever a
_nontrivial functional dependency X — A holds in R, either (a) X is a superkey of
. R,or (b) A is a prime attribute of R.

According to this definition, LOTS2 (Figure 10.11(b)) is in 3NF. However, FD4 in
LOTS1 violates 3INF because Area is not a superkey and Price is not a prime attribute

a 10T51 To normalize LOTS1 into 3NF, we decompose it into the relation schemas
_j"f:fi S1A and LOTS1B shown in Figure 10.11(c). We construct LOTS1A by removing
‘"attribute Price that violates 3NF from LOTS1 and placing it with Area (the left-
hs

nd side of FD4 that causes the transitive dependency) into another relation
1B. Both LOTS1A and LOTS1B are in 3NF.

vo points are worth noting about this example and the general definition of 3NF:

® LOTS1 violates 3NF because Price is transitively dependent on each of the
- candidate keys of LOTS1 via the nonprime attribute Area.

- B This general definition can be applied directly to test whether a relation
schema is in 3NF; it does not have to go through 2NF first, If we apply the
above 3NF definition to LOTS with the dependencies FD1 through FD4, we
find that both FD3 and FD4 violate 3NF. Therefore, we could decompose
LOTS into LOTS1A, LOTS1B, and LOTS2 directly. Hence the transitive and
partial dependencies that violate 3NF can be removed in any order,

10.4.3 Interpreting the General Definition of Third Normal Form

| A relation schema R violates the general definition of 3NF if a functional depen-
- dency X — A holds in R that violates both conditions (a) and (b) of 3NE Violating
| {b) means that A is a nonprime attribute. Violating (a) means that X is not a super-
i set of any key of R; hence, X could be nonprime or it could be a proper subset of a

key of R. If X is nonprime, we typically have a transitive dependency that violates
INF, whereas if X is a proper subset of a key of R, we have a partial dependency that
‘violates 3NF (and also 2NF). Therefore, we can state a general alternative defini-
‘tion of 3NF as follows:

Alternative Definition. A relation schema R is in 3NF if every nonprime
attribute of R meets both of the following conditions:
® [t is fully functionally dependent on every key of R.

® [tis nontransitively dependent on every key of R. o

© IETE 40

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015
Talohe Y40
Summary of the Algorithms Discussed in Sections 11.1 and 11.2
Algorithm Input Output Properties/Purpose Remarks '
11.1 A decomposition Boolean result: yes Testing for See a simpler test
DofRandaset F orno for nonaddi- nonadditive join in Section 11.1.
of functional tive join property decompaosition for binary '
dependencies decomposit'mns"
112 Set of functional A set of relations Dependency No guarantee of -
dependencies F in 3NF preservation satisfying loss
property
A
11.3 Set of functional A set of relations Nonadditive join No guarantee of
dependencies F in BCNF decompaosition dependency g
preservation
11.4 Set of functional A set of relations Nonadditive join May not achieve
dependencies F in 3NF and dependency- BCNE, but achieves
preserving all desirable proper-
decomposition ties and 3NF
11.4a Relation schema Key Kof R To find a key K The entire reiati-ﬂi;l':
R with a set of (that is a subset is always a default
functional of R) superkey 3
dependencies F

© IETE

11.3 Multivalued Dependencies
and Fourth Normal Form

So far we have discussed only functional dependency, which is by far the most
important type of dependency in relational database design theory. However.
many cases relations have constraints that cannot be specified as functional dej epens
dencies. In this section, we discuss the concept of multivalued dependency
and define fourth normal form, which is based on this dependency. Multivalued
dependencies are a consequence of first normal form (1NF) (see Section 10.3. 5
which disallows an attribute in a tuple to have a set of values. If we have two or m
multivalued independent attributes in the same relation schema, we get into a pr

(M

lem of having to repeat every value of one of the attributes with every value of the
other attribute to keep the relation state consistent and to maintain the indepen-
dence among the attributes involved. This constraint is specified by a mulﬁval__‘_u
dependency.

For example, consider the relation EMP shown in Figure 11.4(a). A tuple in this
EMP relation represents the fact that an employee whose name is Ename works on
the project whose name is Pname and has a dependent whose name is Dname,

41

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

émployee may work on several projects and may have several dependents, and
iployee’s projects and dependents are independent of one another.® To keep
lation state consistent, we must have a separate tuple to represent every
ion of an employee’s dependent and an employee’s project. This constraint
ed as a multivalued dependency on the EMP relation. Informally, whenever
dependent 1:N relationships A:B and A:C are mixed in the same relation,
C) an MVD may arise.

ure 11.4

purih and fifth normal forms,

i) The EMP relation with two MVDs: Ename —» Pname and Ename —> Dname.

:}'-. pmposing the EMP relation into two 4NF relations EMP_PROJECTS and EMP_DEPENDENTS.
It} The relation SUPPLY with no MVDs is in 4NF but not in 5NF (f it has the JD(R;, Ry, R).

i) Decomposing the relation SUPPLY into the BNF relations R, Ry, Ra.

EMP (c) SUPPLY
_Ename | Pname | Dname Sname | Part name | Proj name
Smith X John Smith Bolt ProjX
Smith Y Anna Smith MNut ProjY
Smith X Anna Adamsky Bolt ProjY
Smith Y John Walton Nut ProjZ
Moo Ml A L« S
- Adamsky Bolt ProjX
(b) EMP_PROIJECTS EMP_DEPENDENTS Smith Bolt ProjY
Smith X Smith John
Smith Y | Smith Anna
0 R, R, R,
Srame | Part name Sname | Proj name Part name | Proj name
Smith Bolt Smith ProjX Bolt ProjX
Smith Nut Smith ProjY Nut ProjY
Adamsky Bolt Adamsky ProjY Bolt ProjY
Walton Nut Walton ProjZ2 Mut ProjZ
Adamsky Nail Adamsky ProjX Nail ProjX |

)

g.In an ER diagram, each would be represernted as a multivalued attribute or as a weak entity type
{see Chapter 3).

c. Explain the possible reasons for a transaction to fail in the middle of
execution in DBMS. (6)

Answer:
The possible reasons for a transaction to fail in the middle of execution in DBMS are:

© IETE 42

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

e A computer failure: A hardware, software, or network error occurs in the computer system
during transaction execution.

e A transaction or system error: Some operation in the transaction may cause it to fail, such as
integer overflow or division by zero. Transaction failure may also occur because of erroneous
parameter values or because of a logical programming error. Moreover, the user may interrupt
the transaction during its execution.

e Local errors or exception conditions detected by the transaction: During transaction execution,
certain conditions may occur that necessitate cancellation of the transaction. For example, data
for the transaction may not be found. Insufficient account balance in banking database may
cause a transaction, such as a fund withdrawal, to be cancelled.

e Concurrency control enforcement: the concurrency control method may decide to abort the
transaction, to be restarted later, because several transactions are in a state of deadlock.

o Disk failure: Some disk blocks may lose their data because of read or write malfunction or a
write operation of the transaction.

e Physical problems and catastrophes:This refers to an endless list of problems that includes
power or air conditioner failure, fire, theft, etc.

Q.7 a. Explain heuristics in Query Optimization. (6)
Answer:

15.7 Using Heuristics in Query Optimization

In this section we discuss optimization techniques that apply heuristic rulest
modify the internal representation of a query—which is usually in the form ofa
query tree or a query graph data structure—to improve its expected performance
The parser of a high-level query first generates an initial internal representation
which is then optimized according to heuristic rules. Following that, a query execu
tion plan is generated to execute groups of operations based on the access path
available on the files involved in the query.

One of the main heuristic rules is to apply SELECT and PROJECT operations before
applying the JOIN or other binary operations, because the size of the file resulfing
from a binary operation—such as JOIN—is usually a multiplicative function of the
sizes of the input files. The SELECT and PROJECT operations reduce the size of afile
and hence should be applied before a join or other binary operation.

In Section 15.7.1 we reiterate the query tree and query graph notations that we
introduced earlier in the context of relational algebra and calculus in Sections 633
and 6.6.5 respectively. These can be used as the basis for the data structures thatar
used for internal representation of queries. A query tree is used to representd
relational algebra or extended relational algebra expression, whereas a query grap

© IETE 43

CT13 DATABASE MANAGEMENT SYSTEMS

DEC 2015

s used to represent a relational calculus expression. Then in Section 15.7.2 we show
how heuristic optimization rules are applied to convert a query tree into an equiva-
lent query tree, which represents a different relational algebra expression that is
‘more efficient to execute but gives the same result as the original one. We also dis-
cuss the equivalence of various relational algebra expressions. Finally, Section 15.7.3
discusses the generation of query execution plans.

15.7.1 Notation for Query Trees and Query Graphs

| A query tree is a tree data structure that corresponds to a relational algebra expres-

 sion, It represents the input relations of the query as leaf nodes of the tree, and rep-

f-mmts the relational algebra operations as internal nodes. An execution of the
query tree consists of executing an internal node operation whenever its operands
are available and then replacing that internal node by the relation that results from

* executing the operation. The execution terminates when the root node is executed
and produces the result relation for the query.

| Figure 15.4(a) shows a query tree (the same as shown in Figure 6.9) for query Q2 of

| Chapters 5 to 8: For every project located in ‘Stafford), retrieve the project number,

" the controlling department number, and the department manager’s last name,
address, and birthdate. This query is specified on the relational schema of Figure 5.5
and corresponds to the following relational algebra expression:

EF’numh-ur. Dm_Jm. Lname, Address, Bdate [[{GF'In-c:atiafn='Staﬁnrd'E PROJ ECT}]
pd Dnum=[!nun1har{ D EFARTMENT) } P4 Mgr_ssn=Ssn{EMPLDYEE:I }

This corresponds to the following SQL query:

Q2: SELECT PPnumber, PDnum, E.Lname, E.Address, E.Bdate
FROM PROJECT AS P, DEPARTMENT AS D, EMPLOYEE AS E
WHERE P.Dnum=D.Dnumber AND D.Mgr_ssn=E.Ssn AND
P.Plocation= "Stafford’;

In Figure 15.4(a) the three relations PROJECT, DEPARTMENT, and EMPLOYEE are
represented by leaf nodes P, D, and E, while the relational algebra operations of the
gxpression are represented by internal tree nodes. When this query tree is executed,
the node marked (1) in Figure 15.4(a) must begin execution before node (2) because
some resulting tuples of operation (1) must be available before we can begin execut-
ing operation (2). Similarly, node (2) must begin executing and producing results
before node (3) can start execution, and so on.

As we can see, the query tree represents a specific order of operations for executing
d query. A more neutral representation of a query is the query graph notation.
Figure 15.4(c) (the same as shown in Figure 6.13) shows the query graph for query
Q2. Relations in the query are represented by relation nodes, which are displayed as
single circles. Constant values, typically from the query selection conditions, are
represented by constant nodes, which are displayed as double circles or ovals.
Selection and join conditions are represented by the graph edges, as shown in
Figure 15.4(c). Finally, the attributes to be retrieved from each relation are displayed
in square brackets above each relation.

© IETE

44

CT13 DATABASE MANAGEMENT SYSTEMS

DEC 2015

(a) " B Pnumber,P.Dnum,E.Lname, E.Address, E.Bdate

(3) |
™ D.Mgr_ssn=E.Ssn

(2) /

™ P.Dnum=D.Dnumber EMPLOYEE

(1) /
S p_Plocation= 'Stafford’ \@7 stk ol 44
d:), PROJECT

(b) "PPnumber, PDnum, E.Lname, E.Address, E.Bdate
|
GF’.Dnum@.Dnumber AND D.Mgr_ssn=E.Ssn AND P.Plocation='Stafford’

i
X

ek
T

{c) [PPnumber, P.Dnum] [E.Lname, E.Address, E.Bdate]

P.Dnum=D.Dnumber D.Mgr_ssn=E.San
@2 ®
e

P.Plocation="Stafford’

Figure 15.4
Two query trees for the query Q2. (a) Query tree corresponding to the relational algebra
expression for Q2. (b) Initial (canonical} query tree for SQL query Q2. (c) Query graph for Q2.

The query graph representation does not indicate an order on which operations to
perform first. There is only a single graph corresponding to each query.'® Although
some optimization techniques were based on query graphs, it is now generally
accepted that query trees are preferable because, in practice, the query optimizer
needs to show the order of operations for query execution, which is not possible in

query graphs.

// 15. Hence, a query graph corresponds to a relational calculus expression as shown in
Section 6.6.5.

b. Explain the components of distributed database.
Answer:

© IETE

45

(6)

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

25.1 Distributed Database Concepts

Distributed databases bring the advantages of distributed computing to the date-
base management domain. A distributed computing system consists of a number
of processing elements, not necessarily homogeneous, that are interconnected bya
computer network, and that cooperate in performing certain assigned tasks. Asa
general goal, distributed computing systems partition a big, unmanageable problem
into smaller pieces and solve it efficiently in a coordinated manner, The economic
viability of this approach stems from two reasons: more computer power is har-
nessed to solve a complex task, and each autonomous processing element can be
managed independently and develop its own applications.

We can define a distributed database (DDB) as a collection of multiple logically
interrelated databases distributed over a computer network, and a distributed data-
base management system (DDBMS) as a software system that manages a distrib-
uted database while making the distribution transparent to the user.?

1. The reader should review the introduction to client-server architecture in Section 2.5,

2 This definition and some of the discussion in this section are based on Ozsu and Valduriez (1993),

© IETE 46

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

ection of files stored at different nodes of a network and the maintaining of
elationships among them via hyperlinks has become a common organization
¢ [nternet, with files of Web pages. The common functions of database man-
gent, including uniform query processing and transaction processing, do not
yto this scenario yet. The technology is, however, moving in a direction such
stributed World Wide Web (WWW) databases will become a reality in the
yture. We will discuss issues of accessing databases on the Web in Chapter 26.
of those qualifies as DDB by the definition given earlier.

.1 Parallel versus Distributed Technology

ing our attention to parallel system architectures, there are two main types of
iprocessor system architectures that are commonplace: .

Shared memory (tightly coupled) architecture. Multiple processors share
secondary (disk) storage and also share primary memory.

| Shared disk (loosely coupled) architecture. Multiple processors share
secondary (disk) storage but each has their own primary memory.

e architectures enable processors to communicate without the overhead of
anging messages over a network.? Database management systems developed
g the above types of architectures are termed parallel database management
ems rather than DDBMS, since they utilize parallel processor technology.
other type of multiprocessor architecture is called shared nothing architecture.
lhis architecture, every processor has its own primary and secondary (disk)
j0ry, no common memory exists, and the processors communicate over a high-
i interconnection network (bus or switch). Although the shared nothing archi-
re resembles a distributed database computing environment, major differences
in the mode of operation. In shared nothing multiprocessor systems, there is
. and homogeneity of nodes; this is not true of the distributed database
ronment where heterogeneity of hardware and operating system at each node is
fjcommon. Shared nothing architecture is also considered as an environment for
llel databases. Figure 25.1 contrasts these different architectures.

12 Advantages of Distributed Databases

fributed database management has been proposed for various reasons ranging

morganizational decentralization and economical processing to greater autonomy.

highlight some of these advantages here.

% Management of distributed data with different levels of transparency.
Ideally, a DBMS should be distribution transparent in the sense of

hiding the details of where each file (table, relation) is physically stored

' hoth primary and secondary memories are shared, the architecture is also known as shared every-
ing architecture.

© IETE 47

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

Figure 25.1
Some different database system architectures. (a) Shared nothing architecture. (b) A networked

architecture with a centralized database at one of the sites. (c) A truly distributed database
architecture,

(a) Computer System 1 | | Computer System 2

© IETE 48

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

within the system. Consider the company database in Figure 5.5 that we have
. been discussing throughout the book. The EMPLOYEE, PROJECT, and
WORKS_ON tables may be fragmented horizontally (that is, into sets of
rows, as we shall discuss in Section 25.2) and stored with possible replication
as shown in Figure 25.2. The following types of transparencies are possible:

8 Distribution or network transparency. This refers to freedom for the
user from the operational details of the network. It may be divided into
location transparency and naming transparency. Location transparency
refers to the fact that the command used to perform a task is indepen-
dent of the location of data and the location of the system where the
command was issued. Naming transparency implies that once a name is
specified, the named objects can be accessed unambiguously without

. additional specification.

| = Replication transparency. As we show in Figure 25.2, copies of data may

| be stored at multiple sites for better availability, performance, and relia-

i bility. Replication transparency makes the user unaware of the existence

i of copies.

= Fragmentation transparency. Two types of fragmentation are possible.

i Horizontal fragmentation distributes a relation into sets of tuples (rows),

Figure 25.2
Data distribution and replication among distributed databases.

EMPLOYEES Al
EMPLOYEES San Francisco PROJECTS Al
and Los Angeles WORKS_ON Al EMPLOYEES New York
PROJECTS San Francisco Ciagh ™ PROJECTS Al
WORKS_ON San Francisco (Headquarters) WORKS_ON MNew York
employees — - employees
San Francisco New York
Communications
MNetwork
Los Angeles | Atlanta
EMPLOYEES Los Angeles EMPLOYEES Atlanta
PROJECTS Los Angeles and PROJECTS Atlanta
SR . WORKS_ON Atlanta
WORKS_ON Los Angeales employees

employees

© IETE 49

CT13

DATABASE MANAGEMENT SYSTEMS

DEC 2015

. Increased reliability and availability. These are two of the most comme

. Improved performance. A distributed DBMS fragments the database by

Vertical fragmentation distributes a relation into subrelations whee
each subrelation is defined by a subset of the columns of the ori
relation. A global query by the user must be transformed into sever
fragment queries. Fragmentation transparency makes the user unaws
the existence of fragments.

® (Other transparencies include design transparency and execution trans
parency—referring to freedom from knowing how the distributed data-
base is designed and where a transaction executes.

potential advantages cited for distributed databases. Reliability is broadly
defined as the probability that a system is running (not down) at a certain

time point, whereas availability is the probability that the system is contin-

uously available during a time interval. When the data and DBMS software
are distributed over several sites, one site may fail while other sites continue
to operate. Only the data and software that exist at the failed site cannot be
accessed. This improves both reliability and availability. Further improve-
ment is achieved by judiciously replicating data and software at more than
one site. In a centralized system, failure at a single site makes the whole
system unavailable to all users. In a distributed database, some of the data
may be unreachable, but users may still be able to access other parts of the
database.

keeping the data closer to where it is needed most. Data localization reduces
the contention for CPU and I/O services and simultaneously reduces access
delays involved in wide area networks. When a large database is distributed
over multiple sites, smaller databases exist at each site. As a result, local
queries and transactions accessing data at a single site have better perfor-
mance because of the smaller local databases. In addition, each site has a
smaller number of transactions executing than if all transactions are submit-
ted to a single centralized database. Moreover, interquery and intraquery
parallelism can be achieved by executing multiple queries at different sites,
or by breaking up a query into a number of subqueries that execute in
parallel. This contributes to improved performance.

. Easier expansion. In a distributed environment, expansion of the system in

terms of adding more data, increasing database sizes, or adding more proces-
sors is much easier.

The transparencies we discussed in (1) above lead to a compromise between ease of
use and the overhead cost of providing transparency. Total transparency provides
the global user with a view of the entire DDBS as if it is a single centralized system.
Transparency is provided as a complement to autonomy, which gives the users
tighter control over local databases. Transparency features may be implemented as a
part of the user language, which may translate the required services into appropriate
operations. Additionally, transparency impacts the features that must be provided
by the operating system and the DBMS.

© IETE

50

CT13 DATABASE MANAGEMENT SYSTEMS

DEC 2015

Additional Functions of Distributed Databases

tion leads to increased complexity in the system design and implementation.
eve the potential advantages listed previously, the DDBMS software must be
ovide the following functions in addition to those of a centralized DBMS:

geping track of data. The ability to keep track of the data distribution,
agmentation, and replication by expanding the DDBMS catalog.

istributed query processing. The ability to access remote sites and trans-
it queries and data among the various sites via a communication network.
Distributed transaction management. The ability to devise execution
trategies for queries and transactions that access data from more than one
site and to synchronize the access to distributed data and maintain integrity
if the overall database.

eplicated data management. The ability to decide which copy of a
éplicated data item to access and to maintain the consistency of copies of
replicated data item.

istributed database recovery. The ability to recover from individual site
rashes and from new types of failures such as the failure of a communica-

curity, Distributed transactions must be executed with the proper man:

agement of the security of the data and the authorization/access privileges of
users.

" Dis!:ributad directory (catalog) management. A directory contains infor-
mation (metadata) about data in the database. The directory may be global

for th_e entire DDB, or local for each site. The placement and distribution of
the directory are design and policy issues.

lhese functions themselves increase the complexity of a DDBMS over a centralized
BMS. _Bcfore we can realize the full potential advantages of distribution, we must
"-?amfactnr}r_su]utiuns to these design issues and problems. Including all this
#ditional functionality is hard to accomplish, and finding optimal solutions is a
ittp beyond that.

Atthe physical hardware level, the following main factors distinguish a DDBMS
om a centralized system:

- ® There are multiple computers, called sites or nodes.

® These sites must be connected by some type of communication network to
transmit data and commands among sites, as shown in Figure 25.1(c).

fhe sites may all be located in physical proximity—say, within the same building or

goup of adjacent buildings—and connected via a local area network, or they may

geographically distributed over large distances and ronnected via a long-haul or

fide area network. Local area networks typically use cables, whereas long-haul

mrﬁ use telephone lines or satellites. It is also possible to use a combination of
rks.

© IETE

51

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

Networks may have different topologies that define the direct communicati
paths among sites. The type and topology of the network used may have a siga
cant effect on performance and hence on the strategies for distributed query ps
cessmg and distributed database design. For high-level architectural issues, howeye
it does not matter which type of network is used; it only matters that each snteu"
to communicate, directly or indirectly, with every other site. For the remainderal
this chapter, we assume that some type of communication network exists amor
sites, regardless of the particular topology. We will not address any network specifi
issues, although it is important to understand that for an efficient operation of
DDBS, network design and performance issues are critical. Al

c. Explain Web database. (6)

Answer:
Wc now turn our attention to how databases are
_ used and accessed from the Internet. Many
tectronic commerce (e-commerce) and other Internet applications provide Web
terfaces to access information stored in one or more databases. These databases
are often referred to as data sources. It is common to use two-tier and three-tier
dient/server architectures for Internet applications (see Section 2.5). In some cases,
other variations of the client/server model are used. E-commerce and other Internet
database applications are designed to interact with the user through Web interfaces
hat display Web pages. The common method of specifying the contents and for-
matting of Web pages is through the use of hypertext documents. There are various
languages for writing these documents, the most common being HTML (Hypertext
‘Markup Language). Although HTML is widely used for formatting and structuring
‘Web documents, it is not suitable for specifying structured data that is extracted from
databases, A new language—namely, XML (Extensible Markup Language)—has
iemerged as the standard for structuring and exchanging data over the Web. XML
‘an be used to provide information about the structure and meaning of the data in
lﬁf Web pages rather than just specifying how the Web pages are formatted for
display on the screen. The formatting aspects are specified separately—for example,
by using a formatting language such as XSL (Extensible Stylesheet Language).

Basic HTML is useful for generating static Web pages with fixed text and other
objects. But most e-commerce applications require Web pages that provide interac-
tive features with the user. For example, consider the case of an airline customer

© IETE 52

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

who wants to check the arrival time and gate information of a particular flight, The
user may enter information such as a date and flight number in certain form fields
of the Web page. The Web program must now submit a query to the airline database
to retrieve this information, and then display it. Such Web pages, where part of he
information is extracted from databases or other data sources are called dynamic
Web pages, because the data extracted and displayed each time will be for different
flights and dates.

There are various techniques for programming dynamic features into Web pages.
We will focus on one technique here, which is based on using the PHP open source
scripting language. PHP has recently experienced widespread use. The interpreters
for PHP are provided free of charge, and are written in the C language so theyare
available on most computer platforms. A PHP interpreter provides a Hypertest
Preprocessor, which will execute PHP commands in a text file and create the desired
HTML file. To access databases, a library of PHP functions needs to be includedin
the PHP interpreter as we will discuss in Section 26.4. PHP programs are executed
on the Web server computer. This is in contrast to some scripting languages, suchas
JavaScript that are executed on the client computer.

This chapter is organized as follows. Section 26.1 discusses how the information dis-
played through Web pages differs from the information stored in structured data-
bases, and discusses the differences between structured, semi-structured, and
unstructured information. Section 26.2 gives a simple example to illustrate how
PHP can be used. Section 26.3 gives a general overview of the PHP language, and how
it is used to program some basic functions for interactive Web pages. Section 264
focuses on using PHP to interact with SQL databases through a library of functions
known as PEAR DB. Finally, Section 26.5 contains a chapter summary. In Chapter
27, we discuss the XML language for data representation and exchange on the Web,
and discuss some of the ways in which it can be used.

e

26.1 Structured, Semistructured, |
and Unstructured Data ~

The information stored in databases is known as structured data because it i§
represented in a strict format. For example, each record in a relational database
table—such as the EMPLOYEE table in Figure 5.6—follows the same format as the

other records in that table. For structured data, it is common to carefully deugn

the database using techniques such as those described in Chapters 3, 4, 7, 10, and 11

in order to create the database schema. The DBMS then checks to ensure that all

data follows the structures and constraints specified in the schema.

However, not all data is collected and inserted into carefully designed structured
databases. In some applications, data is collected in an ad hoc manner before it is
known how it will be stored and managed. This data may have a certain structure,
but not all the information collected will have identical structure. Some attributes

© IETE 53

CT13 DATABASE MANAGEMENT SYSTEMS

DEC 2015

Company projects

Project Project

Name Location

L]
‘Product X' 1

Ssn First_\ Hours
name

@ ® L] & @ @
‘123456789’ ‘Smith’ 325 '435435435' ‘Joyce' 20.0

Figure 2&.'1

Representing semistructured data as a graph,

may be shared among the various entities, but other attributes may exist only in a
few entities. Moreover, additional attributes can be introduced in some of the newer
data items at any time, and there is no predefined schema. This type of data is
known as semistructured data. A number of data models have been introduced for
representing semistructured data, often based on using tree or graph data structures
rather than the flat relational model structures.

A key difference between structured and semistructured data concerns how the
schema constructs (such as the names of attributes, relationships, and entity types)
are handled. In semistructured data, the schema information is mixed in with the
data values, since each data object can have different attributes that are not known
in advance. Hence, this type of data is sometimes referred to as self-describing data.
Consider the following example. We want to collect a list of bibliographic references
related to a certain research project. Some of these may be books or technical
reports, others may be research articles in journals or conference proceedings, and

© IETE

54

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

still others may refer to complete journal issues or conference proceedings. Clearly,
each of these may have different attributes and different types of information, Even
for the same type of reference—say, conference articles—we may have different
information. For example, one article citation may be quite complete, with full
information about author names, title, proceedings, page numbers, and so on,
whereas another citation may not have all the information available. New types
of bibliographic sources may appear in the future—for example, references to
Web pages or to conference tutorials—and these may have new attributes that
describe them.

Semistructured data may be displayed as a directed graph, as shown in Figure 26.1.
The information shown in Figure 26.1 corresponds to some of the structured data
shown in Figure 5.6. As we can see, this model somewhat resembles the object
model (see Figure 20.1) in its ability to represent complex objects and nested struc-
tures. In Figure 26.1, the labels or tags on the directed edges represent the schema
names: the names of attributes, object types (or entity types or classes), and relation-
ships. The internal nodes represent individual objects or composite attributes. The
leaf nodes represent actual data values of simple (atomic) attributes.

There are two main differences between the semistructured model and the object
model that we discussed in Chapter 20:

1. The schema information—names of attributes, relationships, and classes
{object types) in the semistructured model is intermixed with the objects
and their data values in the same data structure.

2. In the semistructured model, there is no requirement for a predefined
schema to which the data objects must conform.

In addition to structured and semistructured data, a third category exists, known as
unstructured data because there is very limited indication of the type of data,
A typical example is a text document that contains information embedded within it.
Web pages in HTML that contain some data are considered to be unstructured data.
Consider part of an HTML file, shown in Figure 26.2. Text that appears between
angled brackets, <...>, is an HTML tag. A tag with a backslash, </. ..>, indicates an
end tag, which represents the ending of the effect of a matching start tag. The tags
mark up the document' in order to instruct an HTML processor how to display
the text between a start tag and a matching end tag. Hence, the tags specify
document formatting rather than the meaning of the various data elements in the
document. HTML tags specify information, such as font size and style (boldface,
italics, and so on), color, heading levels in documents, and so on. Some tags provide
text structuring in documents, such as specifying a numbered or unnumbered list
or a table, Even these structuring tags specify that the embedded textual data is to be
displayed in a certain manner, rather than indicating the type of data represented in
the table.

1. That is why it is known as Hypertext Markup Language.

© IETE 55

CT13 DATABASE MANAGEMENT SYSTEMS

DEC 2015

.\ HTML uses a large number of predefined tags, which are used to specify a variety of
commands for formatting Web documents for display. The start and end tags

. specify the range of text to be formatted by each command. A few examples of the
tags shown in Figure 26.2 follow:

® The <HTML> .., </HTML> tags specify the boundaries of the document.

® The document header information—within the <HEAD> . ., . </HEAD>
tags—specifies various commands that will be used elsewhere in the docu-
ment, For example, it may specify various script functions in a language
such as JavaScript or PERL, or certain formatting styles (fonts, paragraph
styles, header styles, and so on) that can be used in the document, It can
also specify a title to indicate what the HTML file is for, and other similar
information that will not be displayed as part of the document.

® The body of the document—specified within the <BODY> ... </BODY>
tags—includes the document text and the markup tags that specify how the
text is to be formatted and displayed. It can also include references to other
objects, such as images, videos, voice messages, and other documents.

® The <H1> ... </H1> tags specify that the text is to be displayed as a level 1
heading. There are many heading levels (<H2>, <H3>, and so on), each
displaying text in a less prominent heading format.

® The <TABLE> ... </TABLE> tags specify that the following text is to be dis-
played as a table. Each row in the table is enclosed within <TR> ... </TR>
tags, and the actual text data in a row is displayed within <TD> ... </TD>

tags.’
® Some tags may have attributes, which appear within the start tag and
describe additional properties of the tag.’

In Figure 26.2, the <TABLE> start tag has four attributes describing various charac-
teristics of the table. The following <TD> and <FONT start tags have one and two

attributes, respectively.

HTML has a very large number of predefined tags, and whole books are devoted to
describing how to use these tags. If designed properly, HTML documents can be
formatted so that humans are able to easily understand the document contents, and
are able to navigate through the resulting Web documents. However, the source
HTML text documents are very difficult to interpret automatically by computer
programs because they do not include schema information about the type of data in
the documents. As e-commerce and other Internet applications become increasingly
automated, it is becoming crucial to be able to exchange Web documents among var-
ious computer sites and to interpret their contents automatically. This need was one
of the reasons that led to the development of XML, which we discuss in Chapter 27.

2, <TR> stands for table row and <<TD>> stands for table data.

3. This is how the term atirbufe is used in document markup languages, which ditfers from how it is
used in database models.

© IETE 56

CT13 DATABASE MANAGEMENT SYSTEMS | DEC 2015

<HTML>
<HEAD>
</HEAD> |
<BODY>
<H1>List of company projects and the employees in each project</H1>
<H2>The ProductX project:=</H2>
<TABLE width="100%" border=0 cellpadding=0 cellspacing=0>
<TR>
<TD width="50%"><FONT size="2" face="Aral"=lohn Smith:<JTD>
<TD>32.5 hours per week</TD>
</TR>
<TR>
<TD width="50%"><FONT size="2" face="ArialJoyce English:</TD>
<TD>20.0 hours par week</TD>
<TR>
</TABLE>
<H2>The ProductY project:=</H2>
<TABLE width="100%" border=0 cellpadding=0 cellspacing=0>
<TR>
<TD width="50%"><FONT size="2" face="Arial"John Smith:</TD>

<TD>7.5 hours per week</TD>
<TR>

<TR>
<TD width="60%">Joyce English:</TD>
<TD>20.0 hours per week</TD>

</TR>

<TR>
<TD width= “50%">Franklin Wong:</TD>
<TD>10.0 hours per week</TD>

<ITR>

</TABLE>

</BODY>
</HTML>

Figure 26.2
Part of an HTML document representing unstructured data.

The example in Figure 26.2 illustrates a static HTML page, since all the information
to be displayed is explicitly spelled out as fixed text in the HTML file. In many cases,
some of the information to be displayed may be extracted from a database. For
example, the project names and the employees working on each project may be
cxtracted from the database in Figure 5.6 through the appropriate SQOL query.

TEXT BOOK

I. Elmasri & Navathe, "Fundamental of Database Systems", Addison Wesley, 5" Edition,
2006

Il. R Ramakrishnan & J Gehrke, Database Management Systems, McGraw Hill, Third
Edition, 2002

© IETE 57

