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Q.2 a. Determine the values of power and energy of the following signals. Find
whether the signals are power or energy signal.

x(n)= (%)nu(n) (8)

5)

It N "
Power of the signal P = 1 > 1) 2o
N —>w2N+1<9

So, energy of the signal is finite and power is zero. Hence, the signal is an energy signal.

Answer:

2
Energy of the signal E = Z|x(n)|2 =y :%

n=0

b. Determine if the system described by the following equation is (8)
(i) causal or non-causal
(ii) linear or nonlinear.

yn)=x(n)+——

n=0; y(0)=x(0)+

x(-1)
n=1: y(l):x(1)+%o)

For all values of n, the output depends on present and past inputs. Therefore, The system is
causal

I =x(n)+ !
(ii) y(n)=x(n) D)

1 1
yi(n)= Xi(n)er' Y,(n)= Xz(n)+m

_ 1

=T+ ax=ax (o) an)e oy @
On the other hand,
ay,(n)+2,Y,(n)= aixl(n)+ﬁ+ am(nHﬁ )

As (1) # (2); So, the system is non-linear.
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Q.3 a. Findy(n)if x(n)=n+2 for 0<n<3 and h(n) =a"u(n) for all n. (8)

Answer:

[ee}

y(n) = Zx(k)h(n 1)

Given x(n ) n+2 for 0<n<3

=23:(k+2)a”"‘u(n—1)

"u(n) +3a" u(n -1) + 4a" *u(n - 2) + 5a" *u(n - 3)

QJ

b. Write the advantages, disadvantages and application of Digital Signal
Processing. 8

Answer:
Advantage:

Greater accuracy

Cheaper

Ease of data storage

Flexibility in configuration

Applicability of very low frequency signal
Time sharing

Disadvantage:

System complexity
Bandwidth limited by sampling rate
Power consumption issues

Applications:

Telecommunication
Consumer electronics
Instrumentation and control
Image processing

Medicine

Speech processing
Seismology

Military
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Q.4 a. Determine the solution of the differential solution

y(n)= g y(n —1)—%y(n —2)+x(n) for x(n)=2"u(n). Assume the system is
initially relaxed.

(8)
Avat =
4 ()
'\J("") = ___;2—, ’:j'{-n-—\) = _é: *\9(“ ,1> ——i—j‘k("n) I Q)
-j(r\) — 'jk('ﬂ) —+_ ’tjf LY\)
Dy = K2 win)
SN ES M;HE i (1)
=l -2 "
K 2wl = _:; K2 w(n-—1) 4 K2 w(n -0+ 2w
o o ¥ 9. _ = - 1
) L 3 2 2 K — + b
<"(") N - 5
s
gb) y (n = 8 ’lm (V" - 22
p ) E ™)
M-
'y Vo () = A
n =S \ n-L
>0 A — 2 L + A = 0
2 . N
q"’ B[' I'\T‘“ ['__’)_'\-%“_F
s l»\‘?\) = Cl (\:}T) —t CE-. __\.3’)
= % R
Xy 9 = & ;_) —+ ¢ (4) + < 2 n(n)
y) = g + ¢y —F_E_; _
18
Pl = L B b gy & o
B, B =—1; 4 =&
S L g JEy ™ R o us
co = 1) e - 2 @) W 2wl
: AP
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b. State and Prove the Parseval's Theorem. (8)
Py -
Ly, 1b)
yH
EHF f_ L"A {\ﬁ.}] = ;‘ﬂ ( g ) - "
5 el = E.H A
e w8 kil = ,;% J !f‘(* )
o a0 ' N
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Q.5 a. Determine the magnitude response of y(n)= %[x(n)+ x(n-2)]. (8)
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b. For the following system determine whether or not the system is time

invariant. y(n) = Za(k)x(n k) — Zb(k)y(n k). (8)

ot 5. (1)

B P =

?\ el = ? b( k) “J(n k)
‘o K=
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Q.6 a. Find the z- transform and the ROC of the signal x(n)=-b"u(-n-1). (8)

Awye - G, (Cf\)
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b. Find the DFT of a sequence x(n)={ 1, 0, 0 }. (8)
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Q.7 a. Determine the direct form Il and Transposed direct form 11 for the given system

y(n)=2-y(n-1)-3y(n-2)+ x(0) + X(n-1). ®)
Ao - 3 (@)
J i
¥ (3
R = Pl I R
X (2) | B & E ok 035 3
Dincct Forw 11
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b. (i) Explain the procedure of designing digital filters from analog filters. 4)
(if) Mention any two procedures for digitizing the transfer function of an
analog filter. 4)
Answer:

(i)

1. Map the desired digital filter specifications into those for the equivalent analog filter.

2. Derive the analog transfer function for the analog prototype.

3. Transform the transfer function of the analog prototype into an equivalent digital filter
transfer function.

(ii) The two important procedures for digitization of the transfer function of an analog filter are:
1. Impulse Invariance method
2. Bilinear transformation method

Q.8 a. Find the IDFT of the sequence X (k)={10, -2+ j2,-2, -2-j2}. (8)
heri- 8. (®).
0 L
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X (1) =—2-23 Ny m Y X* (2)
* \ *
L N 1. 4R (”)

Tre ok ok WK ) B mmal O

ﬁu&%w, wn) = i s 2 "9)\1}
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b. Determine the order of lowpass. Butterworth filter that has a 3dB attenuation
at 500Hz and an attenuation of 40dB at 1000Hz. (8)

Ao (),
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Q.9 a. Explain Hibbert transform relations for complex sequences with suitable
illustrations. (8)

Answer:

# Thus far, we have considered Hilbert transform relations for the Fourier transform of
causal sequences and the discrete Fourier transform of periodic sequences that are “pe-
- riodically causal™ in the sense that they are zero in the second half of each period. In this
section, we consider complex sequernces for which the real and imaginary components
can be related through- a discrete convolution similar to the Hilbert transform relations
derived in the previous sections. These relations are particularly usefiil in representing
bandpass signals as complex signals in a manner completely analogous to the analytic
signals of continuous-time signal theory.
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- As mentioned previously, it is possible to base the derivation of the Hilbert trans-
form relations on a notion of causality or one-sidedness. Since we are interested in
relating the real and imaginary parts of a complex sequence, one-sidedness will be ap-
plied to the Fourier transform of the sequence. We cannot, of course, require that the
Fourier transforni be zero for w < 0, since it must be periodic. Instead, we consider
sequences for which the Fourier transform is zero in the second half of each period;i.e.,
the z-transform is zero on the bottom haif (—n < w < 0) of the unit circle. Thus, with
x[#] denoting the sequence and X{e/®) its Fourier transform, we require that

X(e/*) =0, —7 <=w < 0. (11.57)

(We could just as well assume that X(e/®) is zero for 0 < w < w.) The sequence x[r]
.corresponding to X(e/®) must be complex, since, if x[n] were real, X{e/*) would be
conjugate symmetric, i.e., X(e/?) = X*(e /). Therefore, we express x[n] as

x[n] = x,[n] + jx[n]. (11.58})
where x,[n] and x;[n] are real sequences. In continuous-time signal theory, the com-
parable signal is an analytic function and thus is called an analyiic signal. Although
analyticity has no formal meaning for sequences, we will nevertheless apply the same
terminology to complex sequences whose Fourier transforms are one sided.

If. X, (e/*) and X;(e/*) denote the Fourier transfornis of the real sequences x, [n]
and x;[n], respectively, then

X(e/°) = X, () A j Xile!). ; (11.5%)

and it follows that _

X,(97) = S [X() + X)) (11.59b)
and

JXi(e) = SIX(&") — X*(e /)], (11.5%)

Note that Eq. (11.59¢) gives an expression for jX;(e/®), which is the Fourier
transform of the imaginary signal jx;[n]. Note also that X,(e/*) and X; (e’*) are both
complex-valued functions in general, and the complex transforms X, (e/®) and j X;(e!*)
play a role similar to that played in the previous sections by the even a‘nd‘ odd parts, re-
spectively, of causal sequences. However, X, (¢/“)is conjugdte symmetric, 1.€., X, (e!?) =
X*(e~/®). Similarly, j X;(e/*) is conjugate antisymmetric, i.e., j X;(e/®) = —j X (e™'”).

Figure 11.4 depicts an example of a complex one-sided Fourier transform of a com-
plex sequence x{n] = x,{n} + jx;[n] and the corresponding two-sided transfqrms _c_:f'the
real sequences x,{n] and x;[#]. This figure shows pictorially the cancellation implied by
Eqs. (11.59). '

If X(e/*) is zero, for —m < w < 0, then there is no overlap between the nonzero
portions of X(e/*) and X*(e~/*). Thus, X (e/*) can be recovered from either X, (e’?)
or X;(e/®). Since X (e/*) is assumed to be zero at w = =+, X (e’®) is totally recoverable
from j X;(e/*). This is in contrast to the situation in Section 11.2, in which the causal
sequence could be recovered from its odd part except at the endpoints. ’

In particular, . - ; : :

Fo 2X,(e/*), 0<w<m, : =
Xy =4 it aLeo

and

—r < w < (.

xeiey = {RIKE 02 L aLe
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Alternatively, we can relate X, (e/#) and X;(e/*) directly by

en X (e7?), O <o <, '
Xi(e’?) = {jX,(e""), o) (11.62)
or -
Xi(e!®) = H(e/) X (/). . (11.63a)
where
jon _ J —F O<w<m, :
He )5 {f. —r < w < 0. - (11.63b)

Equations (11.63) are illustrated by comparing Figures 11.4(c) and i1.4(d). Now
X;(e/*) is the Fourier transform of x;[#z], the imaginary part of x[r], and X, (e/®) is the
Fourier transform of x,[n], the real part of x[n]. Thus, according to Eqgs. (11.63}, x; [r]
can be obtained by processing x,[n] with a linear time-invariant discrete-time system
with frequency response H{e/®), as given by Eq. (11.63b). This frequency response-has

‘unity magnitude, a phase angle of —n/2for0 < w < m, and a phase angle of +m/2 for
—7 < w < 0. Such a system is called an ideal 90-degree phase shifter. Alternatively,

X(el™)
! I:\ \ l.\
3w =2 - \ =T 2 e 3w )
M- N e
(a)
X*(e"f‘”)
/’A\ /./J‘\ l/"\
P b - 5 - N
o £ g : '
37 -2 —r ar 2% 3w w
(b)
X (e™)
.-—'—..‘-._‘\
291 \"_,,_r-"'f 3 w
- =T |
- -
e 1_2# -7 /// :271'
—SW e W
e '_---P' P _.-'.
(d)

Figure 11.4 lllustration of decomposition of a one-sided Fourier transform. (Solid
curves are real parts and dashed curves are imaginary parts.)
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when it is clear that we are considering an operation on a sequence, the 90-degree phese

shifter is also called a Hilbert transformer. From Eqs. (11.63), it follows that
. 1 . S "
1y = ——— X;(e!*) = —H(e/*) Xi (e/*). (11.64)

Thus, —x,[n] can also be obtained from x;[n] with a 90-degree phase shifter.
The impulse response h[n] of a 90-degree phase shifter, correspondmg to the

frequency response H(e’®) given in Eq. (11 63b), is
L [* jetorng / " jernde,
'= T : + jon T je wn m!
) 2?{/_”;.9 o=z |

{ 2 sin’(rn/2)

or

Pl Sl Moo (11.65)
0, n=70.

The impulse response is plotted in Figure 11.5. Using Eqs. (11.63) and (11.64), we obtain
the expressions

hin] =

[

uln) = 3 hln = mlx [m] ' (11.66a)
and S
= Z h[n ﬁf_n]'x,-[m]. : (11.66b)

Equations (11.66) are the desired Hilbert transform relations between the real
and imaginary parts of a discrete-time analytic signal.

Figure 11.6 shows how a discrete-time Hilbert transformer system can be used to
form a complex analytic s:gnal which is simply a pair of real signals.
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M A Figure 11.5 Impulse response of an
- ideal Hitbert transformer or 9{} degree
phase shifter. '
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b. Find the inverse Z-transform of
-1

Z -
X(Z)Zm, ROC |Z|>1 (8)
A g, ()
2-—\
(J'\‘lvf_/n__ 7\(3:) = 5 IJ RocC )”2)7]
2 =g L

X(2) (om be N Y S

Z
*(2) = — e
2Z— 4z « |

X (x) = _2‘.: );2#) -—41—:——@5'] > fec |z ]y
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