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Q.2a. Define the time probability. Explain the various properties of probability
density function. (8)
Answer:

B 2.1 Probabilities and ensembles
Amn emsemble X is a triple (&, Ax, Px ), where the cutcorme « is the value
of a random . variable, which takes on one of a set of possible values,
Ax = {ay,a2,...,a4,...,ar}, having probabilities Px = {p1,p2,..-,P1r};
with .P(.r:.-:aq) == 9. =0 and ZasGA,\: f;_’(fr:za,;..) =R

The name A is mnemonic for ‘alphabet’. One example of an ensemble is a
letter that is randomly selected from an English document. This ensemble is
shown in figure 2.1. There are twenty-seven possible letters: a-Z, and a space

?

character *-'.

Abbreviations. Briefer notation will sometimes be used. For example,
P(x=a;) may be written as P(a;) or P(z).

Probability of a subset. If T is a subset of Ax then:

P(T) = Pze®T)= Y: Px=a:). (2.1)

a; €F’

For example, if we define V to be vowels frop figure 2.1, V .=
{a,e,i,0,u}, then 4 z :

P(V) = 0.06 + 0.09 + 0.06 + 0.07 + 0.03 = 0.31. (2.2)

PROPERTIES OF PROBABILITY DENSITY FUNCTION

:ﬁ"cnn tinuous random variable

E 15 characterized by a probability density function f, (x), which has the
WINg properties:

i fx(x)=0, -w<x<wm (3.35)

B[ fwdx=1 (3.36)

’l PEXE::]=F;MI=I Fxix) dx {3.37)
L] ;—-‘
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b. Explain joint probability and conditional probability. (8)
Answer: -~ )

i i pe is an ordered
A joint ensemble XY is an ensemble in which each outc;)me is ;,m}
. pair T,y with z € Ax = {a1,.. ,ar} andiy € Ay = {by,-- 20751

We call Pz, ) the joint probability of = and y.
. 1t1 K AITS. 80 TY 7 T Y-
Commas are optional when writing ordered pairs, SO Tl

1 3 -ar \cessarily inde-
N.B. In a joint ensemble XY the two variables are not necessarily
L. A1l
pendent.

ATLE ~ ahility Flx) Freinil
Marginn ok | 1 Lty We can obtain the 'I!h'Ll",‘._ll'l(l‘l [Iltrih!‘l? - \
= miy. v H : . 1ty L i 1
Margin: i pro yal Y X8 I e 1
the ik Ik U!.'i_ll'l}li-){l'l.t.\ I | B 4} 1{\- gummation

R { - y %)
Plx=ai) = SN Pz =i, Y)-
yEAY

2. B £ }..'.1 & ll E.Lhi.i'l'-.._\' of o i8¢
. | ilar S1TAE "JI“Il\"‘(‘I' noua ion, e margl hll pI 1
" ‘llllllﬂ.'})" USIIE e tat 1} : ‘
~ i 3 ’ { 1. 1)
| Yy) = E I {_J.' 4. ; i

. .Conditional probability

NS 5t (e s -bi) 5 P=by) #0O- (2.5)
plr=aly=b) = BE=b)

V=0t . a: | y="bj) 18 nndefined.]
{If P(y="b;) = 0 then Ple=a | Y=

| o probability that @ equals o, gVl
~ o We pronounce P(x=a;|y=10j) "the |
B 1 eguals byt

Q.3 a. Show that mean and variance of random variable X having uniform
distribution

in the interval [a, b] are 4, =aTer and o2 =(a—h)’ /12
Answer:

(8)
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b. Explain the concept of statistical average in random signal theory. (8)
Answer:

Statistical Averages 3

712

Having discussed probability and some of its ramificatior
mining the average behavior of the outcomes arising in ra
The expected value or mean of a random variable X

pmx = E{X] = J- xfxlx) dx (A1.27)
where E denotes the statistical expectation operator. That is, the mean gy locates the centes
of gravity of the area under the probability densiry curve of the random variable X. T'¢
interpret the expected value ux, we write the integral in the defining Equation (A1.27) s

the limit of an approximating sum formulated as follows. Let [egtki=10, 21, 2J
denote a set of uniformly spaced points on the real line: .
1 ' & P
Xy = k -i“z A, a1, L (AL s

where A is the spacing between adjacent points. We may then rewrite Equaticn (A1.27)
as the limiting form of a sum:

o {E+1)a
E[X] = lim 2, f xufoclx) due
Ats0 k=—cw v R A

: - - A A {A1.29]

= lim E xpPlizxpl— =X =x; + 7

A O k= = 2 24
For a physical interpretation of rhe sum on the riéht-hand side of Equation (A1.29), sup
pose that we make # independent observations of the random variable X. Let N,,(&) denote

the number of times that the random variable X falls inside the krh bin:

A :
x,,—E«z:Xzsx,,—FE,, &=a,__:1,—_~.a....
Then, as the number .of observations, #, is ;madc__large, the ratio N, (k)/n approaches the
probability P(x, — &A/2 < X = x; + A/2). Accordingly, we may approximate the expecred
value of the random variable X as : :

- N.,.(k)
E[X]= 2 x&(r*—(:\
| e i 7 Bf
1 = J {A1.30)
=— > = N, (k) n large
o S i
We now recognize the quantity on the right-hand side of Equation (A1.30) simply as the
sample average. The sum is taken over all the values x., each of which is weighted by the

number of times it occurs; the sum is then divided:by the total number of observatiops to

give tmmpa,a‘éef‘ag‘e;'maccd;ﬂm‘fswf?’r&vr&%a the basis ug}bﬁ" m ;
expected value E[X]. g ' o "d

: We next consider a more general situation. L o e

1 ine. i brained by letting the
s ¢ X defined on the real lm&f‘rhe quantity © _ ] .
igtzx::::: (t)ef ?hf:?\f;ﬁ?oz g(X)bea rand'pm variaﬁ,%.ls also a ralamdom variable, which wg :

denote as

the

o, £ g(x)ﬁ_éf (A1.31)

To find the expected value of the random #ariﬂﬂe”‘_l;{ire_ could of course find the probability
density function fy(y) and then apply the standart.:lmformula

E[Y] = ’I_m Yfu(3) dy

A

3 2 :
A simpler procedure, however, 1§ t0 WrILE T

pgean = 7 swmio (A1.32)

e x: s ted valne o7
A i A 3 as eralizing the concept of expeciea va
oy 1.32) may be viewed as geNEralizl L
Indeed; Eqhation (ALl Ay o v i e

g
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Q4 a. Define the concept of average information content of long independent
sequences. (8)
Answer:

1. Average Information Content of Symbols in Long Independence Sequences

Suppose that a source is emitting one of M possible symbols sg, 8; ..... Sm In a
statically independent sequence

Let Pisc Do commens pm be the problems of occurrence of the M-symbols resply.
suppose further that during a long period of transmission a sequence of N symbols have
been generated.

On an average — s; will occur NP, times

Sz will occur NP, times

s; will occur NP; times

The information content of the i 4, symbol is I (s;) = log [LJ bits

.. PiN occurrences of s; contributes an information content of
1 :
P;N .1(s;) =PiN .log | — [ bits
. Total information content of the message is = Sum of the contribution due to each of
M symbols of the source alphabet
M 1 i
i.e., ot = ) NP, log(—] bits
p.

i =1 i

Averagcinﬁ.)rar?lion content H= Toai iNP‘ fois 1 bits per IV
persymbolin given by =t P,
This is equation used by Shannon

Average information content per symbol is also called the source entropy.

b. Give the Mark off Model for information sources. (8)
Answer:

Markoff Model for Information Sources

Assumption

A source puts out symbols '
on preceding symbols as well as the particular symbol in

belonging to a finite alphabet according to certain

probabilitics depending

question.

e Define a random process

A statistical model of a system that produces a sequence of symbols stated above

is and which is governed by a set of probs. is known as a random process.

© IETE 4
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Therefore, we may consider a discrete source as a random process
and
the converse is also true.

i.e. A random process that produces a discrete sequence of symbols chosen from a

finite set may be considered as a discrete source.
o Can you give an example of such a source?
o What is a discrete stationary Markoff process?

Provides a statistical model for the symbol sequences emitted by a discrete

source.
General description of the model can be given as below:

1. At the beginning of each symbol interval, the source will be in the one of ‘n’ possible

states 1,2,..... n
Where ‘n’ is defined as
n< M)™
M = no of symbol / letters in the alphabet of a discrete stationery source,
m = source is emitting a symbol sequence with a residual influence lasting
‘m’ symbols.
i.e. m: represents the order of the source.
m= 2 means a 2" order source

m = 1 means a first order source.

The source changes state once during each symbol interval from say itoj. The
proby of this transition is Py. P; depends only on the initial state i and the final state j but

does not depend on the states during any of the preceeding symbol intervals.

© IETE 5
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4,

When the source changes state from i to j it emits a symbol.
Symbol emitted depends on the initial state i and the transition i = j.

Let 51, $), ..... Sy be the symbols of the alphabet, and let x, %y, X3, ...... Xiy...... be a
sequence of random variables, where Xy represents the Kh symbol in a sequence

emitted by the source.

Then, the probability that the k" symbol emitted is s, will depend on the previous
p ty ym q

symbols X;, Xa, X3, ..cvvvvnevn. , X1 emitted by the source.
i.e., P (Xk =§ [ Kl Ry savais 4 xk—i)
The residual influence of

X1, X, ......, Xkl O X i represented by the state of the system at the beginning of the

k™ symbol interval

1.8 P (Xi= 8 /X1, X2, ooy Xict) = P (1= 54/ Sy)

When Sy in a discrete random variable representing the state of the system at the

beginning of the k" interval.

Term ‘states’ is used to remember past history or residual influence in the same

context as the use of state variables in system theory / states in sequential logic circuis.

© IETE 6
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Q.5 a. Derive the r_nathematipal formula of Self Information of the event X=x; of
random variable X with possible outcomes x; i= 1, 2, 3, ...... , N . Give Ithe

various properties of information.
Answer: ©

Geﬁnition 1.1 Consider a discrete rando’gn variable X with the possible outcomes ¥, i = )

1,2, ..., . The Self-Information of the eveii*nt X = x is defined as

~

J{Ig)*lng{})] | .

o =~log P(x;) : i (11)
¢ ) St e

We note that a high probability event conveys less information than a low pmbabiiﬁty event.
For an event with P(x) = 1, I(x) = 0. Since a lower probability implies a higher degree of
uncertainty (and wvice-versa), a random_x-ﬁriable with a higher degree of uncertainty contains
mor® information. We will tse this correlation between uncertainty and information for

physich] interpfétatian throughout this chaptér.

The units of I(x) are determined by the bage o the logarithm, which is usually selected as 2
or ¢. When the base is 2, the units are in bits and when the base is ¢, the units are in nats -
(natural units). Since 0 < P(x) s 1, I(x) 20, ie., the self-information.is non-negdtive. The

following two examples illustrate why a logarithmic measure of information is appropriate.

9.2 Uncertainty, Information, and-Entropy 569

"his definition exhibits the following i'm-porta'n}: properties that are intuitively satisfying:

1.

I

I(Sh.).: 0 I fQI b = 1 . (9.5)

Obviously, if we are absolutely: certain of the outcome of an event, even before it

. occurs, there is 70 information gained. %

Alls) =0 -Eor 0<ps1 (9.6)

That is to say, the occurrence of an event S = s, either provides some or no infor-
- mation, but never brings about a loss of information.

)

| o s> ls) forpest . (9.7)
; -': That is, thc lg_ss;pr’obable an éﬁé’nt -i's-,-th'e"f more in'forma'ti'on we gain when it occurs.
4, Itsis) = Ise) + Is) i ¢ and 5, are statistically independent.
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b. Define the term entropy. Compute the formula of entropy with its properties.

(8)

Answer:

P
= —log, Pk

. 1 \ : P
I(s)) = -loge(-'-) . (9.8)
e ST TS O _ c
e. one bit is the amount of information that
! uiprobable) events ogcurs.

f 2 number less than one,

= 1/2, we have I(sy) = 1 bit. Henc ‘ it

- }‘({'??Zif;whe‘ﬁ onie of two possible and equally likely “‘“."h eq
;:Jii that the infc_igma@ion I(s'k_ﬁ'is' positivc, since the logant mo ' -
suCh i pIObablluY, o urce during an arbitrary sxgnaimg .

of information ‘ e
[ E‘E:;:a?l‘:i?on the symbol s, emitted by the source at that time. Indeed, I{ %)
interval de

. HS](_I) lth plobabiliries
dbs‘-tete tandmn Vaf'a b e'tﬁat [aECS'Oﬂ the values I(Su}, J{S]), M W . : :
: 4 l l 1 I ‘ (.Ig) over the source alphabet Yis glven b\
men---;Pk 1l€3pec. nvely. Ihe mean Ofl d v

s T

{9:9)

ok
- @ "-Z:ag" 82\ b
is called the entropy’ of a discrete mempryless sour_c? \\:t?
e nvefdge_ Thformation content per SOHrce syms 01:
o p'rqba\bj_li_t’i_es of the symbols in the ;\
nH{Q’) is ﬁbf‘ign;argui‘tjc_:nt cf_qa f_pncuon ut

E i - | ” e
B i e ine Ly TG o T e R ST
Y '_s'-?--'- e T w

: Vs )

" The important quantity H(¥)
< . source alphabet &. It is a measure of §

the entrop

APTER 9 ® FUNDAMENTAL LiMiITS IN INFORMATION THEORY

‘% SOME PROPERTIES oF ENTROPY

Consider a discrete memoryless source whose rﬂgthematical model is defined by Equat
(9.1) and (9.2). The entropy H(¥) of such a source is bounded as follows: :

0= H(9) slogzK ol : (9

where K is the radix (number of symbols) of tﬁe_ alphabet ¥ of“tﬁhe source. Furtherm
we may make two statements: i3 :

1. H(%) - ‘Gf, if_ and only if the probabilit}; Pe = 1 for some k, and the remain
probabilities in the set are all zero; this lower bound on entropy corresponds to
uncertainty. ; : :

2. H(¥) = log, K, if and only if p, = 1/K for all & (i.e., all the symbols in the alpha

¥ are equiprobable); this upper bound on entropy corresponds to max
uncertainty. : FHES L
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Q.6

a. Explain discrete memory less channel in detail. 8
Answer: ©)

582

© IETE
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CHAPTER 9 ® FUNDAMENTAL LIMITS IN INFORMATION THEORY

~ matrix is always equal to one; that is, § : E

-

g x—> plyly) =1

and, in response, it
to be ‘“discrete” when
ryless” when the

any of the previous o
The channel is describe

channel accepts an input symbol X selected from an alphabel
an output symbol Y from an alphabet ¥. The channel is said
of the alphabets % and Y have finite sizes. It is said to be “me
output symbol depends only on the current input symbol and

Figure 9.7 depicts a view of a discrete memoryless channi
in terms of an input alphabet ' S

x = [xl}) = DY _x}—_-l]'_g

aln. output alphabet, - I

Y = o Y- Yok

and a set of transition probabilities

pioel) = PY = yelX = %) foralljand k

i

| fiot have the same size. For®

. Naturally, we have

Also, the in _ z : ;
example, in channel coding, the size K of the output alphabet ¥ may Dbe largér than th
size | of the input alphabet #; thus, K = d, we may have a sifuation.
in which the channel emits the same symbol when either onex two input symbols is sent
in which case we have K = J. A ;
A convenient way of describing a discrete memoryless. channel is to arrange the

various transition probabilities of the channel in the form of a matrix as follows:

: P{ynlxo) p{y'lxxl)] S ﬁyk’—llxﬁ}
--.P P(yulxﬂ P{yl‘xl) = ‘.,"_‘-.._.'. .m)’k’.-‘—ilxl}.

==

. - (9.33)
plyolxisy)  plx-ade oo _@x—dx;—:.) ¢

The J-by-K matrix P is called the channel ma!riaic, or transition matrix. Note that each row
of the channel matrix P corresponds to a fixed channel input, whereas each column of the
matrix corresponds to a fixed channel output. Note also that a fundamental property of -

~ the channel matrix P, as defined here, is that the sum of theelements along any row of the .

i - = b : %
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Suppose now that the inputs to a di channel are selected according

to the probability d{sjributigr?fﬁ(xj),j =0, 1% .‘% f—1).In other words, the evenr that

the-channel input X = x, occurs with probabilicy =&

—

T5ey = P(X = x,) | forj =0sks .. -5 Fiy T
et —— -
* . 2 S 3 ITITNIT. WETTNIDY DOV SpcTrys
i i 3 m-variable X denotingfhe channel inpur, we DV S
Having specified the rando - Rt i e bkt it

the second random variable Y denoting the channel opspur.

bution of the random variables X and Y is given by

F?f.\':, :Vk} e ‘D(X = XKjs Y= ‘k}
= P(Y =y | X = x)P(X = x)
= plye|x)plx) =

The marginal probability distribution of the output ra “‘i‘_‘f}ﬁ?."'i." R1anis
;tverag_i‘hg’_oa_t_t e dependence of plx,. \_'ﬁ'!'__(’?’_\_ Xjs @S shown by =
ply) = P(Y = ya} = 25
I=1 S
- S P(Y = wX = 2P0 =)
j=0
= R |
= > plylx)p(x) forde =0, 1yv -y K
F=0 :
The probabilitig:s pix) forj=0,1,. .., == 1;1: kng_wa‘; as the o J»,,uwm“ “_ £l
of the various input symbols. Equation (9.39) states that if we are given the ipul 4 |

¢che channel matrix fi.esithe mamix of transison profais

o i
ori probabilities p(x ) and (I ; 28 : o PAELS o
S : abiliries of the various ourput sy mbols, tha

p(yx | x)], then we may caleulare the prob

b. Show that H(X,Y)=H(X)+H(Y|X)
=H(Y)+H(X|Y) (8)

Answer: - B L o
! = H(X,Y)= H(X|Y)+ H(Y)
= H(Y|X)+ H(X)

where

k4

M
H(Y|X)=- IP(Xzi,Y=j)log2(P(Y=j|X=i))

] 1=
For a BSC, P(X =i|lY =i) (i =0, 1) measures the uncertainty about
transmitted bit based on the received bit. The uncertainty is minimum W
P(X =i|lY =i)=1for i=0,]1, that is, an errorless channel. The uncertaint
maximum when P(X =i|Y = i)=;for i = 0, 1. If we define the uncertaint}
—logy[P(X = i|Y = i)], then we have one bit of uncertainty when the outp
independent of the input. When we have one bit of uncertainty associ
with each received bit, the received value of the bit does not convey :
information!
The conditional entropy H(X|Y) is an average measure of uncertain

© IETE 10
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ut X when we know Y. In one extreme we can have Y and X related in a
“lo-one manner such as ¥ = X, For this case, there is no uncertainty about
when we know Y P(X =i|Y = j) = 5, where &, is the delta function that
0 for i#j and 1 for i =j. We can easily verify that H(X|Y)=0 when
= X. In the context of a communication channel ¥ = X represents an
orless channel, and there is no uncertainty about the input when the output
¢ known. Alternatively, we can say that no information is lost in the channel
ce the output is uniquely related to the input. As another example, let us
3_|dcr a communication channel that is so noisy that the output is statistic-
independent of the input. In this case we can easily verif y that H(X, Y) =
IJL'}-!-H{F}. and H(X|Y)= H(X), that is, Y does not contain any in-
ation about J%;

Q.7 a. Elaborate the channel capacity theorem for discrete memory less channel in
detail. (8)
Answer:

IR channel for which the noise and the received signal are as described in Equations
(9.84) and (9.85) is called a discrete-time, memoryless Gaussian channel. It is modeled as
in Figure 9.13. To make meaningful statements about the channel, however, we have to
assign a cost to each channel input, Typically, the transmitter is power limited; it is there-
fore reasonable to define the cost as N e

mitted power. The power-limited Gaussian channel described
retical but also practical importance in that it models many
on channels, including line-of-sight radio and satellite links.

formation capacity of the channel is defined as the maximum of the nrutue!
 information berween the channel iniput X and the channel output Y over all distributions
 on the input X that satisfy the power constraint of Equation (9.86). Let I(Xj; Y,) denote

© IETE 11
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the mutual information between X, and e
of the channel a5 ;

We may then define the information caf

¥

C = max(I(X,; V,): B{X2] = p)
A ;

where the maximization is performed wi th respect to fy,
tion of X, - .

The mutual information I(Xy; Yi) can be expressed in
forms shown in Equation (9:81). For the purpose 4t hand; we
equation and so write :

{x}), the probability density fi

one of the two cqui{i
st thie second’line of

X Y0 = bV S (YK f

Since X, and N, are independent random variables,
tion (9.84), we find that the conditional differential
the differential entropy of N, (see Problem 9.28):

and their sum equals Y, asin
entropy of Y,, given .Yk, is equ;

P(Ye | X)) = b(Ny)

Hence, we may rewrite Equation (9.8_3_}_'"3;3- , : T

X Yi) = b(Yy) ~ h(Ny)
Since B(N,) is independent of the distribution of X, maximizing (X,
dance with Equation (9.87) requires maximizing h(Y,), the differential entr
Y of the received signal. For h(Y,) to be maximum, Y, has to be a Gaussian rand

y variable (see Example 9.8). That is, the samples of the received signal represent a noise

process. Next, we obscrve thar since N, is Gaussian by assumption, the sample X, of t
transmitted signal must be Gaussian too. We

specified in ‘Equation (9.87) is attained by cho

from a noiselike process of average power P, Correspondingly, we may reformulate Equ
tion (9.87) as ; '

/ C=IX,: .Y;.):Xk Géussian, E[X3l =P _ : (9.9

where the mutual information I X5 Yy) is defined in accordance with Equation (0.90
For the evaluation of the information capacity €, we proceed in three stages:

n:’ {Il L
opy of sam

1. The variance of sample Y, of the received signal equals P + o2, Hence, the use.0
Equation (9.76) yields the differential entropy of Y, as St

; Y = 1 logal2me(P + 0% - (9.92
2. The variance of the noiée'-s.ample N, equals o

%, Hence, the use of Equation (9..?‘6_
yields the differential entropy of N, as ;

h(N,) ='~_. -} log,(2mea?)

3. Substituting Equations (9.92) and (9.23) into Equation (
definition of information capacity given in Equation ( 9.91

950 s e -
); we get the desired result:

e i
C= 5 io;;( 1+ ;3)'3}‘3 Per transmission

S itk ehagagi Wxnwrtwemgmmﬁﬁ ess
inT seconds, we find that the information capacity per unit time is ( K/T) times the result

-
g2 . Loy .
3 B s

© IETE
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AET73

given in Equation (2.94). The numbe_f K équals 2BT, as'in F,qua-tion (9.83). ALC(Jr‘diIlgfy;}_i%-

we may express the information capacity in the equivalent form:

b e N .
€ =Bilog:l1 +—— ) birs per second (9.95)
: : - NyB _
where we have used Equation (9.85) for the noise variance o2,
~ Based on the formula of Equation (9.95). we may now state Shannon’s third (and
-most famous) theorem, the information capacity theorem," as follows:
The’_'iqférniatibn Capac:tyof a-_'Cbnl;inuous' channel of bandwidth B hertz, perturbed by
additive _Wh_ite_'(;auss't_'gn noise of power spectral density N;/2 and limited in bandwidth

; l C=B8B _logz( 1+ m) bits per second

wh_cn_:,_P is the average rransmitred power. L s ove it 3»57 20172 Spicc )

4

The information capacity theorem js one of the most remarkable results of infor-
mation theory for, in a single formula, it highlights most vividly the interplay among three
key system parameters: channel bandwidth, average transmitted power (or, equivalehtly,
._averagq__i'etgive_d signal power), and noise power spectral density at the channel output,
The dependence of information capacity C on channel bandwidth B is linear, whereas its
dependence on signal-to-noise ratio P/NyB is logarithmic, Accordingly, it is easier to in-
crease the information capacity of a communication channel by expanding its bandwidth
than increasing the transmitted power for a prescribed noise variance. >

The theorem implies that, for given average transmitted power P and channel band-
width B, we can transmit information at the rate of C bits per second, as defined in
Equation (9.95), with arbitrarily small probability of error by employing sufficiently com-
plex encoding systems. It is not possible to transmit at a rate higher than C bits per second
by any encoding system without a definite probability of error. Hence, the channel capacity
theorem defines the fundamental limit on the rate of error-free transmission for a power
limited, band-Timited Gaussian channel. T approach this limit, however, the transmitred

stgnalmust have statistical properties approximating those of white Gaussian noise.

b. Give the concept of Differential entropy and mutual informaticzg) for
continuous ensembles.

Answer: |
Definition 1 (Differential entropy) The differential entropy h(X ) of a

continuous random variable X with pdf f(X) is defined as
h{X = —/f(s:) log f(x)dzx,
S

where S is the support region of the random variable.

Example
| 1
X ~U(0;a), SRLL) = —/ —log —dz = loga.
o @ a
13
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2

Example. If X ~ N(0, 0%) with pdf ¢(z) = J;T?e_i?f,then
- [ o(a)log, ola)ie
1 i
/¢ Oga o =l o log, e) dx
log, e 1
== -2—10ga(27m ) + 52 —4Fy[X?] = §loga(2ﬂ'602) O

#Efinition 7 (Mutual information) The mutual information 1(X;Y")
between two random variables with joint density f(x,y) is defined as

f(z,y)

I(X;Y) = o ———=_ ]
(X5¥) = f flavi o 575
Example
Let (X,Y) ~ N(0,K) where
\
2 L o2 po?
p02 2 :

Then h(X) = h(Y') = 3 log(2me)o? and

MX.Y )= 110g(27re) K| = 1103,(2’;?(2)2 (1 - p).

Therefore,

I(X;Y) = h(X) + H(Y) = h(X;Y) = ~%log(1 2
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Q.8 a. If g(x) is a polynomial of degree (x-k) and is a factor of x"-+1then g(x)
generates an (x, K) cyclic code in which the code polynomial V(x) for a data
vector D =(dg,d,,...c...... d, ,) is generated by V(x)= D(x)g(x) (8)

Answer:
::‘ZThis theorem can be proved as follows. Consider k polynomials g(x), xg(x),
x’g(x),...,x* 'g(x), which all have degree n — 1 or less. Now, any linear
combination of these polynomials of the form

V(x) =dog(x) +dixg(x)+ - - -+ di_1x*'g(x)
= D(x)g(x)

is a polynomial of degree n — 1 or less and is a multiple of g(x). There are a
total of 2* such polynomials corresponding to the 2* data vectors and the code
vectors corresponding to the 2* polynomials form a linear (n, k) code. To
prove that this code is cyclic, let V(x) =vo+v;x +---+ v, ;x" ! be a code
polynomial in this code. Consider

xV(x)=vex +v,x%>+ - -+ v,_;x"
= V- 1(X" + 1)+ (Dp F+vox +- - -+ v, 5x"" )
= v,(x" + 1)+ V(x)

where V(x) is a cyclic shift of V(x). Since xV(x) and x" + 1 are both
divisible by g(x), V'”(x) must be divisible by g(x). Thus V”(x) is a multiple
of g(x) and can be expressed as a linear combination of g(x),
xg(x),...,x* 'g(x). This says that V'(x) is also a code polynomial. Hence
from the definition of cyclic codes, it follows that the linear code generated by
g(x), xg(x), ...,x*'g(x) is an (n, k) cyclic code.

The polynomial g(x) is called the generator polynomial of the cyclic ch
Given the generator polynomial g(x) of a cyclic code, the code can be put int@
a systematic form as {

V= (rl'h Fy,raoeo, Insk-1 'do, dl, s ,'di..])

[ vAT S > |

n—k parity  k message bits’
check bits

where
rx)=r+rnx+rx’+ 4ot

is the parity check polynomial for the message polynomial D(x). The pari‘
check polynomial r(x) is the remainder from dividing x"*D(x) by g(x):

x"*D(x) = q(x)g(x) + r(x)

where q(x) and r(x) are the quotient and remainder, respectively. The cc
polynomial V(x) is given by

V(x) = r(x)+x"*D(x) P 9
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b. Design a linear block code with a minimum distance of three and a message
block size of 8 bits R. (8)
Answer:

Q.9 a. Explain the special classes of cyclic codes:

(i) BCH _
(i) Burst & random error correcting codes (8)

Answer:
(i) BCH

ptimum design of error-correcting codes consists of designing a code with
the smallest block size (n) for a given size of the message block (k) and for a
desirable value of the minimum distance (d..,) for the code. Or, for a given
code length (n) and efficiency (k/n), we might want to design codes with the
largest possible values for dmin- That is, we might want to design codes with
the best error-correcting capabilities. BCH codes, as a class, are the most
extensive and powerful error-correcting cyclic codes known.

Decoding algorithms for BCH codes can be implemented with a reasonable
amount of equipment. A detailed mathematical description of BCH codes
would require extensive use of modern algebra. To discuss modern algebra is
beyond the scope of this book and hence we will not include a mathematical
description of BCH codes in this book. However, we will state the following
properties of the BCH code that illustrate the power of this code:

For any positive integer m and f (t <2™7') there exists a BCH code with the
following parameters:
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Block length: n =2""
Number of parity check bits: n—k <mt
Minimum distance: dpi, =2t +1

Several iterative procedures for decoding BCH codes are available. Mz

puter. In many practical applications, digital computers form an integral p
of data communication networks. In such systems software implementat
of decoding algorithms has several advantages over hardware implementatis
The reader may find descriptions of BCH codes in the references listed at the &
of this chapter.

‘Majority Logic Decodable Codes. These codes form a smaller sub- cl
of cyclic codes than do the BCH codes. Also, they are slightly infe ior
BCH codes in terms of error-correcting capabilities for most interest
values of code length and efficiency. The main advantage of majority loj
decodable codes is that the decoding operation can be implemented us
simple circuits. The decoder for these codes has the form shown in Figure
with the combinatorial portion consisting of modulo-2 adders and a few lays
of majority gates. An example is shown in Figure 9.7 for a (7, 4) majority lo;
decodable code. This code has d,;, =3 and the reader can verify (using;'
decoding steps given below Figure 9.6) tha. the decoder can correct sing
erTors.

Several classes of cyclic codes have been found recently that could
decoded using layers of majority gates. The construction procedures and |
derivation of decoding rules are based on properties of finite geometri
Interested readers may refer to the books listed at the end of this chapter.

Shortened Cyclic Codes. The cyclic codes we have considered so far h:
generator polynomials that are divisors of x" + 1. In general, the polynom
x" + 1 has relatively few divisors and as a result there are usually very fi
cyclic codes of a given length. To circumvent this difficulty and to increa
the number of pairs (n, k) for which useful codes can be constructed, ¢ ".,
codes are often used in shortened form. In the shortened form the las
information digits are always taken to be zeros (i.e., the last i bits of t
codeword are padded with zeros). These bits are not transmitted; the decod
for the original cyclic code can decode the shortened code words simply |
padding the received (n — i)-tuple with i zeros.

Hence, given an (n, k) cyclic code, it is always possible to construct &
(n — i, k — i) shortened cyclic code. The shortened cyclic code is a subset @
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Figure 9.7 Decoder for a (7, 4) majority logic code. (g(x) =1+ x + x3).
M-majority gate.

the cyclic code from which it was derived and hence its minimum distance
and error correcting ability is at least as great as that of the original code. The
encoding operation, syndrome calculation, and error correction procedures
for shortened cyclic codes are identical to the procedures described for cyclic
codes. As a result, shortened cyclic codes inherit nearly all of the im-
plementation advantages and much of the mathematical structure of cyclic

codes. o
(i)

7

9.5 BURST- AND RANDOM-ERROR-CORRECTING CODES

In the preceding sections we dealt with the design of codes to correct spec
well-defined classes of error patterns. We treated the problems of correcting
random errors, and burst errors, separately. Unfortunately, in-most practlc.l
systems, errors occur neither independently, at random, nor in well-deﬁn_
bursts. Consequently, random-error-correcting codes or smgle-burst-t?rr
correcting codes will be either inefficient or inadequate.for combating :
mixture of random and burst errors. For channels in which both types
errors occur, it is better to design codes capable of correcting random errors
and/or single or multiple bursts. : ..

Several methods of constructing codes for the correction of randon? and
burst errors have been proposed. The most effective metpod uses the int 25
lacing technique. Given an (n, k) cyclic code, it is possible to construct_
(An, Ak) cyclic interlaced code by simply arranging A che: vectors of
original code into A rows of a rectangular array and transmitting them colu in

by column. The resulting code is called an interlaced code with an interlacing
degree A.
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In an interlaced code, a burst of length A or less will affect no more than one
digit in each row since the transmission is done on a column by column
fashion. If the original code (whose code words are rows of the two-
dimensional array) can correct single errors, then the interlaced code can
correct single bursts of length A or less. If the original code can correct, say, ¢
errors (¢ > 1), then the interlaced code can correct any combination of t
bursts of length A or less. The performance of the (An, Ak) interleaved cyclic
code against purely random errors is identical to that of the (n, k) cyclic code
from which it was generated. The following example illustrates the concepts
of interleaving.

Consider a (15,7) BCH code generated by g(x) = x*+ x*+ x?+ x + 1. This
code has a minimum distance 5: and hence it is double-error-correcting. We
can construct a (75,35) interleaved code with A =5 with a burst-error-
correcting ability of 10. The arrangement of codewords in an interleaved
fashion is shown in Table 9.6. A 35-bit message block is divided into five 7-bit
message blocks, and five codewords of length 15 bits are generated using g(x)
given above. These codewords are arranged as five rows of a 5 x 15 matrix.
The columns of the matrix are transmitted in the order indicated in Table 9.6
as a 75-bit-long code vector.

To illustrate the burst- and random-error-correcting capabilities of this
code, assume that errors have occurred in bit positions 5, 37 through 43, and
69. The decoder operates on the rows of the Table 9.6. Each row has a
maximum of two errors, and the (15,7) BCH code from which the rows of
the table are obtained is capable of correcting up to two errors per row.
Hence, the error pattern shown in Table 9.6 can be corrected. The reader may
think of the isolated errors in bits 5 and 69 as random errors, and the cluster
of errors in bit positions 37 to 43 as a burst error.

Table 9.6
Each row is a b
15 bit code word. -
1 6 66 | 71
2 7 67 72

Five code
words
w
)
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While operating on the rows of the code array may be an cbvious way f&
encode and decode an interlaced code, this is generally not the simples
implementation. The simplest implementation results from the property that
the original code is cyclic, then the interlaced code is also cyclic. Further,
generator polynomial for the interlaced code is g(x*), where g(x) is the
generator polynomial for the original code. Thus, encoding and decoding can
be accomplished using shift registers. The decoder for the interlaced code can
be derived from the decoder for the original code by replacing each shifl
register stage of the original decoder by A stages without changing other
connections. This allows the decoder to look at successive rows of the code
array on successive decoder cycles. Also, if the decoder for the original code
was simple, then the decoder for the interlaced code will also be simple. Thus,
the interlacing technique is an effective tool for deriving long powerful codes

from short optimal codes.
4

b. Decode the given sequence 1101 011001 of a convolutional code with a code
rate r = % and constraint length k = 3 using Viterbi decoding algorithm.(8)
Answer:
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