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Q2 a D(_efine the glectric field intensity. Find the electric field intensity at a point P
lying at a distance from an infinite straight uniform charged wire. (8)

Answer:

ELECTRIC FIELD INTENSITY
Electric field intensity or simply electric intensity or electric field is denoted by E. If a small test

or probe) charge q is placed at any point near a second fix charge (Q), the probe charge g experiences a
force. The magnitude and the direction of this will depend upon the location of the probe charge (g) w.r.t.
fixed charge Q. About the charge Q, there is said to be an electric field of strength ﬁ and the magnitude
of E a any point is measured as force per unit charge at that point. The direction of E is the direction
of force on the positive test charge along the outward radial from the positive charge Q as illustrated in

Fig. 2.2.
t (i
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(a) Charge with per : volue " (b) Charge with negative numerical value.
Fig. 2.2. Fixed change @ w Frira ng magrime and direction of associarted electric field.
Thus. the electric intensity & may be defined as *“The force per unit charge exerted on a test (or

probe) charge in the field™ . Itis wdn:*das ““Electric field strength’* and its unit is volt/
metre and may be found by applying Coulomb’s Law. Eq. 2.5. The magnitnde of the force on the test
charge g will be given by o

Q it

e (26
4me (%9
and the magnitude of the electric field imcnsilyi' due 1o fixed charge Q at test charge g is
F Q-g Qo
E==-=——— or E =
q qr-41't£rz dner i)

Thus from Eqn. 2.6 and 2.7, it is clear that the force on the test charge ¢ is dzpendent upon the
strength of the probe charge but Electric field intensity is not. Therefore, if the charge on the test charge
wed (0 approach zero, then the force per unit charge remains constant i.e. electric field due to fixed

\ is considered to exist immaterial whether test charge g is there to detect its presence or not.

The direction and magnitude of electric field about a point charge (¢ = 1 for point charge) may
-ated by writing Eq. 2.7 in vector form #.¢

RIC FIELD INTENSITY DUE TO INFINITELY LONG
RGED WIRE [A LINE CHARGE]
n coordinate system "

7

the case of an infinitely long e __i oE,
of negligible thickness as shown \e
Let p;, bethe density of charge per dE -

@

Our aim is to calculate the electric
int P, a distance r from the wire. For
we divide the wire into a number
small elements. Now, consider one
t of lengfh dxata dl:stallce xfrom FF =+ + + + Orﬂ-:t“fx:":'“-'-ﬂdxl':-—x
e on this element is dg =p dx.

at a point P due to this charge dg Fig. (13)

-
o o
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104 Electromagnetic Field Th

dE = 1 xﬂ 1 XPde

4ne, R?2 4me, R?

(where AP =R) ..

The x and y components of dE are
dE, =—dEsin® and dE, =dEcos8
Further counsider an element of length dx at a distance x from O towards left. In
case, the components of dE along X and Y axis will be dE sin® and dE
respectively. Due to symmetry, the horizontal components of the field intensity

i cancel each other and only vertical components remain. Hence, the total intensity
electric field at P will be 2 dE cos 0 in Y -direction.

E=Io+°° 2 dE cos © ("~ now the wire extends from 0 to +¢
or E=f" 1 ~ PL dxx20089= = j-“’ e
0 4..&.0 Rz 27‘80 _o Rz
From fig. % —tan®@
r
£=se029d9
r
or dx =rsec?0 do
and R*=r? +x?>=r%2 4+ % tan%0

when x =0, ® =0and when x = oo, e=§

Substituting these values, we get

gy I-dz rseczede-cos9= R /2 rsec? ©cosO do
2meg *® (P2 tan’@+r2) 2mey 70 72 (1 +tan? 0)

[ =/2 sec’0 cos O do
2regy 70 rsec?@

(- 1+tan?@ =sec’
2neq r 0 2nreg r -

=tk oy~ O
2meyr 2mregy r

E = Pr
2mey r

|
4
J.'

—  ———

The direction of electric field is outward if the wire carries a positive charge
inward if the wire carries a negative charge.

In vector form G (R ) R

r
2mey ¥
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b. State and prove divergence theorem. (8)
Answer: e e s

1.15. INTEGRAL THEOR EMS

There are two most important types of integral theorems which will be of our interest.
(i) Divergence Theorem or Gauss’s Theorem and (ii) Swoke’s Theorem

Since, both theorems are of great use and h will be di d in detail.
1.15.1. Gauss’s Divergence Thwrew._'rh_.i_s is an important theorem associated with the names
of Green and Gauss and i = Di 7 ]

Statement. Gauss's divergence theorem states that - ‘the volume integral of the divergence of a

wector field A taken over any volume V is equal ro the surface integral of A taken over the closed surface
swrrounding the volume V'"

Mathematically, for any vector ﬁcldﬁ'

[Il, v -2 P [, & as= ] 2. sas]

= unit vector outward normal to § and ds = an element of area on surface S. It may be noted here
triple integrals on the L.H.S. of equation 1.52 are because of the fact that the volume is a three
nsional quantity where as double integrals on the R.H.S. are used because the surface is two
sional quantity. Since the theorem uses divergence of a vector function, hence the name divergence
m.

-.(1.52)

Proof. For proof of the theorem I..FI.

S. of equation 1.52 will be proved equal to R.H.S. From
ition, it is known that
— 3 Ax dA 2A s
v - A i + —-—zay -+ —-552 also dV = Jdx dy dz

Therefore, L _H.S. of Eqn. 1.52 can be written as

- A
(v - &) av = ﬂ]’v { -‘:’E—” + %‘ﬁﬂ + aa‘:‘} dx dv dz

- IIf, [%.&@dz)-’-ffj‘, (Qa—‘:x dxdydzJ+ffjv [%‘;‘J drdydz) ..(1.53)
Consider now the first integral on the R.H.S. of Eqn. 1.53 /.o,

ELECTROMAGNETIC FIELDS AND WAVES
- 2 53 ()} i
LR i -
-[[[v Dx dx.d)' dz e 8 oz e
1 et us now consider the Fig. 1.20, in : ;
crosssection dyd= extending from Q1 to Q2 . . : =
. Integrating eqn. 1.53 (a) w.r.t.x i.e.along the shown strip ! t-‘ ‘
(Fig- 1.20) ofcr;s:-sect:ion dydz which extends from Q) to Qs =
5 e R
- 2y = =1 -
J'x: = =l A = =u Fig. 1.20. Proaf of divergence theorem.
o et o -
= - Ax, ] dy dz
a—~¢£drdydz,=_[I‘[I%i{dx]dydz—fjslm, =
d ﬂ"[v A - ; . w154 (@)]

or _UIV Qf‘ dx dy dz = ﬂ--c Arthe ! er the whole surface. Here
i 1 on R.H.S. of Eqn. 1.54 () is evaluated oV dz = —dsx
Surface integra o pe iy ek and at O, dy dz e e
2 3 = a‘: outward normal and hence x components of ds a
Sigcesbhe direction 4;1‘:.“0:&:13: its direction is opposite to that at Q2 . 53, it can be seen
Batet= Bemivasion. 8 | ths remaining two integrals in the R.H.S. of Eqn. 1.53,

. : . .[1.54 ()]
——— [1.54 @1
515, %53 axayaz = I, Acae.
and

MNow adding Eqn. 1.54 (a, b, ) we get :
2 A dy dx dz + ELY dxdydz + dx dy dz
I_r F) = dy dx dz IIIV oy > j.[jv oz ¥
v x

— —_— g —P
= & ad = [ (& Fa
I, [Axdsx + Ay dsy + Ac ds ] 5 St 1;0@)‘1-"‘—@7’1

[ From Eqn. 1.53 ]
or I, V. R S Waam

Thus divergence theorem is proved.

s mmrtain inteorale ealculated
Q.3 a. State and explain the boundary condition at the interface of two dielectrlcssm
an electrostatic field. (8)

Answer:

3
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3.23. BOUNDARY CONDITIONS AT THE INTERFACE OF TWO DIELECTRICS

For solving any electrostatic problem involving more than one dielectric medium, it becomes
necessary to know what happens at the boundary surfaces separating the different materials. It is rather
necessary to relate the inaccessible (polarization) charges to the accessible (true) charges or 10 the fields
produced by the latter. Such relationships which link the inaccessible charge source to the external fields
which prodtﬂwm:!ewhdﬁle constitutive equations. For instance eqn. 3.95, although sometimes
eqn.3.96is also called constitutive equations. These equations depend upon the propertics of the material
to which they apply. Equation 3.96 is restricted to linear, isotropic materials but the material need not be
homogeneous i.e. € may be a function of position. One very common case, where non-homogeneity
oceurs, is the dielectric constant € varies discontinuously between two different homogeneous media and
hence the way in which B and f behave in crossing the boundary between two dielectrics is of great
interest to be discussed. Now the conditions (i) Normal components of B and f (ii) Conditions on

Tangential components onﬁ and E) and (iii) Refraction of the lines of forces of E across a boundary
will be considered. :

3.23.1. Normal Components of B and I_'J) Let us imagine a disc enclosing a part of the
boundary surface between two media and whose axis is normal to the boundary as shown in Fig. ALk
Further, let &; and € be the relative permitivities of the two media. Itis assumed that the thickness of
the disc is very small. The only contribution to the outward flux from the disc comes from its flat surfaces.
Then by Gauss’s law

v - B = p.

Therefore, [v.-Ba=| pav [3.97 (b))
v v

where p is the density of free charges. As there is no free charges at the surface, therefore,

: -.L'"-‘? -DBav=o. .(3.98)

By dwugaum to change volume integral into surface integral as
e & & iy
d Y - D = - =0
I:?f D v ]; D-a ds .(3.99)
& &iﬁ?@d’ = D - @, ds + D> - @ ds =0

where I} and ﬁg are the values of IJ 1n th two mcdiaanda; and @, are the unit vectors. Since
@t @n=0
or ] § o E-:; =—an- ...(3.100)
Hence eqn. 3.99 reduces to 3 T% ds — Bz amn ds =0 ...[3.101 (a)]
or (3} - @ - ﬂ @p) ds =0 ...[3.101 (b)]
or ' 31 = Bz e l ..(3.102)
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Hence, normal component of in the two media are equali.e. b is co
Further, normal component of I? on other hand, is discontinuous. This 13'{

D=¢E

Hence from Eqn. 3.102, we get EIEI . Gy = €252 - @ . -

E- @ & : S Ra103)

In a simpler notations, if £y, and E», are the normal component of El and .

-3.103
reduces to - 3
: | 8B =¢ En. | ...(3.104)
Fig. 3.16 illustrated a very small element of the
nterface between dielectrics ‘1 and 2 whose N
permittivities aree; and €2 respectively. As the element
of surface is of differential extent, it is considered to be
plane. The elemental shaped surface with its broad face J
s parallel to the interface and hence one surface is in ) e N
region 1 and the other in region 2. The area of the broad D, :
ace is supposed to be ds and the thickness is 4. If Fig. 3.16. Normal component i
Sauss’s law is applied to this elemental volume as in Fig. thereoff. "IN L
3.16, then by using Eqn. ; ' -
T R R S d
5 v 5
D being total charge within the volume we have from Eqgns. 3.101 or 3.105 s
@ D dv =@ By i py ds
— ;
u&?..- Di)ds - (@ - Db) ds = ps ds
here @, = unit vector normal to interface, _ / .
For a simplest case of surface charge density p; in free space medium 3 3
B, = an and ' -5)2 = EoEz 5t ;
Then Eqn. 3.106 becomes : =1 L
E’;-andS-E’n-EoE)zds=psa!r i
a:‘(El‘*E)z) Eds = py d? 3 a0 .
hiere P is the true charge density on the interface, It may be noted that i 10 .ﬁéiﬁﬂd’a _
rough the sides have not been included as this flow can be made negli; 1gh — 0. While
€ terms, in Eqn. 3.107, due to top and bottom of the elemental volume nain unatfected.
' Hence by Eqn. 3.107, shows that normal component of the _‘ ic fie E is discontinuous

rough a charged surface and the magnitude of the d iven by, p;/eo (Eqn. 3.107).
or a dielectric interface p; is normally equal to zeroi.e. p; = O unless a free surface charge is actually
aced the interface. Hence by putting p; = 0, eqn. 3.107 €S 10 egn. 3.102 which shows that the
prmal component of ﬁ across a dielectric boundary containing no free charge is continuous. :

5
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278 ELECTROMAGNETICS FIELDS AND WA

a - E canbe explained as below. The ﬁeldf arises from the total e

The discontinuity in
charge, which consists of the true volume charge density py, the polarization volume charge densisy
pp =— V - P andthe polarization surface charge density psp -

is discontinuous by an amount &g

At the surface of a dielectric, the normal component of
true charge equal to @

~ to psp/Eo vide eqn. 3.107. Just as it would be if we consider a surface layer of
Eqn. 3.104 is readily shown to verify this result. From eqn.
@wE+ P .(3.108

D =
and D=aoE+eox,gE=eo(1+x,)E
; D =eeE=¢cE (3108
Equating eqns. 3.108 and 3.109, Ei’?= aof+ ?
or ‘?=(€—50)E‘. | ..(3:18

From the normal component of ? at the interface is seen to be given by
Pin = (€1 — €) Ein medium—1 .[3.111
P>, = (€2 — €0 ) E2n medium—2 [3.111 (8
The surface polarization charge is given by Pon — Pin Pin because this represents the amount &
charge on the positive ends of the dipoles in medium 2 that is not cancelled by the opposite charge on
negative ends of the dipole medium 1. From relation 3.111, we see that
P P4 Pin = psp
(g2 — &) E2n — (&1 — €0) Ein = Psp

or
or EZE%‘“EOEM“E]E&"‘E{]E{';':Dsp
or €0 (Ein — E2n) + € E2n — €1 Eln = Psp. ..(3.113

Itis thus seen that a discontinuity of E, by an amount Psp”/ €0 corresponds to the requirement
€1 Ein = €2E2n. ‘
In otherwords Eqns. 3.103 and 3.104 are consistent with necessity that E, be disconti
by an amount g,/ €0 - :
3.23.2. Tangential Components of B and E? The tangential component of the Electric 5=
E is continuous across the boundary between the two dielectric media or Tangential component of £ 3
discontinuous across the boundary between dielectric media. '

Let us now derive the boundary conditions on the tangential components ofB and E’
‘purpose consider a cross-section normal to the interface as shown in Fig. 3.17 which separates two

of different permittivities. sl 2 3
Then a small closed rectangular path abeda of small length A/ and width Ak is taken s >

the two opposite sides of longer dimensions lie in the two dielectric media. _ . 4
Now the work done by the electric field around the closed path abeda is k-

e
'R ar (B aT [[Bal (B

Because the line integral of any electrostatic field around a clo
keeping A [ fixed, then without affecting the two other integrals q
c a —
I}" E- “—)""L E.dl= L

Ah—0 Ah—=0
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Let £, = Tangential component of B in the region of dielectric medium 1, and
£3, = Tangential component of E in the region of the dielectric medium 2.

Then, with the choice of direction F_ ' ._+ MEDIUM
given in Fig. 3.17, we get from Eqns. 3.113 : @
‘——_"—_

and 3.114 b
En Al — Ex Al =0 “h " T
or Ey = E3 . 3:115) c E., d K
e
This means that tangential MEDILM
®:

component of the electric field is
continuous across the boundary between

two dielectric media. In other words
tangential components of Electric field are Fig. 3.17. Boundary conditions on fangential comporienr ufE
same on both sides of a boundary between two dielectrics. Further, eqn. 3.115 can be written in vector
form as
@ x<E =@ < B, w(3.116)
Thus, for the tangential components of B we must have
Eyo= 2 ki Do
€ E2
4 Dy, Doy Dy, £}
= e = or o = —=3.117)

‘__-,vB is discontinuous.
in medium 2 must be zero under static

This shows that the tangential P of flux d
In case, the medium 2 is a conductor, then the field Es,

condition and then eqn. 3.115 reduces to
t of electric field at a dielectric

Thus, according to eqn. 3.118, the tang ial P
ductor b dary is zero.
(8)

l_).nljrive the equation for the energy density in an electrostatics.

Answer:
156
(> da TE
B g o
o = —
l'—"ge[(?J-ﬁ- V[d)n <
£ = LS Farad-metre
4 15 D
S
where & = Radius of conductor
£ = Half centre o centre spacing
E = Ea E,
€, = Relative permittivity of the medium Sun

Waork done dW = VdO or aw = 5‘___2, pre]

If the capacitor is initially uncharged and the process of charging continued il = =
achieved, then the total work done is

Jaw =~ |7 2 a0

S s ) [ e Tt Gy
5 W=T’5'I§ Q"Q"c[zr = 2c
= [ e T
E 4 2 2
Hence, the total energy stored by a charged cag w
L =
Wi e > Vo > Ve ,
where = charge on one conductor, in coulomb.

capacitance. in Farad.
potential difference, in voles.
W = energy, in joules.
_2,% TOTAL ENERGY DENSITY IN A STATIC ELECTRIC FIELD
When a parallel plate capacitor is charged to a potential difference of Vbetween plates, the encergy
stored is
Lcov =

<aR
[

]
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Now question arises, which part of the capacitor is this energy stored ? The reply is that the energy
is stored in the electric field between the plates. Let us see this.

S&REAA

8

r++++1++ +

Fig. 2.55. Parallel plate capacitors and energy : %
stored in the electric field. Fig. 2.56. Small cu

Consider the small cubical volume AV between the plates (Fig. 2.55). 1 vo
erated in Fig. 2.56. The length of each side is Ad and top and bottom faces (of area Ad
the capacitor plates (normal to the field & )- If the thin sheets of metal foil are pl

top and bottom faces of the volume, the field will be undisturbed provided the sheet
. The volume AV now constitutes a small capacitor of capacitance

2
&C'=!~:-£&L or AC=¢ - - Ad " =
Ad
The potential difference AV of the thin sheets is AV = E Ad
Now the energy AW stored in the volume AV is

AW:%AC'.(Av)2=%(s-M)(E-M)2=%€Ez'(ﬁii'
AW = 1 € E* - (AV) .
e e

Now on taking the limit of the ratio as AV approaches zero, we obtain the energy per volume or
density W at the point around which the volume shrinks to zero i.e.
.o AW : 3 :
w=Limit — = - ¢ B> J/m :
AY — 0 AV 2 m
The total energy W stored by the capacitor is given by the integral of energy density W over the
region in which the electric field .E) has a value

~w= dev=-;-_rveEzdv
w=2JeE-Eav e
3 % [B Fa -(2.236)
The latter can be deduced as follows : From eqn. 2.234 W= -_:; Vo
If the charge is distributed throughout the volume, the eqn becomes W = 3 Iv py Vav
But by eqn. 2.73 V-B=p

8
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Now by vector identity 1
(V.-vBy=B.vv+v(v-B) .
or (v . vB)-B-VV=Vv(V: D)
Applying this identity to the integrand gives
w——J' (V.VvD-D -] dv

changing the volume integrals into surface integral, we get
w=i[ v . vBa-3], B vva=5| vB&-3 |, B-

As the enclosing sphere becomes very large, the enclosed volume charge looks k=3
Thus, at the surface ID varies inversely assquare of distance | 1/7* ) and potential ( V') »=
so the mtcgrand is decreasing as 1/F  Since the surface afea increases as r i

lim I VD ds=0
F=3co
w=-1[ D vva B
W=+l.[B'E‘£’ Since D = ¢ E.
w=2[eBdv=-3 I
Assuming that the field is uniform between the platcs and that there is no frining of &
the edges of the capacitor,

o | =l = e = I
W=1elP [dv=1ecB Ad=L1eE-AEd=1D-AEd - Q=DA

=§DA-Ed=§Q-v Joules
where A = Area of one capacitor plate,inmz.

d = spacing between capacitor plates, in m.

Obviously this result which has been obtained by integrating the energy density
volume between capacitor plates, is identical with that already obtained in previous article.

Further, electromagnetic field theory makes it easy to believe that the energy of an elecwse
or charge distribution is stored in the field itself as can be seen from eqn. 2.236.

w=1[ D Ea

or in differential form.

=—;-B?dv or ———B E') Joules/m’

obviously, this has the dimensions of an energy density or J/1 m’,
If there are two electric fields 1?1 and E. then total energy density stored is given by eqn.

© IETE 9
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e BAB] w]ee[l(B+ B2 o2 B Bl
i%eIV{E};z+Ez?+ZE;E;}dv

- {%E’%+% %+E§E§}dv (2.241)
Q.4 a. Derive Poisson’s and Laplace’s equation. (8)
Answer: e e eaearay

Besides divergence operator, there is another Laplacian (Laplah-ci-an) operator. Eqn. 2.71 is a

2. POISSON’S EQUATION AND LAPLACE’S EQUATION
relation between the flux densi:yB and the charge density p that exist in the region.

Thus V-D=p
But B:ef’
: V.(eE)=p

If the region is homogeneous and isotropic, the dielectric const or permittivity € will be scalar
quantity, and hence.

eV-E=p BuE=-V v
=gV (W Vr=ip
or v? v=-’£3 (2.173)

This Eqn. is known as Poisson’s equation and isuseful in vacuum tubes and gaseous discharge
problems particularly.

The divergence of a gradient (the double operator ) is written as V2 (del square) and is called as
the Laplacian operator.

In free space when there is no charge (i.e.p = 0), above eqn. becomes

This eqn. is known as Laplace’s equation.

Expanding equation 2.174 in rectangular co-ordinate, we get,

rv . Pv v

Sy el (2.175)
Further when p = 0, then egn. 2.74.
v.D=o0
or V. EE": 0
or v.E=0 (2.176)

Laplace’s eqn. is of great importance in electromagnetic theory. Eqn. 2.174 is special case of
Poisson’s eqn. for charge free regions but eqns. 2.175 and 2.176 are the alternative forms.

10
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110 . .
or in vector form
E-Ea
gl s g
or E) % eor ar V/m ' ...[2.86 (b)]

It is thus seen that the result is independent of the radius of charged cylinder R and hence holds
good for the rectilinear distribution of charges.

Now the potential difference between two points A and B at a distance ““¢’* and *'b"
respectively from the centre of the charge wire having a charge pi Coulomb/metre is given by

-Vs=- [, E-dP=-[, E dr

e P e ) a
Vubv— J‘:zﬂﬁor dr zﬂsologeb
L N b :
Vab VB loge 2 ...(2.87)

Further, potential difference between any point on the charged wire and point B due to charge
p on the wire (Fig. 2.31) we may have, '

Vo-Vo=-| B d

R

S Rt SSUTS, A - R
or Va = Ibzneordr 27!:5010& b]

B S b
Vap = Znaolog‘(R]

c =

Fig. 2.31. Potentigl difference between two Fig. 2.32, Potential difference between
equipotential surfaces. two coaxial cylinder.
223. LAPLACE’S EQUATION
Electric field intensity E was determined in the beginning of the chapter by summation or
integration of point charges, line charges, surface charges and volume charges. Subsequently, Gauss’s

Volts .(2.88))

Law was used to determine l_)) which then gave E as B =€ E" Although these two approaches are
important and give valuable assistance in understanding the electromagnetic field theory, yet both methods
tend to be impracticable as charge distributions are not usually known. Still another method of calculating

Eis by using the relation E = _ V V in which negative gradient of potential V' is involved and this.
requires that the potential function throughout the region be known, which is generally not. Instead of

© IETE 11
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above, Sometimes conducting materials in the form of planes, curved surfaces or lines are usually specified
and the voltage on one is known w.r.t. some other reference, often one of the conductors. Laplace’s
equation then provides a powerful method whereby the potential function V can be calculated subject to
the conditions on the bounding conductors. ]

Since the left side of Laplace’s equation (eqn. 2.102) is the divergence of the gradient of V, these
two operations can be used to reach at the form of the equation in a particular co-ordinate system. The

Laplace’s equations in three co-ordinate for a general vector field A and potential function V in all the
three co-ordinates are given below.

- . . 3 _-)
(i) Cartesian Co-ordinate. For potential function V and general vector field A

S SR SR i
V’._ami»ayay+azaz
=¥ IV IV
or VV—ax x+ay y a5z a:
B (Y [ T R T e i - <
and V- A= ax""“ay““‘az"‘ (Axa@; + Ay a; + A. @)

'.'E}»Ei=(}etc.

and hence Laplace’s equation.

2 2
Lgpple 00 TS
V(VV)=Vy= e B 30

where @, @), @, are unit vectors along three coordinate axes.

(ii) Cylindrical Co-ordinates.

.-.(2.89)

av

VV:ya,+-’l;—~E’q,+~aTaz

and general vector ﬁeldz)
V’-Z’:-Li (ray) +%E—:}-i‘ﬂ+~——‘-.““z

and hence Laplaces equation is

pypad @OV Ry Ry
‘i V= r or (r r]+ r 2 ¢’ i a7z _E! ~(2.90)

W 1oV, 1 ov
Yais rar+r Baa+rsm98q:la¢
for general vector field A
s g I : 1 dA
Vedsa o oad apldesne) +

and Laplace’s equation is, therefore :

21 0 (,9v SRS K 1. S
FA‘,:: ,(’zarJ‘“,Z'sine T [t e e e

12
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b. Derive Laplace’s equation for parallel plate capacitor in rectangular

coordinate and determine C there from. (8)
Answer:

val

SOLUTION OF LAPLACE’S EQUATION IN

RECTANGULAR COORDINATES 4 +

Several methods are available for solving the second order YQ Q

partial differential equation known as Laplace’s equation. The first — i
and simplest method is the direct integration method. The other
method is the product method used in difficult problems. Still another — &
method requires advanced mathematical knowledge. The direct g -
integration method is applicable, however, only to problems of one 7 e =
dimensions or in which the potential field is a function of only one of - +
the three co-ordinates.

2.24.1. Cartesian solution in one dimension (field — -t
between two parallel plates). Let us consider a parallel plate
capacitor as shown in Fig. 2.33. Plate to the left is at zero potential = =+
and that at right at potential Vo. We will use the Laplace’s equation
to calculate the potential distribution between the plates. V=0 V=V,

b Sivs thiere is no’ varition! iy dhd iz direction the 2 0 x=d

problem is one dimensional and Laplacc s aquaﬂen . Fig.2.33. Parallel plate capacitor.

The partial derivative is Iso 1 bya\ima'ydmﬂmveasv is not a functionof y and z

[E-fo

'I='ﬂ-(3ly) | : ..(2.93)

or

Again integrating : R

J-%=IA or JHV=J-_Adx

or V =Ax+ B ' _ (2.94)

where A and B are constants of integrations which mheﬁetefmmed by boundary conditions.
Boundary conditions are. - :
At o ==, V=20 ..[2.95 (a)]

. Xia=ad V=¥ o, . -[2.95 (b)]
Putting Eq. 2.95 (a) in Eq. 2.94 we get : ey :
B =0ie V=A;
and by putting eqn. 2.95 (b) into eqn. 2.94, we get

© IETE 13
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Vi
W)=Ad or A="}9

Hence introducing these into eqn. 2.96, we get

Vi ¥
V= Fﬂ x Volts (2.96)
The boundary conditions are at choice. In general, say
At T =k V=V|andx=dz V=1V
Then Vi=Ad + B and Vo= Ads + B
From these by subtracting, we get
Vi = V;
Vi-Vi=Ald-&) o (ASEESEE [297 (2]
and also by multiplying eqns. by d2 and d respectively, and subtracting, we get
Vidi=Ad d: + Bd> and Vody = Ady dz-i-ﬂ?;
Vldz—Vzdt=B(d2—dJ) ;
_Vidi - Va dy
or B = e e : »?12-97(5)]
Vi-Va Vid: - Vady
h = ToE P —— e ————— ‘ of
and hence !T/ [ s J x + G -{(2.98)

Since the capacitance is the ratio of charge to potential and since the potential has been known,

charge on either plate is yet to be determined. This is done as follows :

(a) Calculate E fromE = - VV,if Vis given ;

(b) Calculate I from D = e E :

(c) Calculate B at either Capacitor plate, sincel_)’ = B’, = ﬁ, E'i -
(d) Rememberp, = D, ;

(e) Calculate Q by a surface integration over the capacitor plate i.e.

Q= f Ps ds j .(2.99)
i | v _ Y
=% d dx d
and = - VV —
= %:—’ a, A (2.100)
or F-_Y2g
i d
D=+gE
Vo
D=-¢ —d'l a. _f . 12.101 (a)]
e ) Vc —3
D5 1D Lno = <& il [2.101 (b)]
122 ELECTROMAGNETIC FIELDS AND WAVES
But B = E = D, a
. p.a__x;’na-: it T = T
- D ‘;" o .[2.101 ()]
Vi - = A
Hence Q=£P,d1=—,e:°‘d‘=—z—j‘el,d-‘ I-"“"
Vo A
Pt E_.;_
—& Vo A| £ Vo A
- 13- |22l 00
= _eA (2.102)
Hence, et e S

This shows the use of Laplace’s

© IETE
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Q.5 a. Using Ampere’s law, calculate the magnetic field intensity at a point due to
line current placed along the z-axis extending from -co to . (8)
Answer:
.

5.4 APPLICATIONS OF AMPERE’S LAW

5. TIC FIELD INTENSITY DUE TO INFINITELY LONG
: CARRYING A CURRENT /(A)

Consider an infinite conductor placed along the Z-axis as shown in fig. (19).
aim of this article is to derive an expression for H at a point distant p from origin.
symmetry, the mam ﬁdd is directed in ¢ direction everywhere and is constant
fixed radius p. Se, we construct a circle of radius p parallel to X~Y plane as shown in

figure by dotted curve. 7

+ooT o —

Fig. (19)
tatic Fields 301
plying Ampere’s circuital law to this closed circuit, we have
$H-dl=1
H, §di=1
Hy [2mpl=1
P
2xwp
ce, the magnetic field intensity in vector form is
B- ¢| A/m
2w p
magnetic flux density is given by
B=pH= e a, tesla.
2wp

© IETE 15
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sarfc Fields
287

E R _za, —ra
=7 . | B PR =
ing to Biot-Savart law, th - R
o if..!,,"’i'i: magnctic field intensity at point 2 is gi
= iv
4nxR? _
R ]

tituting the values of o
1 and i 5 from
eqs. (1) and (2) in
: eq. (4), we get

4n(r® +=
frzcdp a,

_Irabiz(iy xR.)" EiRE N3
=l):m-' - =

47r(r:' -1-1:3)’": X
(5)
eq. (5) @, is the vertical component -’
wh;n

ml::grntion of eq. (5) to obtain total : ; b
et cancelled. This is i T SaTeT s

Therefore,
i r & e T
+=9 L4m(rd +L‘;‘ﬂ"_}:%ﬁl_-ﬁ.' —

}'.l"'z-II ]
dmir? +=z2)¥2 ﬁ; .

2l g

rria
2(r2 4 z2)3%2

H =

For example, conside ,.,,-
. r a loop located on x= TN
magnetic field H at (0, 0, 4) and {D.;,niqi - ‘
H at (0.0, 4y m SR, 1.}--1"'”_ -t
29 +16 AR e ‘a'-- h-' s

e N Lm . & =5 A p=3and h=4)
wha'_n A is replaced by —h, 'Ii:u
nent still adds up to zero due to :;ual

the same while p

b. Apply Biot-Savart’
t’s law to calculat ic fi
carrving o e magnetic field of i
e ying loop. a circular curr(%r)lt

or
arp

C FIELD INTENSITY ON THE AXIS OF A CIRCULAR
cular loop of radius 7 and carrying a
le is to find out the

), consider a cir
) on Z-axis. The aim of this artic!

, MAGNET!

As shown in fig. (5
Conser a ponit P (0,0, =z
field intensity at this point.

z

Flux lines due to current loop
(&)

Fig. (6b)

Fig. (5a)

Consider a small length dl of the circular l00p. This length can be consi
point. As the circular loop is placed in XY plane, hence in this plane =z =
i of dl are (7, $,0)-

In cylindrical coordinate system, the expression for d1 is given by

Al —dra, +rdd B, +dza.

For a circular loop. » = constant, i.€., dr =0 and here z =0.
T AN =rdba,

of R, we consider fig. (6). Here a4, and @ are unit

directions respectively. From figure,

=ra,+R

To find the value
vectois along » and Z
=5,

R=—za,—ra,
D)

or
| or |Rl=R =Juz+2z
E Let A be the unit vector in the direction of R. Then

© IETE
16
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Q.6 a. Find the force between an infinite straight line wire carrying a current I, and
a square loop of side a with current I,, the extended plane of loop containing
the straight line wire. The shortest distance from the wire to the loop is d and
the wire lies parallel to one side of the loop. (8)

Tomevsuncaul qumiong = 10 x 0.22186

X Kxample 4.20. Fing i, nfinitd'sfhh
X : ind the force between an infinite sty
A€ doop of side a with cyrrent b, the , %

f:mn(': Let C2 be a square loop carrying current /3 pla
S ldl carrying current 1. If the straight conductor
y ie producedmlheloopisinthencgaﬁvez_di cu .

Now the flux linkin
b : current /; ( of Ci)

w..‘=j;l_f-di"

r “-ar.a ic flux density at a distance o metres from

‘mfinite straight wire carrying current I, is given by

= Wb/m? ~[4.178 (a)]

_MmMuisgmwmeﬂuIEMwim
P per unit current in the straight wire, If @ is the flux 2
dlthecml,andhisthectmcntinmcwire,then Fig. 4.

since flux densityfis a vector normal to the plane of the cc

e ¥ =a =d+a -
| ___E!_ =d+a
o AR

v - P _ua d+a
B o o

© IETE Y
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ta)d
loop is attracted towards the infinitely
long straight wire.
b. Write note on.
(i) Hysteresis loss
(i1) Retarded potential

Answer:

=TT T we smasow suups 13 LOC NOTTNANTIREEN

SYSTERESIS LOSS
Magnetic hysteresis or simply hysteresis is defined as the
snd the magnetic field intensity # and energy lost in car
snetic material around the hysteresis loop is known as /st
e material due to which energy is dissipated in it on the
loss is caused by the work required to magnetise the magnetic
resents the work done per unit volume in one cycle around the ¢
dissipated as heat in the magnetic material and is called hysteresis
=t us now calculate the hysteresis loss. Fig. 5.13 shows the hys
22 with mean radius R, area of cross-section A4, having N turn ¢
al state of magnetisation is represented by *‘a’’ on the hyst
lie. dl) there will be increase in the value of # by dH and in th
krease in the value of B, some voltage (given below), will be p

e=_Nm=_N[£@J]_

#=egn. 5.15 dr is the time in which increase took place. The batte:
#== induced for increasing the current from 7 to 7 + dI. If this work «

dW = — eldt = + NAldB.
according to Ampere’'s circuital law & — %' where [
o 5

H-21R = NI e
ing this in Eqn. 5.16, weget dW = H - 27 R - AdB =
; V = 2nRA = Volume of

in order to change the value of B upto 8, along the path ab,
‘W, . then !

W, = _f:' aw = f:’ VH dB = v f:' HdB = V(A

4 Az are the areas as indicated in the Fig. 5.13. Furth
slong the path bc, work will be done against the battery say

> ¢ the value of B to O along the path ed, wor
o current will change while voltage induced will remain
*kbe W3 and is given by

© IETE
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ELECTROMAGNETIC FIELDS AND WAVE

Fig. 5.13. Toroid with area A Current I, Turn N
Fig. 5.14.

W3 = VAs (52D
where the area A3 is indicated in Fig. 5.13. '
Now for magnetising the material along the paths d to e and back to a, the work done will
the same as that required to magnetise along the upper half of the loop. Hence, the total work done by
battery for magnetising material around the loop in one complete cycle is given by twice i.e.
W=2V(W + Wa+ W3) =2V (A + Ay — Ay + A3) =2V (A + A43)
=V -2(A+A3)=V: A

W
or V.= A . ...(5.22)

where A = 2 (A + A3) = area of one hysteresis loop.

Thus the area of the loop is work done per unit yolume in magnetising the material around
the complete hysteresis loop. This energy lost in the form of heat and is known as hysteresis loss.
Thus smaller the hysteresis loop area, smaller the hysteresis loss of magnetic material. According to

C.P. Steinmetz, the area of the hysteresis loop is proportional to Biax i.e.

% = B 1/ o % = ny By, J/id (523)

where ny = hysteresis coefficient, and n = Steinmetz coefficient whose value ranges from 1.5t02.5.

The value of ns and n depend upon the magnetic material under consideration. The value of n.
for pure iron, mild steel, cast iron, silicon steel etc. are taken as 1.6. In case, the frequency of magnetisation
is f cycle per second, the hysteresis loss per second per unit volume is given by

%xf: ny f Bhax  J/m’ sec.

If total hysteresis loss is denoted by P, then

P = ny f Bnax V. Joules/sec or Watts ..(5.24)

© IETE 19
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> FIELDS IN MAGNETIC MATERIALS ) 395

S = number of cycles per sec

= volume of the material, inm® ; : n=16
It may be further mentioned that hysteresis loss is not the only

etisation but there is another loss called eddy current loss which
little consideration will show that eddy current loss is given by

P =K fF B |

dy current loss per unit surface area is given by

P B
P, = e
e 2% p Watts

= thickness of the slab or lamination ; p = Resistivity
avely, | Pe=nel’f’ Bhx V. Watts
. = eddy loss coefficient of the material = 7%/6 p.

A MRITIMT A MITTR AT TEAN ST eie v o o = = ——

2. Retarded potential

arguas rrm o oy "

RETARDED POTENTIALS
The scalar electric potential V and vector magnetic potential.

m this chapter on the basis of the charges being fixed in position ft
- velocities or constant current for A. These potentials were

= ol Volts for a concentrated
4mey R
W= L &E Volts for a surface cha 2.55)
TR 11 7 Pt e J
V= ! J par Volts for a volume ..(2.56)
4mey ? r
3 iy
X) = ﬁ 5;!5 for a moving | (4.244)
: —
A=5 _[ Ldl o/m for a contour (4.85)
7Lt gl
A= 1‘% [ Ty wb/m  fora volume 4.87)
v ¥ x

© IETE 20
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These potentials are usable for the dynamic case. where both

E——V V—-% V/m

for the establishment of the electric field intensity vcctori Thcuseof —%
of rhe electric field intensity caused by the position of the ch"
—( 3.4/6‘ ¢) indicates the component of the electric field intensity couse
the vector magnetic potential. However, in the forms of equation 3.22 and &
of the inherent delay, which may be of vital importance in the dynamic
of the respective potential at a point P situated a distance r for the & L
If the intermediate space over which effect is to be propagated lhm#
molecular substance that would support bound charge polarization or magnetis:
can be accounted for by the knowledge that all electric and magnetic effects are o

of ¢ w.r.t. the receiver P (in case it is moving). The velocity ¢ is velocity of eles
(such as light) in free space and and is equal to 3 x 10® metres/seconds. Re
substances where polarization and magnetization effects are pronounced bees 3

general case study. As such, we shall consider only space where the velocay
€ and | are € and po . The retarded scalar potentials then can be expresses i s
time (7 — r/c). For the volume-charge density the expression for retarded scs

[pl:- o) dv
4TmEy '[V r i
where V() = Scalar electric potential at the point P evaluated at the tmmes
[p k. - £ Charge at the source § [ Fig. 4.44 (b) | evaluated at an earlier vt

c

Vip.) =

r/c = Retardation time is that time for the effect to be propagated the ¢
at the velocity c. ‘
If the point P and also the source S are moving, the velocity € is thas =

P and r is the measure of distance from where P is at time ¢ to where §
(t - r/c).

Similarly in terms of these sametime, velocity and distance desisnes
magnetic potential can be expressed for the volume distribution of current demss

(T e -
f_l;.: = o J’ PO
4m ‘v F _
The gradient of the scalar potential is required in eqn. E=-vv- ‘—:

Taking the negative partial space derivative of eqn. 4.12 w.r.t. the

[P]( £
=\ m_nz__[vajﬁ,’_’c_

dr r

[[pl-1 3[910—-1
@

dv

+
o2 r ar
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ALy Mo [ @
~ T3y~ 4nival r o ~{4.148 ()]
Let T be the retarded time, then T=t-r/c ...[4.148 (D]

~ If r is not a function of time i.e. if the two points P and S (at which the current density Tis

2) are not moving relative to each other, then Sl
1t =0t 4148 ()
08 _ o [ L[3T L « A
N 2= e
S A IV § [aT =t-r/c 4 g £i5 '..;4.86@)]

" 1f the location and time variations of all charges in the system and likewise al

, position and in their time variation are known, then components of
edbyeqn.4.148 (d)andeqn. 4.148 (e) oreqn4.148 (h). In electromagnetic

ses and time variations of current densities are known. Hence many field
use of these equation directly. Rather they are solved by resorting to Maxwi
ation in the field and realising that time at this location is related to time
id where boundary conditions on 1_3, and H may be known by the retarded tin

The time varying potentials normally called retarded potentials, find
gion problems in which the distribution of the source is known approximately.
son applies to the very important case of a region extending to infinite with

s medium. In the above discussioneqn. 4.148 (a,b),( t — r/c) denotest

=

PIEFEECT RESULT
ATP AT t)

b
.& I £
N | GAUSE OCCURS AT S AT (t—rlc) r

% () Retarded field at P caused by charge at .  Fig. 4.44. ( b) Retarded pot
One of the simplest examples illustrating the meaning of this retard
y of radiating system, is that of a very short wire carrying an a.
» small spheres on which charges accumulate [Fig. 4.44 (b)].
the difference in distance from point P to various points of a give
ant. Hence for any filamentary current. ’

e d’ <R Y i
—3 R T --.
x=-L = B OB 1 10)

HIpHRS L=

“For a particular case of Fig. 4.85 current is in the z direction only nq_dso alsothe A. If [ is small
sson with r and wavelength 2, then on integration,
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- If the current in the small element has the form I, = I, sin @1

Putting this in above eqn., we get, Ar =

= .
The value of A and electric field may be derived. This will be carried out in the next

dealing with the radiations

Q.7 a. Explain the concept of “Displacement current”. How is this current different

IL|t-=< r
Az._._y‘_' Z[r CJ=“[I.:[I—C]

S 4m r 4mr

Wil sin m[;_-ﬁ]
c

4mr

from Conduction current? (8)

Answer:

2o Field And Maxwell’s Equa
DUCTION CURRENT A
Interpretation

in series circuit as shown 1
the same wvalue at all

o the idea of displacement

a current which is due to electrical charges is same

<ections of the circuit except at all cross-sections v

8) of the dielectric inside capacitor. The dielectric

permittivity £4. It is important to mention here ——\N\N\N‘—-—l

tion electrons (free electrons) are flowing into =

of the capacitor and forcing other free electrons Fig. (16)

 second plate. Therefore, there is no Slow of free

hrough the dielectric. In other
nt in the space between the plates of a capacitor. Now, the question is that

discontinuity of the current can be exp
i J.C. Maxwell revised and extended the definition of current by

any particular instant, g be the char
) is defined as the time rate of flow of charge, i.e.,

tions 383

ND DISPLACEMENT CURRENT

er a parallel plate capacitor is connected to an alternating generator through

n fig. (16). We know that in a series circuit, the

cross-sections. The =
e

>

B
words, we can say that there is a discontinuity
lained. In order to remove this

current.
ge on capacitor plate. The conduction

dq
i e g L
T 1)
wve studied the electrical displacement D in dielectrics. The electrical
D is given by
g
D= =— rasld
=, @)
s the surface charge density and A is the area of each plate.
2 eq. (2). g=D A AR i
tuting the value of g from eq. (3) in eq. (1), we get
d dD
im— (D A)=A— (4
dt ¢ ) dt

important to mention here

oo

rwvell suggested that the term A(%?-) should be considered as the current
= dielectric. This‘-cumiscunednwmwmdismw Eys

that current is not ﬂowi?g when applied voltage is

It is flowing only when applied voltage is changing.
-quently, the displacement current density J ; is given by

L .. (6)

b. Derive the Maxwell’s equation for static and time varying electric field.  (8)

Answer:

© IETE
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MAXWELL’S EQUATIONS

e have studied that when the electric and magnetic fields are changing very
in space with time, then the varying electric fields give magnetic field and
~versa. Maxwell in 1862 formulated the basic laws of electromagnetic in the form
our fundamental equations. These equations are known as Maxwell’s
omagnetic equations. These equations are based upon the well known laws such
sauss’s law of electrostatic, Gauss’s law of magnetostatic, Faraday’s law of
pmagnetic induction and Amere’s circuital law.

The integral forms of these equations are given below :

) Word statement : The total flux coming out of a closed surface is equal to
ot chagrge enclosed.

§E-ds=[£) or § DedS=gq ..
0

) Word statement : The surface integral of magnetic flux density over a closed
ce is zero.
§SB-dS=0 = 42)

"‘ ) Word statement : 7he net e.m.f. induced in a closed path is equal to the
ce integral of negative time rate of change of flux density over the surface bounded

_|'CE dl————-——-L— as \(3)
Word statement : The total mmf around any close path must be equal to the

ce integral of conduction and displacement densities over the surface bounded by
osed path. ;

cE
§B' dl =Hpo (J‘l‘So 5)

§H-d1=1+ D s
S ot

© IETE 24
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oD
or ﬁcﬂ d1=_|'SJ-ds+J’s 5 98 (.1=jsJ
oD
or cH-d]—- 7 (J+-§J'ds
The differential forms (point forms) of these €quations are given bel
div.E=FP or VeD= o}
€o
div.B= or VeB=0
curl E=— @ or V x E=— 212
ot or
OE = oD
curl B= J+egs — or VM =F +
u“( ® 5 ot

6.8 DEVIATION OF MAXWELL’S EQUATIONS IN DIFFERE
1. Maxwell’s first equation

3‘ D=p
According to Gauss’s law fE cdS=9
€o
If p be the charge density and d7 > the small volume considered, then
2=, par

1
fE-dS:;:IVpdV

or sojSE-ds=J'ypdV

D+dS=| pdrv C: g E=
$ I

or
According to divergence theorem,

j;n-ds=jy(6’-1))drf
From egs. (1) and (2), we get

J'p(e"-l))dV=J'V pdv

25
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From eq. (a), VeE=P or div.E=-2 “:43)
EO So

Maxwell’s second equation

T
V:B=0

According to Gauss’s law for magnet:sm

[,F-Byar=o

As the volume is arbitrary, the integral must be zero. Hence,

. ®)
div.B =0

Maxwell’s third equation

ngz—(a_:B.J
ot

According to Faraday’s law

f E-d:=_f&=_§_js B+ dS

dt ot
or §E'dl=-s%d8 ---(4)
Applying Stoke’s theorem
fE-d:=J'S(€’7'xE)-¢s (5
From eqs. (4) and (5), we get
I (VxE)» ds-—L as ...(6)

Eq. (6) is true for all surfaces, therefme,

VxE=—% 3ol
cur1E=—-?B-
or

26
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4. Maxwell’ fourth equation
VxH=J+ oD
ot
According to Ampere’s circuital law, the line integral of magnetic
over a closed path is equal to the total current enclosed by the path

PH-dI =1 =i +ig

where [ is the total current.

The total current is the sum of conduction current 7, and displas
ie., I =i, +iy.In terms of conduction current density J . and displ
density J 4, i. and i; can be expressed as

ip=[ J.-dS and i = [, Ja -dS

Substituting these values in eq. (7), we get

$H-a1=[ I, ~dS+ [ %ds
or §H-dl=ISJ-dS+IS %?‘ds

(-~ Normally, conduction current J _ is represented by J and J d
is electric flux density)

Eq. (9) can be expressed as
$H-a1 = (J+§£j-ds
According to Stoke’s law
$H-dl = (V= H)-dS
From egs. (10) and (11), we get
[, @xm)-ds=] [J+%—?)-ds

Taking derivative of both sides, we get

v 2 i
(VxH)—[J+ at)

e i e m - euwas mS A WZIAFFE § ' EMATI

Q.8. a. Define the terms “Virtual height”, “Critical frequency” and “Skip distance”.
(8)

Answer:
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The virwal height of an ionospheric layer is best understood with the aid of
Figure 8-14. This figure shows that as the wave is refracted, it is bent down gradually
rather than sharply. However, below the ionized layer, the incident and refracted rays
follow paths that are exactly the same as they would have been if reflection had taken
place from a surface located at a greater height, called the virtual height of this layer. If
the virtual height of a layer is known, it is then quite simple to calculate the angle of
incidence required for the wave to return to ground at a selected spot.
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FIGURE 8-14 Actual and virtual heights of an ionized layer.
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By definition, at vertical mdeuce
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radiated horizontally from a transmitter near the carth’s surface is quickly absorbed

Josses and hence only short distance communication is carried out by this horizontal
it or surface wave. Radio wave radiated at high angle may not be bent sufficiently at
ses 10 return to earth at all and hence escapes rather penetrates the layer. Thus radio
yw angle (i.e. angle between horizontal and high angle) just great enough to escape
g will enter the lower layer, suffer attenuation, be bent at the upper layer and retura

s between, rhe distance at which surface wave becomes negligible and the disiance
returns 10 earth from the ionospheric layer, there is a zone which is not covered
or ground nor sky). This is called skip zone or area and the distance across itisthe
& it is more usnal to consider skip distance from the transmitter o the point

'uved, as range of surface wave is always small.

stance may be defined as

distance from the transmitter at which a sky wave of given frequency is returned

sonosphere. It is represented by D as in the Fig. 11.26, or

istance from the transmitter o a point where sky wave of a given frequency is
o

g distance within which a sky wave of given frequency fails to be reflected back, or

distance for which sky wave propagation just takes place and no sky wave

ssible for points nearer than this distance.

frequency, the higher the skip distance and for a frequency less than critical
distance is zero. As the frequency of a wave exceeds the critical frequency, the
epends upon the angle of incidence at the ionosphere as shown in Fig. 11.26 in

gseat angle of incidence is shown.
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As the angle of incidence at the ionosphere
decreases, the distance from the u-ansnungr, at wl_nch B AR oH
the ray returns to ground first decreases. This behaviour REFLECTION DOSE NOT
continues until eventually an angle of incidence is [=——0QCCUR is. WAVES ESCAPE
reached at which the distance becomes minimum. The ;
minimum distance is called skip distance D (as with
wave no. 2). With further decrease in angle of inci-
dence, the wave penetrates the layer (as wave nos. 3 and
4) and does not return to earth. Infact, skip distance is the
distance skipped over by the sky wave.

This happens because
(1) As the angle of incidence i is large (say for TRANSMITTER L+ DEAD ZONE
wave no.1), the eqn. r?; o 8k |
81N SKIP DISTA
L =sini= 1 = —— ' |

f2 Fig. 11.26. Skip distance explanation
is satisfied with small electron density. This means |t is slightly less than unity and hence wave retums
after slight penetration into the layer.

As the angle of incidence is further decreased (As in wave no. 2) sin i decrease still more and so
also the u, as N becomes comparatively more. Hence the wave penetrates still more before it reaches to
earth,

Lastly when angle of incidence is small enough so that pu = sini can not be satisfied even by
maximum electron density of the layer, then the wave penetrates (as the wave nos. 3 and 4). |

The frequency which makes a given distance corresponds to the skip distance is the maximum |
usable frequency for those two points. If a receiyer is placed with the skip distance no signals would be
heard unless of course ground wave is strong enough as at A.

Fora given frequency of propagationf = f5., the skip distance can be calculated from Eqn. 11.90
(b) in which D is the skip distance. Thus,

T 2 2
s _ D g, off Das

f 2
Duip = 2k ‘\/[?‘i] i (11.75)

b. Assume the reflection takes place at a height of 400km a_nd 'ghat the maximum
density in the ionosphere corresponds to a 0.9 refractive index at 10 MHz.
What will be the range for which the MUF is 10 MHz? Assume flat earth. (8)

Answer:

© IETE 30



AEG3/AE114 ELECTROMAGNETICS & RADIATION SYSTEMS | DEC 2015

LIS

Example 11.12. Assume rhat reflection takes place ar a height of 400 km and that the maximum
density in the ionosphere corresponds io a 0.9 refractive index at 10 MHz. What will be the range (assume
flat earth) for which the MUF is 10 MHz. (AMIETE, Principles of Comm. Engg., Dec. 1983)

Or

In the ionospheric propagation, consider thar the reflection takes place at a height of 400 km
and that the maximum density in the ionosphere corresponds 1o a refractive index of 0.9 at a [frequency
of 10 MHz. Determine the ground range for which this frequency is the M| UF. Take the earth’s curvaiure

into consideration. (AMIETE, Principle of Communication Engineering, June 1984)
Solution. We know that
2
TR e v and Dasp = 2h L 3
o fe

Given, h = 400 km.; u = 0.9; frur = 10MHz: f = 10MHz and Dasp = Diange = 7
Putting these values in above eqn. we get,

09 = 1_21_"‘2@5 or0.31=1—-8-%-“—- 81 Nmax _ 1 _ 081 = 0.19
14
or | Muw= 0-1gl><ﬁ _0.19 x( ;{1) x10°) _ 0.19;; 107" _ 0023456 x 10'* = 23.456 x 10" m™*

Hence, fi=9 VNmax = 9 V23.456 x 100 — 9 x 4.8431 x 10° Hz ="43.588 x 10° Hz = 4.3588 10° Hz
Case I. When earth is flat.

2z & <
Dagp=2x400\[ [ /24 | 1 =800 _MQ | —a.=800 0=
fe 43588 x 10

— 800(2.2942 Y — 1 = 8005.2633 — I = 800 V4.2633 = 800 x 2.0647 = 1651.76 km Ans.

Case II. When the earth’s curvature is taken into account, then R = 6370km = mdthc
earth, A = height of reflecting layer from the carth.

In this case vide eqn. 11.99

992 ELECTROMAGNETIC FIELDS AND WAVES
2
g _ D? L = o DY g
2 2 =
fe D? D* fe
4| h + —8? 4| h + S—R*

D

1]

Now putting the values, we have

» 1651.76 % 1651.76 = 272831.1
=2 400 + 2 %6370 V4.2633 =| 800 + T 2.0647 | From Casel

= (800 + 10.707656 ) X 2.0647 = 80.707656 x 2.0647 = 1673.868 km = 1673.86 km Ans.
Q.9 a. State Babinet principal and explain how it gives rise to the concept of

complementary antenna? (8
Answer: :
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E PRINCIPLE AND COMPLEMENTARY ANTENNAS
» enquire whether there is any relation between wire antenna and aperture antenna, the
sswered better by first introducing Babinet’s principle of optics. The Babinet’s (Ba-bi-nay’s)
< that ““When the field behind a screen with an opening is added to the field of a
: _the sum is equal to the field when there is no screen’’.
= in optics does not consider polarization, which is so vital in antenna theory. It
S<orbine screens. An extension of Babinet’s principle, which induces polarization
conducting screens, was introduced by Booker. By introduction of Babinet’s
_problems of slot antennas can be reduced to situation involving complementary
$ich solutions have already been obtained.
sle may be illustrated by considering the following example with three cases.

Case 11 PLANE
COMPLEMENTARY
SCREEN

S

s
LSOURCE)

(a)

Case 111 Z
-
S
(SOURCE )

NO
SCREEN =
(c) (d)
Fig. 10.73. Babinet's principle.
t a source and two imaginary planes are arranged as shown in Fig. 10.73 in which the first plane i
_/pfane of screens S and the plane is a plane of observation 5> . Now three cases arise.
Case I. Leta perfectly absorbing screen be placed in plane ) , then in plane Sz ,, there is a region
of shadow as shown. Let the field behind this screen be same function of fi (xyz)ie. A

[Fi=h (xyz) | -.-(10:
Case II. Let the first screen S, be replaced by its complementary screen and the field behind &
be given by

| Fo=fp(xy2z) |
Case II1. Let there is no screen present, then the field is given by
[ =5 (xyz) |
Babinet’s pripciple then states that at the same point (x y z )
Fs (xyz) = F1 (xyz) + F2 (xyz)
or [ Fa = F\ + Fa J
The source may be a point as in the above example or a distribution of sources. The princip!
applies not only to points in the plane of observation §; as outlined in Fig. 10.73 but also to any po int-
behind screen S;. The principle is obvious enough for shadow (case D, it is also true when diffraction is
taken into accounts.
The correcincss of this valid statement (eqn. 10.275) can be verified easily for the simple cases
of vuiuplementary screens consisting of semi-infinite absorbing planes.
In eicclromagnetics at radio frequencies, thin perfectly absorbing screens are not available, even
approximately and one is concemed with conducting screens and vecior fields for which polarization plays
an important role. As such the simple statement of optics could not be expected to apply but an extension
of the principle, valid for conducting screens and polarized ficlds has been formulated by H.G. Booker.
‘As an illustration of Booker's extension of Babinet’s principle, let us consider the following three
cases shown in Fig. 10.74. The source (s) in all the three cases is a short dipole, theoretically infinitesimal
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T
+ e
Yool

( I ‘1 _\

DIPOLE

SHEET
(a) [Casel].

(b) [Case ll]. STRIP

°p

B

(c) [Case III].
Fig. 10.74. Extension of Babinet principle for slot of infinite metal sheet and the complementary metal strip.

Case L. The dipole is horizontal and original screen is an infinite, perfectly conducting.plane,
infinitesimally thin sheet with a vertical slot cut out. At a point P behind the screen the field is E;.

Case IL In this case the original screen is replaced by the complementary screen consisting of a
perfectly conducting, plane infinitesimally thin strip of the same dimensions as the slot in the original
screen. Besides, the dipole is source and is turned vertical so that? and ﬁ are interchanged. At the same
point P, behind the screen the field is Es .

Alteratively, the dipole source is turned horizontal and so also the strip.

Case I1I. In this case, no screen is placed and the field at point 2 isEs.

E
According to Babinet’s principle E, + E; = E; or E_l + % =1 ...(10.276)
4 3 3

The principle may also be applied to points in front of the screens. In case I, a large amount of
energy may be transmitted through the slot so that £, =~ E; . In such situation the complementary dipole
(case II) acts like a reflector and E; is very small. .

Using Booker’s extension, it can be shown that if a screen and its complement are immersed in a
medium with an intrinsic impedance 1) and have terminal impedances of Zs (screen) and Zc- (complemen-
tary) respectively, then the impedances are related by

2
ak=% (10277)

In order to obtain the impedance Zc of the complementary dipole in practical arrangement a gap )
must be introduced to represent the feed points.

b. Write short note on: _ (8)
(i) Marconi antenna & Hertz antenna (i) YAGI_UDA antenna.

Answer:
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10.42 ThERTZ AND MARCONI ANTENNAS
ese are the two fundamental types of simple antennas and all other t of s=
may be considered as derivatives of one or the other of these. -

The )2 or Hertz Antenna - is perhaps the most popular antenna in high frequency &
antenna complete in itself and capable of self oscillation, such as half or full wavelengil
known as a Heriz anienna.

= m 3J2 or Marconi Antenna. When an antenna utilizes the ground (earth) as part
circuit, it is 2 Marconi antenna. A quarter wave antenna (A/4) is an example of Marconi
the ground operates as the missing quarter wavelength. Most of the low and medium
are of Marc’oni types. The invention of the 3/4 earthed antenna in which the earth is one |
condenser, is considered to be the most important contributions of Marconi to the radio
Marconi produced lofty and eff icient antenna system from the short Hertzian radiator and

distance communication with low radio frequency.

NALi] f e

10 YAGI-UDA ANTENNA

¢\ Yagi-uda or simply Yagi (as generally but less correctly called) antennas or Yagis are the most
high gain antennas and are known after the names of Professor S. Uda and H. Yagi. The antenna was
invented and described in Japanese by the former some time around 1928 and afterwards it was described

by H. Yagiin English. Since the Yagi’s description was in English soitwas widely read and thus it became

customary to refer this array as Yagi antenna, although he gave full credit to professor Uda. Accordingly

a more appropriate name the Yagi-Uda antenna is adopted following the practice. ; |
It consists of a driven element, a reflector and one Or more directors i.e. Yagi-Uda antennaisan

array of a driven element (or active element where the power from the Ty is fed or which feeds received

power to the Rx ) and one Or More asitic elements (i.e.passive elements which are not connected directly

to the transmission line but clectrically coupled). The driven elements is a resonant half-wave dipole

usually of metallic rod at the frequency of operation. The parasitic elements of continuous metallic rods

are arranged parallel to thednvendmntandatﬂle same line of sight level. They are arranged collinearly

and close together as shown in Fig. 10.63 with one reflector and one director. The optical equivalent is

also shown.

T 5 \ M-MIRROR

_ S ~SOURCE
o b L- LENS
- 0.5 —
-——— T ———
- —_—
DIRECTION OF DIRECTION {}
UNDESIRED OF DESIRED ©)
) RADIA
RADIATION DR e e =
FEED £ ;
LINE

(a) . C () (c)
Fig. 10.63 (a) Yagi-Uda antenna, (b) Iis radiation pattert, (c) Its optical equivalent.
R = Reflector (Parasitic element) ; Dr = Driven element ; D = Driector (Parasitic element).
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The parasitic elements receive their excitation from the voltages induced in them by the current
ow in the driven element. The phase and currents flowing due to the induced voltage depend on the

sing between the elements and upon the reactance of the elements (i.e., length). The reactance may be
~ waried by dimensioning the length of the parasitic element. The spacing between driven and parasitic

‘elements that are usually used, in practice, are of the order of A/10 i.e. 0.10A to 0.15 A. The parasitic
" slement in front of driven, element is known as direcfor and its number may be more than one, wherecas
‘e clement in back of it is known as reflector. Generally both directors and reflectors are used in the same
amtenna. The reflector is 5% more and director is 5% less than the driven element which is A./2 at resonant
frequency. In practice, for 3-element array of Yagi antenna the following formulae gives lengths which

work satisfactorily.

500
Reflector length = £ (MH2) feet ...[10.246 (a)]
] 475
Driven element length = F(MHZ) feet ...[10.246 (b)]
: 455
Director lcngth = TovHD) feet ..[10.246 (¢)]

Eqn. 10.246 provides average length of Yagi antenna determined experimentally for elements of
length/diameter ratio of 200 to 400 and spacing from 0.10 A to 0.20 A. The parasitic elements can be
clamped on a metallic support rod because at the middle of each parasitic element, the voltage is minimum
i . there exists a voltage node. Even driven element may also be clamped if it is shunt feed. The clamping
over the support rod makes a rigid mechanical structure.

Further use of parasitic elements in conjunction with driven element causes the dipole impedance
o fall well below 73 Q. Tt may be as low as 25 Q and hence it becomes necessary to use either shunt feed
or folded dipole so that input impedance could be raised to a suitable value, to match the feed cable. While
ssing folded dipole the continuous rod may also be clamped to the support as shown in Fig. 10.64.

(= c C C c &
? =
)
= o 02 D3 4
R | 0.

FEED

LINE VR
R = Reflector

FD = Folded dipole
Dy Dz D3 D4y = Directors I

VR = Vertical rod to support herizontal rods
HR = Horizontal rod to support elements

C = clamps
Fig. 10.64. GEl s Yagi ant, with folded dipole. Fig. 10.65. A typical Television Yagi Antenna.

A typical 3 clements yagi antenna suitable for TV reception of moderate ficld strength is
shown in Fig. 10.65. Further addition of directors can be done at intervals of 0.15 & i.e. to increase the
gaineven upto 12db as is required in for fringe area reception. For example, 11 elements Yagi antenna
the lengths of Dy, Ds,Da,Ds, Ds,D7,Dx, Do are respectively 0.427 A, 0.40 2, 0.38 2, 0.36 2,
0.32%, 0.304 A, and 0.29 A.
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