AE61/AE109 CONTROL ENGINEERING | DEC 2015
Q.2 a. Explain servomechanism (Position control system). (8)
Answer:

Servomechanism (Position Control Ssxstem)

Position Control Servomechanism 1s a ifved-back control system in

which the controlled variable is a mechanical position or the time .

derivative of position i.e. —

dx d2x

dr g2 e.g. velocity and acceleration. A

system used to change the position as shown in Fig. 1.9. The position

' (6,.) of load is

sensed, which positions the slider arm Y of potentiometer.

The desired position _('E?d] is given at arm:X of potentiometer. The error
voltage proportional to position (8; — ©_3 is amplified by an amplifier.

. The amplifi
load to the

ed signal is fed to the servomotor which in turn brings the
desired position by use o t L’u ar b‘. stem.

Amplifier

Serva Mechanical
Motor link T
. ' L1 Gear
™™ System
N\
s bien ruws b sede e Ay iy

Figaedsd@ Position Feed-back Control S}'stem.

Actual movements of the slides on the machine is achieved through
servo drive. The amount of movement and the rate of movement are
controlled by the Programmable system depending upon the type of
system used i.e. closed loop or open loop feed-back system.

In open loop system, the progr ammable system sends output signal
for movement but doesnot check wheather actual movement is taking
place as shown in fig. 1.11 (a). Close loop system is characterised by
Presence of feedback. In this, the programmable system sends the
command of movement and the result is continuously monitored by
the system through various feedback devices as shown in Fig. 1.11
(b). There are generally two tvpes of feedback of the system Position
Feedback and veleocity feedback.

The examples discussed above are self-explanatory and are used in
Industrial Processes. More Sophisticated and complex models are available
in various Engineering and Non-Engineering Fields. In the light of
above discussion the Reader i= advised to identify, study and analyse
systems which occur in our over day lives e.g. operating a tollet
flush. eating., driving while Looking etc.

b. Write differential equation for mechanical translational system shown in

fig.2.

© IETE

Also draw analogous system for this using force-voltage analogy. (8)



AE61/AE109 CONTROL ENGINEERING | DEC 2015

% Lim
Sk

]?(t)
Fig.2

Mzr@“w =

B;Lx, = v=w (X “'Xl)

Answer:




AE61/AE109 CONTROL ENGINEERING | DEC 2015

E,i RN
B >L1 x}) ARl 1‘2) e B

dlz,
= _ﬁ_ )
' , g 2 X{-"'X?-J)

\
£

felrous, Uk sl o For ol

Ll@'b_)’ oy Lm;\) |

Q.3 a. Find transfer function C(s ; of the system shown in fig.3 by block diagram
s
reduction method. (8)

H3

R() G1 s(g G2 G3 > C(S)

H2 [
H1

Fig.3

Answer:
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b. Find transfer function of the system given in part (a) using Mason’s
gain formula. (8)

© IETE 4
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Answer:
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Q.4 a. Discuss effect of parameter variation in:
(i) Open loop system
(ii) Closed loop system (8)
Answer:

© IETE 5
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T PARAMETER VARIATION. IN CO‘\TTROL S&’STEL‘I _
/

The Parameter of a System wvary in different msrnners {e.g.
Envircnmental Condttlon age, etc.) L.et us study the effects in open
Loop~Contrel System and Close-Loop Control System.

() Effect of Parameter Variaiion in Open-loop Control Systerm: Consider

an Open loop Control System as shown in Fig. 4.1 :
St G{S)_ ; G /17—\

_____ e et

The Out‘put of the System is glven by
C(s) = G{s) R(s) : _..(4.1)

Suppose G{s) changes to [G(s) + AG(s}] due to parameter variation,
where AG(s) is very small. This corresponds to change in OCutput
from C(s) to [C(s) + AC(s)].

C(s) + A C(s) = [G{(s) + AG{(s)] E(s)
Referring eq. 4.1, the above equation reduced to
AC(s) = AG(S) - R(s) —(4.2)

The equation 4.2 gives the effect of change in Output due to parameter

variation.

d) Effect of parameter variation in Close-Loop Control System: Consider
a Close-Loop Control System as shown in Fig. 4.2, The overall
Transfer Function is given by

ched i gi; - 1+GC(;S}H(5) e it
R(s) B e - O
H{(s)
Fig. 4.2

Suppose G(s) changes to G(s5) + AG{s) due to parameter variation
where G(s) >> AG(s). The corresponding change in Output is

[G(s) + AG(s)] R(s)
1+[G(s)+ AG(s)] H(s)

C(s) + AC(s) =

The term .&G(s) H(s) is negllgﬂ)le an compared to 1+ G(s} H(s) So
neglecting this term, we have .

[G(s} + AG(s)]R(s) _ i -
I+ Ges) H({s) :
By use of eq. 4.3, we have
' '_ AG(s)R(s) : L . E
AC(s) = e
& =1 G(=) H(s) - e (4.4)
The eq. 4.4 gives the change in Output due to parameter vanatlon

Fromeq. 4.2 and eq. 4:4, it is observed thatin a’ “Close- -Loop-Control
System, the change in Output due to parameter variation in G(s) is
reduced by a factor of [1 + G(s) H{(s)] which does not exist in an Open-
Loop Control System due to absence of feed back..

= C(s) + A C(s) =

© IETE 6
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b. Explain effect of feedback on disturbances in forward path of control system

(8)
Answer: |
mrbdrtce in Forward Path: Let us assume that there is a

Disturbance Signal T (s) prese nt in the Forward Path of a Control

System-as shown 1n ]E:;g- 4.6.

= - Tals)
. ¥ :
&l
[ 225 ] em
H(s) T
' Fig. 4.6

) and Disturbance Signal Tys), when

' rati Qutput C{s ! : : s
: . The Iﬁth_O_f. utput ( 1ying Block N ition technique. The |

_--R(s) = 0, is obtained by app

mes:
System become T4

Fig. 4.7
System have Forward Gain G(s) = Gy(s)
and Feed-back Gain H'(s) = — G(s) H(s)
— G(s)

Ratio of C(s)/-T(s) is 1 — G(s) H'(s)/

Putting G(s) and H{(s)

C(s) _ - Go(s)
| T,6) 1+ G,(s)Gy(s)H (s)
GE ) = - Tq (s) Gy(s)

1+G,(5)Gy(s) H (s)
Assume that G,(s) Gy(s) H,(s) >> 1, hence we get
‘Td (s) :
= i S et S --{4.12)
Ci G, (s) H(s) ( )

Therefore it is seen that effect of disturbance on the Output can be
made small by selecting G,(s) as large as possible. Thus effect of
disturbance can be decreased by Feed-back. '

Q.5 a. Determine error constants & corresponding steady state error for a system
with

G(s) = 100

&
s(L+2s)(L+0.01s)

H(s)=1 (8)

© IETE 7



AE61/AE109 CONTROL ENGINEERING | DEC 2015

Answer:
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b. A unity feedback system is shown in Fig.4 (8)
R(s) K
s(s+1) (5+7) > CGs)
Fig.4

(i) Determine range of K for stable system
(if) Value of K when roots of system lie on jw axis
(iii) Frequency of sustained oscillations

© IETE 8
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Answer: ‘
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Q.6 Draw root locus as k varied from 0 to o for unity feedback system has an

open-loop transfer function G(s)H(s) = |2< (16)
S(s+3)(s° +25+2)

Answer:
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0, gt D8 g 1,2, 3= 45, 135°, 225°, 315°
e i

No

ol

©j11{K=816)

K=0 - A i
1§07
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(K=291) Centroid .
_j07
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point & .'
Nk ~j1.1{K=8.16)
pl=~7.11.6"
f=cos 05 :
0 represents a closed-1o0p pole ‘L
Q.7 a. For a unity feedback system G(s) = 32(5328;2340) @®)

Draw the Bode plot. Find out Wy, Wy, GM and PM. Comment on stability.

Answer:

© IETE 12
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| R Tl 4

800(s+2)
s2 (s +10)(s +40)

/ Draw the Bode Plot. Find out o, mpc.GM and PM. Comment on
stabillity.

“For a unity feed back system G(s) =

BOO(s + 2)

ion: Step 1: = d H(s) = 1
Solution ep 1: G(s) 06 d0) and H(s)
: s
- = - SOQ(S = 2) 806(2)(5 +1
G(s) His) = > = :
SraicE ) -32(10)[i+1)(40)(-5-+1)
_ 10 40

Replace s by jo

(4] =

Y Y ) Jo
(jw) (1+ 10](14— 40)

Step 2: The basic factors are:—
) K=4

GUm)HGm) =

(i) Two poles at origin i.e. —
. (Jo)
jo . el . S
(itL) +—2-—- with T, = 2 mcl = f .__2
iz 1 . 1 _ 1=
(iv) : e with T, = i ., = E-: 10
= : g
; - 10 '
1 1 : 1
. — : = ——— A e 4(} .
) e with Ty = —= Oy = %0,
40 : e

. Step 3: Magnitude Plot Analysis: () As K = 4 so we have log 7. .
magnitude is 20 log 4 = 12 dB, which is a straight line parallel te

x-axis.

1 ' ' -
(i7) The two poles at origin i.e. (o )2 will contribute a straight line
' of slope of — 40 dB/decade passing through intersection point of ® = 1 :

1
and 0 dB. The resultant of K =4 and Go)? is a straight hine with slope

of — 40 dB/decade passing through intersection point of @ =1 and 14 dB
till first corner frequency comes..

© IETE 13
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: o .
(iti) Due to basic factor 1 + iz‘- corner frequency is 'mcl = 2 and this

© factor will contribute + 20 dB/decade at @ = o, . Hence, resultant
slope from 2 rad/sec. onwards become — 40 + 2[)1-— =20 rad/sec. till
- next corner frequency occurs.

- 60 dB/dec.

- &
= =
-
=
-
1 L
=
)
- iy
g 1=
3
=
3 &
]
=X
= "
%
=1
. 1.
8 v
5
1 e
B 4
'] i M L)
il s T -t d
93‘:‘333823839832882
+ o+ i i i — Lan S - - - - - ] 2]
| I 1 | I T | I TR | [ |
Magnitude (dB) Phase Angle (deg'ree)
Fig. 9.49
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(iv) The next corner frequency 1s @, =10 which 1s due to

factor will contribute - 20 dB/decade individually and hence resultant
slope from 10 rad/sec. cnwards becomes - 20 - 20=-40 rad/sec. till next
corner frequenjcy comes.

| (v) Due to factor we have corner frequency 0, = = 40, which

will ccntrlbute slope of ~ 20 dB/decade at » = @ . hence, the resultant
slope becomes —40 - 20 = - 60 rad/sec. till mf‘3 inity. The magnitude
plot is shown in fig. 9.49.

Step 4: Phase Angle Plot: The resultant phase angle equation
can be written from the individual phase angles associated with
different basic factors is

o @ _
=-180° + tan™' —-tan"! — - tan~! —
Or 2 2 10 10

The Resultant Phase angles with different increasing frequéncies
are
" Frequency (0) 02 2 10 20 50 100 *
Phase angle (¢5) —175.7 -149.16° -16[} £ -185.7 —-222° -2435 -270°
The phase angle curve is shown in Fig. 9.49. '

From the Bode Plot we have o, = 2 rad/sec, W, = 18 radfsec GM
= + 24 dB and PM = 31°. Since %M and GM both are posmtwe S0
system is STABLE.

20

s(s+4)(s—2)
(8)

b. Discuss the stability of system using nyquist plot for G(s)H(s) =

Answer:

© IETE 15
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20
. GUo)H(; =
™ HGo)HOoM me2+(4)2_Jm2 +(2)?

+

¢ =— 90° — tan"' 2 —180° + tan~?

and
} ' . :—270-—tan_1%+tan*1—
,4 At o =0, |Go)H(o)] =o, ¢ = —-270°
o = o, |[GUe)dje)| =0, ¢ =-270°
: 4 Jjo
B
& 2,\
Fa
&
. A
3 o v
= e =0 "";:-4 2
i)
Fig. 9.50 »
b4

The plot for the section AB is shown in fig. 9.51 as A'B

S : - F:g 9.51
(u) ‘Section. BCD: For this section, we have s = Re/®

where R approaches to infinity
0 varies from + 90° to — 90° through 0°.
20
H =
GOH) jla(Reﬂ’ Y1) (ReP —2)

—_ 09—133

20
= R, 5% (As R — )

16

© IETE
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Therefore, the BCD maps into a point B'C'Dr as the radius approches

to Zero. ) : - : :
(iii) Section DE: For this section, s = —jo. So the mapping ©

section DE is mirror image of section AB. -
(iv) Section EFA: For section EFA, we have s = =&

where € approaches to zero
6 wvaries from —90° to + 90° through O

20 = 20 (As £ — 0)
G)H(s) = ceP(ee® + aXee’ — 2) ze’® (4)(~2)
—j@ + 1BO%)

= oo £ ;
So mapping of this part is E'F A’ with semicircle of radius approach
to infinity which varies from — 90° to — 270" through — 180° as shown

in fig. 9.52.

—
——
-

- _ - Fig. 9.52 : R
Step 4: The complefe Nygquist plot is sh{)ka.rn in fig. 952 .
Step 6: From Nygquist Plot it is c_;bse_:::vgd._th_.a_lt_:__cx}gu::_al E)mnt
(—1, 0) is encircle once in clockwise dir’n.e'_ctl.on_.'-'l‘h{_a;efore, N = =1.
From the given transfer function G(s)H{(s) 1t 1s _.g_l_ga_x that one pole
iie ‘on RHS of S-plane. Therefore P = 1. -~ = - = _
e know that N2 P.SZ . ol e o

) =0 gt
' Since Z # 0, :so system is UNSTABLE.

Q.8 A system has open loop transfer function G(s) = ﬁ It is desired to
s(2s +
have the phase margin as 40". Design a lead compensator to meet desired
specifications using Bode plot. (16)
Answer:

‘A system bhas open loop transfer function

4
)G(s) o s(2s+1)

a lead compensator to meet desire specification.
Solution: Step 1: As the value of K = 4 . we have

. It is desired to have the phase margin as 40°. Design

Gls) = s{2s + 1)

© IETE 17
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4
" Step 2: Sketch the Bode Plot of G(w) = m which is shown

with dotted line in Fig. 10.8. The uncompensated system has a phase
margin of 20° and gain cross over frequency ofw, =14 rad/sec.

Step 3: Additional lead required is given as
O = s — ¢p + €

we have bg = 40°, ¢p = 20° and e = 5° (Assume)

s, ¢, =40° — 20 + 5° = 25°

Step 4: o Parameter of lead compensator is;

o = 1osindy, _ 1-sin25°
1+sing,  1+sin25°
= 0.406
Stép 5: The uncompensated system has gé_in of —20 log 71:
o
1 o)
=-10 log— = -10 1 -
%8 g gl L0.406J

=—-4dB
Refer Fig.10.8 and find frequency corresponding to — 4 dB. This is
®! = 1.75 rad/sec. The difference in PM of G(jo) at 1.4 and 1.75 rad/
sec. is less than 5°. So go to next step.
Step 6: Set mé =, - ®,=175rad/sec. Now, we obtain the T
parameter of lead compensator ; :

1 1 ' '
= o, = o= =112 s
: il . TJE T : : L
Step 7: Two corner frequencies are
0y = = 112 or
Sediieons |
- fﬂcg = ‘;i_.; = 2.8 -Qr

. The lead coniﬁensai:or 18

1+0.90s
GC(S} " 1+0.36s

and compensated open-loop transfer function 1is
4(1+0.90s)
G = :
Gs) C(s) s(25+1)(1+0.3653)

Sketch the bode plot of compensated transfer function which is shown
in Fig. 10.8. From the diagram we observe that phase margin is increased
from 20° to 41°. Then the compensator satisfies the desirability.

© IETE
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Q.9

Answer:
"'-"_ N N

10

Frequency (rad/sec)

Fig. 10.8

a. Explain direct method of Liapunov for linear system.

In case of linear systems, the direct m
analysis. It must be emphasized here
sults are obtained by the use of the
systems, However, the study of linear sy,

it extenfls our thinking to nonlinear systems.

.

© IETE

stems using the direct.

(8)

ethod of Liapunov provides a simple approach to stability
that compared to the results presented in Chgpter ‘6, no
direct method for the stability analysis of linear

is quite useful because

19
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Consider a linear autonomous system described by the state equation :
x =Ax ' -..(13.9)
~ The linear system is asymptotically stable in-the-large at the origin if and only if given

any symmetric, positive definite mairix Q (see Appendix II), there exists a symmetric positive
definite matrix P which is the unique solution

AP+PA=-GQ | - .(13.10)
Proof
To prove the sufficiency of the reult of above theorem, let us assume that a symmetric positive
definite matrix P exists which is theunique solution of eqn. (.13' 11). Consider the scalar function
(Appendix II),
V{I) = XTPX
Note that Vix)>0forx =0
and : V©0)=0
The time derivative of V(x) is
v = xPx + x"Px
Using eqns. (13.9) and (13.10) we get
vx) = x’ATPx + xTPAx
= xT(ATP + PA)x
=-x7Qx
Since Q is positive deﬁniige, V(x) is negative definite. Norm of x may be defined as
(Appendix II)

ixl = GTPx)
Then - Vix) = || x |12
V@) swas || X[ — e
The system is therefore asymptotically stable in-the large at the nngm (refer Theorem 3).

In order to show that the result is also necessary, suppose that the system is
asymptotically stable and P is negative definite, consider the scalar function

Vix) = XTPX \...(13.11)
Therefore | Vix) = - [xTPx + x"Px]
= xTQx
>0

There is contradiction since V(x) given by eqn. (13.11) satlsﬁes mstablhty theorem
(refer Theorem 4)

Thus the conditions for the positive definiteness of P are necessary and sufficient for
asymptotic stability of the system of eqn. (13.9).

b. Obtain state space model of electric network shown in Fig.5. (8)

© IETE 20
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Fig.5
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