b. Using source transformation technique find the equivalent voltage source between the points A and B for the network as shown in Fig.2

Answer:

(b) converting Voltage Sources into Current Sources the equevalent - metroork is as shown below

(4)

(7)

c. Determine the current 'i' using mesh analysis for the network as shown in Fig.3

Answer:

(c)
4n
$$\uparrow i$$

 $\downarrow 1$
 $\uparrow 5A$
 $\downarrow 2n$
 i_{1}
 i_{2}
 $\downarrow 2i$
 i_{1}
 i_{2}
 $\downarrow 2i$
 $2n$
 $2n$

Q.3 a. In a network shown in Fig.4, $v_1(t) = e^{-t}$ for $t \ge 0$ and is zero for all t<0. If the capacitor is initially uncharged, determine the value of $\frac{d^2v_2}{dt^2}$ at $t = 0^+$ (10)

Answer:

b. A series RL circuit is driven by a sinusoidal voltage source $V \sin \omega t$. Find the expression for current by solving differential equation. (6)

Answer:

(b)

$$k R$$
 The differential equation
 $V \sin \omega t$ g_{\perp} by applying KVL
 $Ldi + Ri = V \sin \omega t - 1Mark$
The Complementary franction is obtained by
Considering Zero on the right-hand side of-
the differential equation
 $Ldi + Ri = 0$
 $S + R/L = 0$
 $S = -R/L$
 $\therefore i_{C} = K \in R/L t$
The particular integral depends on source
since the given if is sime, ip is also
since wave
 $i_{p} = \frac{V}{\sqrt{R^{2}+W^{2}L^{2}}} Sin(Wt - ton Wt)$ -.

$$i = i_{c} + i_{p} = \kappa e^{R/Lt} + \frac{V}{\sqrt{R^{2} + \omega^{2}L^{2}}} \sin \left(\omega t - tan^{2} \frac{\omega L}{R}\right)$$
Sub $t = 0$, $i = 0$, Substituting in the
above equation, we get-

$$\frac{V}{\sqrt{R^{2} + \omega^{2}L^{2}}} \sin \left(0 - tan^{2} \frac{\omega L}{R}\right) + \kappa = 0$$

$$\vdots \quad \kappa = \frac{V}{\sqrt{R^{2} + \omega^{2}L^{2}}} \sin \left(tan^{2} \frac{\omega L}{R}\right) \quad \text{IMask}$$

Q.4 a. Obtain the Laplace transform of the function $e^{-at} \sin \omega t$ from the definition of Laplace transform. (4)

Answer:
(94(a))

$$X(5) = \int_{0}^{\infty} z(t) \bar{e}^{st} dt = \int_{0}^{\infty} \bar{e}^{at} g_{inwt} \bar{e}^{st} dt \cdots Maak$$

$$= \int_{0}^{\infty} \frac{\dot{e}^{\omega t} - e^{j\omega t}}{2j} \bar{e}^{(a+s)t} dt \cdots Maak$$

$$= \frac{1}{2j} \int_{0}^{\infty} \bar{e}^{(a+s-j\omega)t} - \bar{e}^{(a+s+j\omega)t} dt$$

$$= \frac{1}{2j} \left[\frac{1}{s+a-j\omega} - \frac{1}{s+a+j\omega} \right]$$

$$= \frac{1}{2j} \left[\frac{1}{s+a-j\omega} - \frac{1}{s+a+j\omega} \right]$$

$$= \frac{1}{2j} \left[\frac{1}{s+a+j\omega} - \frac{g-a+j\omega}{s+a+j\omega} \right]$$

$$= \frac{1}{2j} \left[\frac{1}{(s+a)^{2} + \omega^{2}} - \frac{1}{(s+a)^{2} + \omega^{2}} \right]$$

b. Using partial fraction expansion find the inverse Laplace transform of

$$F(s) = \frac{s}{(s+1)^2 (s+3)}$$
 (6)

Answer:

(b)

$$F(S) = \frac{A}{(S+1)^2} + \frac{B}{(S+1)} + \frac{C}{(S+3)} \quad \text{IMask}$$

$$A = (S+1)^2 \cdot F(S) = (S+1)^2 \cdot \frac{S}{(S+1)^2(S+3)} \Big|_{S=-1}^{S=-1} = \frac{-1}{-1+3} = -\frac{1}{a^2} - 1 \text{ Mask}$$

$$B = \left(\frac{d}{ds} \cdot (S+1)^2 F(S)\right) = \frac{d}{ds} \cdot \left[\frac{S}{S+3}\right] = \frac{3}{(S+3)^2} \Big|_{S=-1}^{S=-1} = \frac{-3}{a^2} + \frac{-1}{a^2} - 1 \text{ Mask}$$

$$C = (S+3) \cdot F(S) = \left(\frac{S+3}{a} \cdot \frac{S}{(S+1)^2(S+3)}\right|_{S=-3} = \frac{-3}{(S+1)^2} + \frac{-3}{(S+1)^2} = -\frac{-3}{4} + \frac{-3}{4} + \frac{-3}{4}$$

$$f(t) = -\frac{1}{2} + \frac{34}{(S+1)} - \frac{14}{(S+3)}$$

taking inverse daplace transform
$$f(t) = -\frac{1}{2}te^{t} + \frac{3}{4}e^{t} - \frac{3}{4}e^{3t}$$

c. For the waveform shown in Fig.5, find the Laplace transform of the signal. (6)

© iete

We get

$$\frac{d^{2}\omega(t)}{dt} = \delta(t) - 3\delta(t-2) + 2\delta(t-3)$$
Taking Laplace transform on botherides

$$S^{2}V(s) = 1 - 3\bar{e}^{2s} + 2\bar{e}^{3s}$$

$$V(s) = \frac{1 - 3\bar{e}^{2s} + 2\bar{e}^{3s}}{5^{2}} + \frac{1 - 3\bar{e}^{2s} + 2\bar$$

Q.5 a. For the LC network shown in Fig.6, find the transform impedance Z(s). (7)

Answer: $(\heartsuit, \heartsuit, \heartsuit, \heartsuit)$

b. In the network shown in Fig.7, find the voltage across $R_L=10\Omega$ using Thevinin's theorem. Answer:

© iete

6

(9)

a. Explain the voltage and admittance transfer functions for a two port network.(4) **Q.6 Answer:** 0

6 a) Voltage transfer function
The voltage transfer function is the
value of the Laplace transform of the Voltage
at one post to the Laplace transform of the Voltage
at other post, neglecting the Emitial Conditions.
G12(S) =
$$\frac{V_1(S)}{V_2(S)}$$
, inverse Voltage transfer function
G21(S) = $\frac{V_2(S)}{V_1(S)}$
Transfer adomittance function
It is the value of deplace transform
of the Current at one part to the deplace
transform of the Voltage al-other port, neglecting
the initial Conditions.
 $Y_{12}(S) = \frac{T_1(S)}{V_2(S)} + Y_{21}(S) = \frac{T_2(S)}{V_1(S)}$

© IETE

b. Determine the voltage transfer function and driving point impedance of the network shown in Fig.8 (5) \vee_1 Fig.8 Answer: 6(b) LS KVW, we can write By $\frac{1}{Sc} I_{1}(S) + (SL+R) I_{1}(S) - V_{1}(S) = 0$ $v_1(s) = \left[R + SL + \frac{1}{Sc} \right] I_1(s)$ $V_2(s) = \left(R + SL \right) J_2(s)$ 2 Marks $G_{21}^{(G)} = \frac{V_2(G)}{V_1(G)} = \frac{R+SL}{R+SL+\frac{1}{CP}}$ Mark Maek $Z_{1}(S) = \frac{V_{1}(S)}{I_{1}(S)} = R + SL + \frac{1}{SC}$

c. Find the range of k in F(s) so that $F(s) = 2s^4 + s^3 + ks^2 + s + 2$ is Hurwitz. (7)

$$h(G) = 2S^{4} + KS^{2} + 2$$

 $N(S) = S^{3} + S$

Mask

$$S^{3}+s) 2S^{4}+\kappa S^{2}+2(2S)$$

$$\frac{2S^{4}+2S^{2}}{2S^{4}+2S^{2}}$$

$$(k-2)S^{2}+2) S^{3}+S(\frac{S}{k-2})$$

$$\frac{S^{3}+\frac{2S}{k-2}}{S^{3}+\frac{2S}{k-2}}$$

$$(\frac{K-4}{k-2})S)(k-2)S^{2}+2(\frac{(K-2)^{2}}{(K-4)}S)$$

$$(\frac{K-4}{k-2})S^{2}$$

$$\frac{(K-4)}{(K-2)}S(\frac{K-4}{k-2}\times\frac{S}{2})$$

$$(\frac{K-4}{(K-2)}S(\frac{K-4}{k-2}\times\frac{S}{2})$$

$$(\frac{K-4}{(K-2)}S(\frac{K-4}{k-2}\times\frac{S}{2})$$

For Huawitz, all the quotients of-Continued fraction expansion must be Positive: K-2>2 or K>2 K-4>0 pr K>4 K must be greater than 4

Q.7 a. Express the h-parameters in terms of Z-parameters. Answer:

0.70) Network equations interms of Z-parameters given by $V_{1} = Z_{11}T_{1} + Z_{12}T_{2} + (1) \quad j \text{ 1Mark}$ $V_{2} = Z_{21}T_{1} + Z_{22}T_{2} - (2) \quad j \text{ 1Mark}$ N/w eqns interms of h-parameters given by $V_{1} = h_{11}T_{1} + h_{12}V_{2} - (3) \quad j \text{ 1Mark}$ $T_{2} = h_{21}T_{1} + h_{22}V_{2} - (4) \quad j \text{ 1Mark}$ To Compare equations (1) $\mathcal{L}(2)$ with (3) $\mathcal{L}(4)$ reassange eqns. (1) $\mathcal{L}(2)$ laterons of $V_{1}\mathcal{R}T_{2}$ (7)

_

$$from(2) \qquad I_{\mathcal{Q}} = \frac{V_{\mathcal{Q}}}{Z_{2\mathcal{Q}}} - \frac{Z_{21}F_{1}}{Z_{2\mathcal{Q}}} - (5) \qquad \text{IMask}$$
Substituting (5) in (1)

$$V_{1} = Z_{11}I_{1} + Z_{12}\left[\frac{V_{2}}{Z_{22}} - \frac{Z_{21}}{Z_{22}}I_{1}\right] \left[V_{1} = \left[\frac{Z_{11} - \frac{Z_{12}Z_{21}}{Z_{22}}\right]I_{1} + \frac{Z_{1\mathcal{Q}}}{Z_{22}}V_{\mathcal{Q}} - (6)\right]^{2} \text{ masks}$$
Comparing (4) and (5)

$$h_{21} = -\frac{Z_{21}}{Z_{2\mathcal{Q}}} \quad \& \quad h_{22} = \frac{1}{Z_{2\mathcal{Q}}} \qquad \text{IMask}$$
Comparing (3) and (6)

$$h_{11} = Z_{11} - \frac{J_{12}Z_{21}}{Z_{22}} = \frac{AZ_{1}}{Z_{22}}, \text{ where } AZ = Z_{11}Z_{22}^{-Z_{12}Z_{21}} \left[Mask\right]$$

$$h_{1\mathcal{Q}} = \frac{Z_{12}}{Z_{22}}$$

b. For the network shown in Fig.9, find the transmission parameters.

Answer:

(b)\$12 131, The network equations Enterms of transmission The num Parameters are $V_1 = AV_2 - BI_2$, where $A = \frac{V_1}{V_2} | I_2 = 0$, $B = \frac{V_1}{I_2} | V_2 = 0$ $I_1 = CV_2 - DI_2$, $C = \frac{I_1}{V_2} | I_2 = 0$, $D = \frac{I_1}{I_2} | V_2 = 0$ $I = \frac{I_1}{V_2} | I_2 = 0$, $D = \frac{I_1}{I_2} | V_2 = 0$

Applying KCL at node (1) and (2), we get

$$I_1 = \frac{V_1}{1} + \frac{V_1 - V_2}{2}$$
 | Mark
 $I_1 = 1.5 V_1 - 0.5 V_2 - (1)$
 $I_2 = 3I_1 + \frac{V_2}{2} + \frac{V_2 - V_1}{2}$ | Meak
 $I_2 = 3I_1 + V_2 - 0.5 I_1 - (2)$
 $I_2 = 3[1 + V_2 - 0.5 V_1 - (2)$
 $I_2 = 3[1.5 V_1 - 0.5 V_2] + V_2 - 05V_1$
 $I_2 = 4V_1 + 0.5 V_2 \text{ or } V_1 = -\frac{0.5}{4}V_2 + \frac{1}{4}I_2 = (3) \int_{3}^{10} V_1^{2}$
 $\therefore A = -\frac{1}{8} & B = -\frac{1}{4}J_2$
 $Substituting equation (3) in (1), we get$
 $I_1 = -\frac{11}{16}V_2 + \frac{3}{8}I_2$
 $C = -\frac{11}{16}T$ and $D = -\frac{3}{8}$ | Naik

Q.8 a. Represent the admittance function $Y(s) = \frac{4(s+1)(s+3)}{s(s+2)}$ in Foster form and hence synthesize the Network. (10)

Answer:

$$Y(s) = \frac{4s^{2} + 16s + 12}{s^{2} + 2s} = 4 + \frac{8s + 12}{s^{2} + 2s} - - 2 Monks$$

$$S^{2} + 2s$$

$$\frac{4s^{2} + 16s + 12}{(s^{2} + 2s)}$$

$$\frac{4s^{2} + 8s}{8s + 12}$$

© iete

$$Y(s) = 4 + \frac{6}{s} + \frac{2}{s+2}$$

$$Y(s) = Y_{1} + Y_{2} + Y_{3}$$

$$Y_{1} = 4 \tau \cdot \cdot \cdot R_{1} = \frac{1}{4} \cdot \Lambda - \frac{1}{5}$$

$$Y_{2} = \frac{6}{s} \quad \tau_{2} = \frac{5}{6} = LS \quad , \quad L_{1} = \frac{1}{6} H$$

$$Y_{3} = \frac{2}{s+2} = \frac{1}{\frac{s}{s+1}} = \frac{1}{\frac{1}{z+z^{1}}}$$

$$z^{1} = \frac{3}{2} = L_{2}S \quad s \quad L_{2} = \frac{1}{2} H$$

$$z^{1} = 1 \cdot \Lambda - \frac{1}{5} + \frac{1}{5} + \frac{1}{2} + \frac{1}{2}$$

b. Indicate the following functions are either RC, RL or LC impedance functions with appropriate reasons. (6)

(i)
$$Z(s) = \frac{s^3 + 2s}{s^4 + 4s^2 + 3}$$
 (ii) $Z(s) = \frac{s^2 + 4s + 3}{s^2 + 6s + 8}$

Answer:

Ø6)

(i)
$$\frac{S(S^2+2)}{(S^2+1)(S^2+3)} = \frac{S^3+2S}{S^4+4S^2+3}$$

represents LC driving point impedance 3Marks
because is poles and alternative (i) highert-and
lowert- power in both remeetor and denominated
differ by one
(ii) $\frac{S(+1)(S+3)}{(S+2)(S+4)}$
Poles & zeros lie on negative real axis
and alternative and Xingularity nearest to
the origins is a zero & nearest to S = to
is a pole there fore it is a RL impedance
function

13

b. Synthesize the network function $Z_{21}(s) = \frac{2}{s^3 + 2s^2 + 4s + 2}$ into an LC network terminated with 10. (8) Answer: 9 b) The mumerator is Constant - to considered as even, to divide by the odd partof- the demonievator polynomial as $Z_{21}(s) = \frac{P(s)}{O(s)} = \frac{P(s)}{M(s) + N(s)} = \frac{P(s)/N(s)}{1 + \frac{M(s)}{N(s)}}$ $= \frac{Z_{21}}{1 + Z_{22}}$ $Z_{21} = \frac{P(s)}{N(s)} = \frac{2}{s^3 + 4s}$ $Z_{22} = \frac{M(s)}{N(s)} = \frac{3s^2 + 2s}{s^3 + 4s}$ The continued -fraction expansion of Z_{22}

The continued jutices
$$332^{2}+2$$
 ($\frac{3}{5}$
 $33^{2}+45$) $33^{2}+2$ ($\frac{3}{5}$
 $35^{2}+12$
 -10) $5^{3}+4$ ($-5^{3}/10$
 5^{3}
 $32^{2}+12$
 -10) $5^{3}+4$ ($-5^{3}/10$
 5^{3}
 $32^{2}+12$
 -10) $5^{3}+4$ ($-5^{3}/10$
 5^{3}
 2 Marks
Consider $\gamma_{22} = \frac{1}{722} = \frac{53+45}{35^{2}+2}$