Q.2 a. Use Cauchy_Riemann equations to find v where $u = 3x^2y - y^3$. (8) Answer: Q.2 (2) Griven $u = 3x^2y - y^3 - 0$ Differentially ipactially when $v = 3x^2 - 0$ Differentially ipactially when v = x + x + x + y respectively $\frac{\partial u}{\partial x} = 6xy = \phi_1(x, y) - 0$ $\frac{\partial u}{\partial x} = 3x^2 - 3y^2 = f_2(x, y) - 0$ Rut x = z, y = 0 in (ii) x(iii), we get $g_1(x, 0) = 0$, $g_2(z, 0) = 3z^2$ Hence by Milne-Thompson method, $f(z) = \int E \phi_1(z, 0) - i \phi_2(z, 0) dz + ci$ (ymuly) $u + iv = -iz^3 + ic = -i(x + iy)^3 + ic$ $= -i(x^3 + 3ix^2y - 3xy^2 - iy^3) + ic$ (muly) $v = 3xy^2 - x^3 + c$ (Ans) (3)

b. Show that the transformation $W = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 - 4x = 0$ onto the straight line 4u + 3 = 0, and explain why the curve obtained is not a circle. (8)

Answer:

(b) The Given transformulion is

$$w = \frac{2Z+3}{Z-4} \qquad \dots (i)$$
2nverse transformulion of (i) is

$$z = \frac{4w+3}{w-2} \qquad \dots (ii)$$
This

$$z = \frac{4w+3}{w-2} \qquad \dots (iii)$$
Given equation of circle $x^2+y^2 - 4x = 0$ may be
written as $zz - 2(z+z) = 0$ many be

1

Rut the values of
$$2RZ$$
 from (i) $2(ii)$

$$\frac{4w+3}{w-2} \cdot \frac{4w+3}{w-2} - 2(\frac{4w+3}{w-2}, \frac{4w+3}{w-2}) = 0$$
or $16ww + 12w + 12w - 9 - 2(4ww - 8w + 3w - 6 + 4ww - 8w + 3w - 6) = 0$ [Smarks]
or $22(w+w) + 33 = 0$
 $442k + 33 = 0$
or $42k + 3$
which is the ep of the straight line
Rooplanution: The given transformation transform
the given circle into a straight line, this is
possible under a bilinear transformation since we
regard a straight line as a particular care of 18 minky
a circle.
 $f(z) = \frac{x^2(1+i)-y^2(1-i)}{y^2(1-i)}$

Q.3 a. Prove that the function f(z) = u + iv where $\int (z) - \frac{1}{x^2 + y^2} = \frac{1}{x^2 + y^2}$ ($z \neq 0$), f(0) = 0 is continuous and that Cauchy_Riemann equations are satisfied at the origin, yet f'(z) does not exist there. (8)

Answer:

AE56/AC56/AT56/AE107/AC107/AT107 ENGINEERING MATHEMATICS - II

Q.3 @ Given 2+iv = 23(1+i)-3(1-i) $\frac{2}{x^{2}+y^{2}} \quad and \quad y = x^{2}+y^{2}$ us v are rational a d. finite for all values of 2 = 0, 00 us v are continuous at all point those points for which z =0. Hence f(z) is continued. where 12 Marts At the origins 22=0, v=0 r [2] Mu Therefore 22 & v both mons at the origin. Consequently f(z) is continuous the origin. we have $u_{\chi} = \lambda_{H_0} \frac{u(\chi, 0) - u(0, 0)}{\chi} = 1$ similarly 24y=-1, 2=1, 2y=1 14 marty J ux = vy & uy = -vx Mence C-R equations satisfied at 2=0 Again f'(0) = xim f(z)-f(0) = xim [x3-y3+i(x2+y2)] z = z+0 [(x2+y2)(x+in)] let z+o along y=x $f'(0) = \alpha im (n^{2}-2^{3}) + i(n^{2}+2^{3}) = \frac{1}{2}(1-2)$ $n + o (n^{2}+2^{3})(n+in) = \frac{1}{2}(1-2)$ Further let 270 along 7=0 then f'(0)=1+i Thus floor is not unique Hence f(z) does not exist at the origin b. Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in a Laurent's series valid for the regions (i) |z| < 1 (ii) 1 < |z| < 3(8) Answer:

3

DEC 2015

find the values of
$$F(i)$$
, $F'(-i)$ and $F''(-1)$. (8)

Answer:

4

Q. 4 @ Take $f(z) = 6z^2 + 5z + z$ which is analytic within and on the ellipse C. Also $\xi = i, -i, -1$ all lie inside C. By cauchy's integral formule, we have $F(\xi) = \frac{1}{2\pi i} \int \frac{f(z) dz}{z - \xi}$ [2 works] $= \int \frac{f(z) dz}{z - \xi} = 2\pi i (6\xi^2 + 5\xi + 2) [4 months]$ $= \int \frac{6z^2 + 5z + 2}{z - \xi} = 2\pi i (6\xi^2 + 5\xi + 2) [4 months]$ $= F(\xi) = 2\pi i (6\xi^2 + 5\xi + 2) - \xi i = 2\pi i (6\xi^2 + 5\xi + 2) - \xi i = 2\pi i (12\xi + 5) - \xi i = 2\pi i ($

b. If $F = xy^2i + 2x^2yzj - 3yz^2k$, find (i) Div F (ii) Curl F at the point (1, -1, 1). (8)

Answer:

P(3,1,2) in the direction of the vector yzi + xzj + xyk. Answer:

(8)

DEC 2015

Q. 5 @ Here \$ = (x2+y2+2) 1/2 $\frac{\partial \phi}{\partial y} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi^2 + y^2 + z^2)^{-3} h, \quad \frac{\partial \phi}{\partial z} = -\chi (\chi$ -- V\$ = Grad \$ = i 20 + j 20 + k 32 $= -(x^2+y^2+z^{-3/2})(ix+jy+kz)$ $\nabla \phi = -(3i+j+2k) \text{ at point (3,1,2) [u, marky]}$ Now a = unit vector in the direction of vector Yzi + xzi + xyk $= \frac{92i+32j+3yk}{\sqrt{9^2z^2+3^2z^2+3y^2}} = \frac{2i+6j+3k}{3} et (3,1,2)$ Repuired directional derivative is the given direction = â. grado $= -\left(\frac{2i+6j+3k}{2}\right) \cdot \left(\frac{3i+j+2k}{2}\right)$ $= -\frac{18}{98.174}$ = - 9 49 [Ano] 8 mults

b. Evaluate $\iint_{S} F \cdot n \, dS$ with the help of Gauss's divergence theorem for $F = 4xi - 2y^2j + z^2k$ taken over the region S bounded by $x^2 + y^2 = 4, z = 0$ and z = 3.

Answer:

DEC 2015

7

(8)

(b) Div
$$F = \nabla \cdot F = 4 - 42 + 422$$

By Gauss Diversence theorem, we have
 $\iint_{S} F \cdot n \, ds = \iiint_{2} 2(z - 23 + z) \, dx \, dy \, dz$ [2 mulls]
 $= \Re \int_{-2}^{2} \int_{-\sqrt{4-\chi^{2}}}^{\sqrt{4-\chi^{2}}} \int_{-2}^{3} 2(z - 23 + z) \, dz \, dx \, dy \, dz$
 $= 2\int_{-2}^{2} \int_{-\sqrt{4-\chi^{2}}}^{\sqrt{4-\chi^{2}}} (6 - 67 + \frac{9}{2}) \, dz \, dz$
 $= 2\int_{-2}^{2} \int_{-\sqrt{4-\chi^{2}}}^{\sqrt{4-\chi^{2}}} (6 - 67 + \frac{9}{2}) \, dz \, dz$
 $= 2\int_{-2}^{2} \int_{-\sqrt{4-\chi^{2}}}^{\sqrt{4-\chi^{2}}} (6 - 67 + \frac{9}{2}) \, dz \, dz$
 $= 2\int_{-2}^{2} \int_{-\sqrt{4-\chi^{2}}}^{\sqrt{4-\chi^{2}}} dx$ [5 mulls]
 $= 42\int_{-2}^{2} \int_{-\sqrt{4-\chi^{2}}}^{\sqrt{4-\chi^{2}}} dx$ [5 mulls]
 $\int_{S} F \cdot n \, ds = 84 \, \text{T}$ [And]
 $\int_{S} F \cdot n \, ds = 84 \, \text{T}$ [And]
 $\int_{S} F \cdot n \, ds = 84 \, \text{T}$ [And]
 $\int_{S} F \cdot n \, ds = 84 \, \text{T}$ [3 mulls]
 $\int_{S} F \cdot n \, ds = 84 \, \text{T}$ [3 mulls]
 $\int_{S} F \cdot n \, ds = 84 \, \text{T}$ [3 mulls]
 $\int_{S} f \cdot n \, ds = 84 \, \text{T}$ [4 mod]
 $\int_{S} f \cdot n \, ds = 84 \, \text{T}$ [4 mod]
 $\int_{S} f \cdot n \, ds = 84 \, \text{T}$ [4 mod]
 $\int_{S} f \cdot n \, ds = 84 \, \text{T}$ [4 mod]
 $\int_{S} f \cdot n \, ds = 84 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 84 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 84 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 84 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 84 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 84 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds = 10 \, \text{T}$ [5 mulls]
 $\int_{S} f \cdot n \, ds$

b. Solve by Charpit's method :

 Given z= px + 23 + p2
 → f= px+2y+b2-2=0 $i: \frac{\partial f}{\partial x} = p; \frac{\partial f}{\partial y} = q; \frac{\partial f}{\partial z} = -1; \frac{\partial f}{\partial p} = x + p; \frac{\partial f}{\partial q} = y + p$ $put the values is the charpit's auxiliary equ's, on
<math display="block">\frac{dp}{\partial f} = \frac{dq}{\partial f} = \frac{dz}{dz} = \frac{dz}{dz} = \frac{dx}{dx} = \frac{dy}{\partial f}$

$$\frac{dp}{p-p} = \frac{d2}{q-q} = \frac{dz}{-p(x+q)-q(y+p)} = \frac{dx}{-p} = \frac{dy}{-q}$$

$$\frac{dp}{p-p} = \frac{dq}{q-q} = \frac{dz}{-p(x+q)-q(y+p)} = \frac{dx}{-p} = \frac{dy}{-q}$$

$$\frac{dy}{5 + \mu uy}$$

$$\frac{dz}{dy} = \frac{dx}{q-q} = \frac{dz}{-p(x+q)-q(y+p)} = \frac{dy}{-p} = \frac{dy}{-q}$$

Q.7 a. Using Newton's divided difference formula, find f(4) if :

x	:	_4	-1	0	2	5
f(x)	:	1245	33	5	9	1335

Answer:

Answer:

Q. 7 @ Dinded Difference table

z = px + qy + pq

x	tra	4 fray	Afry	13-free	D'free	
-4	1245	- 404	-			
-1	33	- 2-8	PE	-14		
0	5		10	17	3	5
2	9	- 2	88	10	3 Marts	J
5	1335	442				

$$f(u) = 1245 + (4+4) \times -404 + (4+4)(4+1) \times 94 + (4+4)(4+4) \times 94 + (4+4) \times (4+4) \times 94 + (4+4) \times 94 + (4+4) \times (4+$$

(8)

b. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by using Simpson's $1/3^{rd}$ and $3/8^{th}$ rule. Hence obtain the approximate value of π in each case. (8)

Answer:
(b) Take
$$h = \frac{1}{6}$$

 $\frac{x}{y} | 0 + \frac{1}{6} + \frac{1}{3} + \frac{1}{2} + \frac{2}{3} + \frac{576}{6} + \frac{1}{3}$
 $\frac{x}{y} | 1 + 0.93293 + 0.9 + 0.8 + 0.69016 + 0.5$
By Simpson's $\frac{1}{3} + \frac{3}{9}$ Rule
 $E = \frac{1}{3} [(y_0 + y_n) + y(y_1 + y_3 + \cdots + y_{n-1}) + 2(y_2 + y_4 + \cdots)]$
 $= 0.385353$
By Simpson's $\frac{3}{9}$ H rule
 $I = \frac{3}{8} [(y_0 + y_n) + 3(y_1 + y_2 + y_{n+1} + y_{n+1}) + 2(y_2 + y_{n+2} + y_{n+2})]$
 $= 0.385395$
 $ralue = \frac{1}{2} extegral I = 17/4$
By Simpson's $\frac{1}{9}$ Rule $T = 3.141588 + (Appm)$
 $\theta_7 - \frac{3}{9}$ H Rule $T = 3.141589 + (Appm)$
Q.8 a. In an examination the number of candidates who secured marks between
certain limits were as follows:

Marks	:	0-19	20-39	40-59	60-79	80-99
No. of Candidates	:	41	62	65	50	17

Estimate the number of candidates getting marks less than 70. (8) Answer:

Lessthan	Number of Canelidates	Afry	22 fray	S fra	d'fr.
19	41	62			
39	103	65.	3	(જ	0
59	168	50		-18	
·79	218	17	-33		
99	235			15	mar
Her the x	a = 10	$\frac{-19}{20} = 2.5$	5		
By Newto	n's forward in	sterpolation	form	4,	
		1 2.55 ×1.	11×3+	5.22×1.	22.×0
f(70) = 4	1+2-55 X62	2-1	- 10	3	

- b. From a pack of 52 cards, 6 cards are drawn at random. Find the probability of the following events : (8)
 - (i) Three are red and 3 are black cards
 - (ii) Three are kings and 3 are queens

Answer:

(b) The total number of ways is which 6 can's can be
drawn =
$$52C_{c}$$

is number of elements in the sample space s are $h(s)=52C_{c}$
(i) $n(E_{1}) = Humber of ways in which 3 red and 3 black
carels can be selected
 $= 26C_{3} \times 2^{2}6C_{3}$
 $P(E_{1}) = \frac{n(E_{1})}{n(s)} = \frac{26C_{3} \times 2^{2}6C_{3}}{s2C_{c}}$ (5 marks)
(ii) $n(E_{2}) = event that 3 kings and 3 queue can be-
selected
 $= 4C_{3} \times 4C_{3}$
 $P(E_{2}) = \frac{n(E_{2})}{n(s)} = \frac{4C_{3} \times 4C_{3}}{s2C_{c}}$ (8 marks)$$

Q.9	a. A continuou (x) = $3 x^2$	us random $0 \le x < 1$	variable <i>X</i> 1	has the d	ensity fund	ction	
	Find <i>a</i> and (i) <i>P</i> (<i>X</i> ≤ 4	b, when a = P(X)	>a),	(ii) <i>P</i> (X >	b) = 0.05	5	(8)
Answe	r:						
Q.º	10 Since	total	prebalai	lis is c	always	1 (0	ne), so
	Ci) PC	$x \leq a$	1 = 1 =	= P(X>	a) '		
	Mund PCX	(<u><</u> a) =	= 2 =)	Sofer)	$dx = \frac{1}{2}$	2	[2 ands]
		-	=) 500	$sx^2 dx =$	= 2		
		3	$a^3 = \frac{1}{2}$	- or	a. = ((+)3	(marles)
ch)	P(X > 1	o) = c	0.05	⇒ 5'	ferry d	$\chi = \frac{1}{2x}$	on,
	=	St 3x	2dx =	- 1/20			(Emarts)
	=)	1-23=	20	j k	3 = 19	0	
	=)	b = (19/20)	á ·			[murks]
	b. Fit a Poisso frequencies	on's distribution of $e^{-0.5} = 0.6$	ution to th 51) :	e following	and calcu	late theor	etical
	Deaths	: 0	1	2	3	4	
	Frequency	: 122	60	15	2	1	(8)

Answer:

12

(b) Here total frequency

$$N = \Sigma f = 122 + 60 + 15 + 2 + 1 = 200$$

 $Mean (m) = \overline{\Sigma} f x - 122x0 + 60x1 + 15x2 + 2x3 + 1x4$
 $Mov = \overline{M} = \overline{C}^{0.5} = 1 - 0.5 + (0.5)^2 - - = 0.61$
 $Therefore required Poisson distribution
 $= M \overline{C} \frac{m^2}{\pi 1} = 200 \times (0.61) \times (0.5)^6$ finally
 $A : 0 = 1 = 2 = 3 = 4$
 $P(x = R) = 0.61 = 0.305 = 0.03(2) = 0.0016 = 1.0055$
Respected : $122 = 61 = 15 = 2 = 0$
 $frequency = 122 = 61 = 15 = 2 = 0$
 $Thurs it gives frequencies = 122, 61, 15, 2, 0$
 $respectively for $R = 0, 1, 2, 3 = 0.44$.
 $Rumuly$$$

TEXT BOOK

I. Higher Engineering Mathematics –Dr. B.S.Grewal, 40th Edition 2007, Khanna Publishers, Delhi

II. A Text book of engineering Mathematics – N.P. Bali and Manish Goyal , 7^{th} Edition 2007, Laxmi Publication(P) Ltd