AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

Q.2 a. Given the value of C1 =4 and C2 = 6. What will be the value of C3 for each of the
following expression?

(i) C3=C1&C2 (i) Cl<<?2
(iii) C1~C2 (iv) C1|C2 4)
Answer:
i 4 (i) 16
(iii) 2 (iv) 6
b. Write a C language program to find whether a given number is palindrome
or not. (6)
Answer:
#include <stdio.h>
int main()
{

int n, reverse=0, rem,temp;
printf("Enter an integer: ");
scanf("%d", &n);

temp=n;

while(temp!=0)

rem=temp%20;
reverse=reverse*10+rem;
temp/=10;

/* Checking if number entered by user and it's reverse number is equal. */
if(reverse==n)
printf("%d is a palindrome.",n);
else
printf("%d is not a palindrome.",n);
return O;

¥

c. What is data type? Explain any four data types used in C language. (6)

Answer:
C has a concept of 'data types' which are used to define a variable before its use.

The definition of a variable will assign storage for the variable and define the
type of data that will be held in the location.

The value of a variable can be changed any time.
C has the following basic built-in datatypes.

e int

o float

double
char

© IETE 1

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

Q.3 a. Differentiate between relational and logical operators used in C. 4)

Answer:
Logical operators don't Compare values they combine Boolean values and produce a
Boolean result. Examples of logical operators are && (and), ||, (or), ! (not). If you
have two Boolean values and you combined them with the && operator the result will
be (TRUE) only if both values were (TRUE). If you combined them with the ||
operator the result will be TRUE if any of them or both of them were
TRUE. Relational operators compare two values and produce a Boolean result. Most
of the time we use logical operators to combine the results of two or more comparison
expressions that use relational operators. For instance we may say:
If(a>b && a <= c) { do something}
This means that if both expressions a>b AND a <= ¢ are TRUE the result will be true
and the body of the if statement will be executed.

b. Compare and contrast the following:
(i) While and For loop
(i) Break and Continue statement
Use suitable examples. (8)
Answer:

Introduction

The while loop is used when you want to repeat the execution of a certain
statement or a set of statements (compound statement).

Program/Example

The general format for a while loop is
while (condition)
simple or compound statement (body of the loop)
For example,

i=0;

while (i<5)

{
printf(* the value of i is Xd\n", i)

i=1+1:

Explanation

1. Before entering into the loop, the while condition is evaluated. If it is true
then only the loop body is executed.

© IETE 2

AES52/AC52/AT52

C & DATA STRUCTURES

DEC 2015

2. Before making an iteration, the while condition is checked. If it is true then

the loop body is executed.

3. It is the responsibility of the programmer to ensure that the condition is
false after certain iterations; otherwise, the loop will make infinite iterations

and it will not terminatc.

4. The programmer should be aware of the final value of the looping variable.

For example, in this case, the final value of the looping variable is 5.

5. While writing the loop body, you have to be careful to decide whether the
-loop variable is updated at the start of the body or at the end of the body.

THE do-while LOOP

Introduction

The do-while loop is used when you want to execute the loop body at least
once. The do-while loop executes the loop body and then traces the condition.

© IETE

Program/Example
The general format for a do-while loop is

do
simple or compound statement

while (condition)
For example,
i=0:
do

printf(“ the value of i is ¥d\n", 1i);
Jowdlok 1;

}
while (i<5)

Explanation

1. The loop body is executed at least once.

2. The condition is checked after executing the loop body once.

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

3. If the condition is false then the loop is terminated.
4. In this example, the last value of 1 is printed as 5.

THE for LOOP

Introduction

-~ The for loop is used only when the number of iterations is predetermined, for

© IETE

example, 10 iterations or 100 iterations.

Program/Example

The general format for the for loop is
for (initializing; continuation condition; update)
simple or compound statement
For example,

TOr £, =N Sqiaing ey

printf(“value of i"):
}

Explanation

1. The for loop has four components; three are given in parentheses and one
in the loop body.

2. All three components between the parentheses are optional.
The initialization part is executed first and only once.

4. The condition is evaluated before the loop body is executed. If the condition
is false then the loop body is not executed.

5. The update part is executed only after the loop body is executed and is
generally used for updating the loop variables.

6. The absence of a condition is taken as true.

7. It is the responsibility of the programmer to make sure the condition is
false after certain iterations.

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

THE for LOOP WITH A COMMA OPERATOR

Introduction

You may want to control the loop variables in the same for loop. You can use
one for loop with a comma operator in such situations.

Program/Example

for (i-=0, 3=10; i <3 && J > 8;rit, =)
printf (* the value of i and j %d Xd\n",i, j):

Explanation

First 1 is initialized to 0, and j is initialized to 10.

2, The conditions i<3 and j>B are evaluated and the result is printed only if
both conditions are true.

3. After executing the loop body, i is incremented by 1 and j is decremented
by L.

4. The comma operator also returns a value. It returns the value of the
rightmost operand. The value of (i = 0, j = 10) is 10.

THE break STATEMENT

P g
Introduction

Just like the switch statement, break is used to break any type of loop. Breaking
a loop means terminating it. A break terminates the loop in which the loop
body is written.

Program/Example

For example,
ji=10:
while (1)

{

© IETE 5

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

¥= 4 ¥l
printf(“ the value of i is %d\n");
if (i>5) break;

}
Explanation

1. Thewhile (1) here means the while condition is always true.

2. When 1 reaches 6, the if condition becomes true and break is executed,
which terminates the loop.

THE continue STATEMENT

Introduction

The break statement breaks the entire loop, but a continue statement breaks
the current iteration. After a continue statement, the control returns to top of
the loop, that is, to the test conditions. Switch doesn’t have a continue statement.

Program/Example

Suppose you want to print numbers 1 to 10 except 4 and 7. You can write:
for(i =0, 1 <11, i++)

if ((i == 4) || (i = 7)) continue;
printf(* the value of i is Xd\n", 1i);

}

Explanation

1. Ifiis 1then the if condition is not satisfied and continue is not executed.
The value of i is printed as 1.

2. When i is 4 then the if condition is satisfied and continue is executed.

After executing the continue statement, the next statement, (printf),
is not executed; instead, the updated part of the for statement (i++) is
executed.

c. What are escape sequences? What is effect of following Escape sequences?
\a, \b, \r, \f (4)
Answer:

© IETE 6

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

fon A

Q.4 a. What are the differences between mallbé() and calloc()? 4)
Answer:
There are 2 differences:

First, is in the number of arguments. malloc() takes a single argument(memory
required in bytes), while calloc() needs 2 arguments(number of variables to
allocate memory, size in bytes of a single variable).

Secondly, malloc() does not initialize the memory allocated, while calloc()
initializes the allocated memory to ZERO.

b. Write a recursive function to calculate factorial of a number. 4)
Answer:
\\\
T _. -|:«-:1 e | (I)
(N (\
ehus rl \’1)
b o Dk [P '\}_.')
L RV FAN tlll s il i i) _";:
c. Write a C language prograrﬁ to read two matrices and add them. (8)
Answer:

#include<stdio.h>

#include<conio.h>

main()

{
/*declaration of three array with same size */
int a[10][10],b[10][10],c[10][10],i,j,m,n;
printf("Enter the size of A and B metrix\n");
scanf("%d%d",&m,&n);
/* reading system */
printf("Enter the elements of A metrix\n");
for(i=0;i<m;i++)

for(j=0;j<n;j++)
scanf("%d",&a[i][j]);

© IETE 7

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

printf("Enter the elements of B metrix\n");
for(i=0;i<m;i++)
for(j=0;j<n;j++)
scanf("%d",&bI[i][j]);
/* Addition Logic */
for(i=0;i<m;i++)
for(j=0;j<n;j++)
c[il[il = ali]G]+bli10];
clrscr();
/*display entire matrix */
printf("\nA matrix is :\n\n"");
for(i=0;i<m;i++)

{
for(j=0;j<n;j++)
printf("%4d", a[i][j]);
printf("\n");
}

printf("\nB matrix is :\n\n");

for(i=0;i<m;i++)

{
for(j=0;j<n;j++)
printf("%4d", b[i][i]);
printf("\n");

}

printf("\nC matrix is :\n\n");
for(i=0;i<m;i++)

{
for(j=0;j<n;j++)
printf("%4d", c[i][j]);
printf(*\n™);
}
getch();
}
Q.5 a. Whatisafile? Identify & explain the various types of operations that can be
performed on sequential files. (6)
Answer:
~ F“”;, S ¢ s
L e P e) . &
e SRR e et U *
ond a2 Ay r

© IETE 8

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

THE CONCEPT OF FILES

Introduction

A file is a data object whose lifetime may be greater than the lifetime of a program
Tesponsible for creating it, because it is created on secondary storage devices. It
is us_ed to store persistent data values and information. The files are used mainly
for input and output of data to an external operating environment. The
components of the file are called as records (this term has nothing to do with
record data structure).

Types of Files

A file may be a sequential file, a direct-access file, or an indexed sequential file. A
sequential file can be thought of as a linear sequence of components of the
same type with no fixed maximum bound. The major operations on the
sequential files are:

Open operation: When a file is to be used, it is first required to be opened.
The open operation requires two operands: the name of the file and the access
mode telling whether the file is to be opened for reading or writing. If the access
mode is “read,” then the file must exist. If the access mode is “write,” then if the
file already exists, that file is emptied and the file position pointer is set to the
start of the file. If the file does not exist then the operating system is requested
to create a new empty file with a given name. The open operation requests the
information about the locations and other properties of the file from the
operating system. The operating system allocates the storage for this information
and for buffers, and sets the file-position pointer to the first component of the
file. The runtime library of C provides an fopen(name,mode) function for it.
This function returns a pointer to the internal structure called FILE (you get the

definition of this structure in stdio.h). This pointer is called a file descriptor; it is
used by the C program to refer to the file for reading or writing purposes.

Read operation: This operation transfers the current file component to the
designated program variable. The runtime library of C provides a function
fgetc(fp), where fpis a file descriptor, for fscanf() . fscanf() is similar to scanf()
except that one extra parameter, fp,is required to be passed as the first parameter.
The second and third parameters are the same as the first and second parameters
of scanf().

Write operation: This operation transfers the contents of the designated
program variable to the new component created at the current position. The
runtime library of C provides a function fputc(c, fp), where fpis a file descriptor,
and c is a character to be written in the file fprintf(). fprintf() is similar to
printf() except that one extra parameter, fp, is required to be passed as the first
parameter. The second and third parameters are the same as the first and second
parameters of printf().

Close operation: This operation notifies the operating system that the file
can be detached from the program and that it can deallocate the internal storage
used for the file. The file generally gets closed implicitly when the program
terminates without explicit action by the programmer. But when the access mode
is required to be changed it is required to be closed explicitly and reopened in
the new mode. The runtime library of C provides an fclose(fp) function for it.

© IETE 9

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

b. What is a pre-processor directive in C programming language? 4
Answer:

The compiler reads C code, and (ultimately) turns that into Assembly. But sometimes you want
to do more than C code can express. The trick, then, is to use the preprocessor. It looks at the
source code before the compiler sees it, and based on certain directives, alters it in some way.If
you are using gcc as your compiler, you can get it to output the code after the preprocessor has
analyzed it by using the -E flag. For example, if we do:

#define ANSWER_TO_LIFE 42
int main() {

printf("The answer to life, the universe, and everything: %d\n" , ANSWER_TO_LIFE);
}

Then we can run that as

gcc -E preprocessor_example.c
and it outputs

int main() {

printf("The answer to life, the universe, and everything: %d\n" , 42);

¥

This should help you to test out different examples for yourself. Of course, when you include lots
of libraries that will add a lot of other stuff into the code

c. Write a program to store information of 10 students using structure. (6)
Answer:
Ans: #include <stdio.h>
struct student{
char name[50];
int roll;
float marks;
I3
int main(){
struct student s[10];
inti;
printf("Enter information of students:\n");
for(i=0;i<10;++i)
{
s[i].roll=i+1;
printf(*\nFor roll number %d\n",s[i].roll);

© IETE 10

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

printf("Enter name: ");
scanf("%s",s[i].name);
printf("Enter marks: ");
scanf("%f",&s[i].marks);
printf(*\n");

printf("Displaying information of students:\n\n");
for(i=0;i<10;++i)

{

printf(*\ninformation for roll number %d:\n",i+1);
printf("Name: ");

puts(s[i].name);

printf("Marks: %.1f",s[i].marks);

}
return O;
}
PART (B)
Answer at least TWO Questions from this part. Each question carries 16 marks.
Q.6 a. What data structures is used to perform recursion and why? 4)
Answer:

Stack. Because of its LIFO (Last In First Out) property it remembers its 'caller' so knows
whom to return when the function has to return. Recursion makes use of system stack for
storing the return addresses of the function calls.

Every recursive function has its equivalent iterative (non-recursive) function. Even when
such equivalent iterative procedures are written, explicit stack is to be used.

b. Differentiate between the data structures, a queue and a stack. 4
Answer:
A queue is typically FIFO (priority queues don't quite follow that) while a stack is LIFO.
Elements get inserted at one end of a queue and retrieved from the other, while the
insertion and removal operations for a stack are done at the same end.

c. Write the algorithm for sorting a list of numbers using bubble sort. (8)
Answer:

© IETE 11

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

| BUBBLE SORT

| Introduction

Bubble sorting is a simple sorting technique in which we arrange the elements of
the list by forming pairs of adjacent elements. That means we form the pair of
the i and (i+1)™ element.If the order is ascending, we interchange the elements
of the pair if the first element of the pair is greater than the second element.
That means for every pair (list[i],list[i+1]) for i :=1 to (n-1) if list[i] > list[i+1],
we need to interchange list[i] and list[i+1]. Carrying this out once will move the
element with the highest value to the last or n™ position. Therefore, we repeat
this process the next time with the elements from the first to (z—1)z: positions.
This will bring the highest value from among the remaining (»—I) values to the
(n-1)* position. We repeat the process with the remaining (»-2) values and so
on. Finally, we arrange the elements in ascending order. This requires to perform
(n-1) passes.In the first pass we have (n-1) pairs, in the second pass we have (n-
2) pairs, and in the last (or (2-1)") pass, we have only one pair. Therefore, the
number of probes or comparisons that are required to be carried out is

(n-1)+ (n-2) + (n-3) + ...+ 1
=n(n-1)/2,
and the order of the algorithm is O(n?).

Program

#include <stdio.h>
#define MAX 10
void swap(int *x,int *y)
{

int temp;

temp = *x;

*X = *y;

*y = temp;

void bsort(int 1ist[]., int n)

© IETE 12

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

{
Mt 42 35
for(i=0;i<(n-1);i++)
for(j=0; j<(n-(i+1)); j++)
if(1ist[j] > Tist[j+l])
swap(&1ist[j],&1ist[j+11);
}
void readlist(int Tist[],int n)
{ |
int 1;
printf(“Enter the elements\n”);
for(i=0;1i<n;i++)
scanf(“%d”,&1ist[i]);
}
void printlist(int Tist[],int n)
{
it I;
printf(“The elements of the 1ist are: \n”);
for(i=0;1i<n;i++)
printf(“%d\t”,1ist[i]1);
}
void main()
{
int 1ist[MAX], n;
printf(“Enter the number of elements in the 1list max = 10\n");
scanf(“%d”,&n);
readlist(1ist,n);
printf(“The Tist before sorting is:\n”);
printlist(list,n);
bsort(list,n);
printf(“The 1ist after sorting is:\n");
printlist(list,n);
}

© IETE 13

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

Example
Input
Enter the number of elements in the list, max = 10
5
Enter the elements
23
5
4
9
1

Output
The list before sorting is:
The elements of the list are:
23,05 4 9 1
The list after sorting is:
The elements of the list are:
1 4 3 9 23

Q.7 a. Write an algorithm to find the Smallest Element in the Array. (8)
Answer:
Smallest element(a, n, k, loc)

Here a is linear array of size n. This sub algorithm finds the location loc of smallest
element among a[k-1],a[k+1],a[k+2]...a[n-1]. A temporary variable “small” is used to
hold the current smallest element and j is used as the loop control variable.

Begin

set small=a[k-1] set loc=k-1

for j=k to (n-1) by 1
do if(a[j]<small) then
set small = a[j]

© IETE 14

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

set
loc=j endif

endfor
end

b. For a graph, define the following:
(i) Degree of a vertex (i) Simple path
(ili) Completely connected graph (iv) Maximum number of edges (8)
Answer: !
- Degree of vertex: The number of edges incident onto the vertex. For example,
in graph G, the degree of vertex 1 is 3, because 3 edges are incident onto it. For' |
a directed graph, we need to define indegree and outdegree. Indegree of avertex |
vi is the number of edges incident onto vi, with vi as the head. Outdegree of
vertex vi is the number of edges incident onto vi, with vi as the tail. For graph
» the indegree of vertex 2 is 1, whereas the cutdegree of vertex 2 is 2. - -

~ Simple path: A simple path is a path given by a sequence of vertices in
which all vertices are distinct except the first and the last vertices. If the first
and the last vertices are same, the path will be a cycle. __

_~Completely connected graph: A graph G is completely connected if, furem‘ﬁﬁ!
pair of distinct vertices (v,,v) there exists an edge. A completely connected gr
is shown in Figure 22.6. _- r

FIGURE 22.6 A completely connected graph.

-~ Maximum number of edges: The maximum number of edges in an
undirected graph with » vertices is n(#-1)/2.In a directed graph, it is n(n-1).

Q.8 a. Write a program in C to allocate memory dynamically for strings, and store
their addresses in array of pointers to strings. (8)
Answer:
#include <stdio.h>
#include <conio.h>
#include <alloc.h>

© IETE 15

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

#include <string.h>

void main()

{

char *name[5] ;
char str[20] ;
inti;

clrser() ;

for(i=0;i<5;i++)

{

printf ("Enter a String: ") ; gets (str) ;
name[i] = (char *) malloc (strlen (str)+1);
strcpy (namef[i], str) ;

}

printf ("\nThe strings are:") ;

for (i=0;i<5;i++)
printf ("\n%s", name[i]) ;

for(i=0;i<5;i++)
free (nameJi]) ;

getch() ;
}

b. Write C function to
(i) Create a linked list
(it) Delete an element from a linked list (8)
Answer:

© IETE 16

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

Here is a program for building and printing the elements of the linked list:

include <stdio.h>
include <stdlib.h=
struct node
{
int data;
struct node *1ink;
¥
struct node *insert(struct node *p . int n)
{
struct node *temp:
/* if the existing 1ist is empty then insert a new node as the
starting node */
if(p=NULL)
{
p=(struct node *)malloc(sizeof(struct node)); /* creates new node
data value passes
as parameter */

if(p=NULL)

printf("Error\n”);
exit(0):
}

p-> data = n:
p-> link = p; /* makes the pointer pointing to itself because it
is a circular Tist*/

}

else

{
temp = p:
/* traverses the existing 1ist to get the pointer to the last node of

© IETE 17

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

o

while (temp-> Tink != p)

temp = temp-> link;

temp-> link = (struct node *)malloc(sizeof(struct node)); /*

tes new node using

data value passes as
parameter and puts its
address in the 1ink field
of last node of the
existing list*/

if(temp -> 1ink == NULL)

P {

printf("Error\n”);

-~ exit(0):

)

temp = temp-> 1ink;
~ temp-> data = n;
~ temp-> link = p;

id printlist (struct node *p)

lruct node *temp;

- p:
9ntf("The data values in the list are\n");
if(p!= NULL)

{
printf("¥d\t", temp->data);
temp=temp->1ink;

1 } while (temp!= p);

¥

-~ else

_ printf(*The Tist is empty\n");

| struct node *start = NULL ;

© IETE 18

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

printf("Enter the nodes to be created \n");
scanf("%¥d" ,&n);
while (n-- >0)

printf("Enter the data values to be placed in a node\n");
scanf("%¥d",&x);
start = insert (start ., x);

}
printf("The created 1ist is\n"); ﬁ
printlist (start); K\

Program

include <stdio.h>
include <stdlib.h>
struct node *delet (struct node *, 1int);
int length (struct node *);
struct node
{
int data:
struct node *1ink;
i
struct node *insert(struct node *p , int n)
{
struct node *temp;
if(p==NULL)
{
p=(struct node *)malloc(sizeof(struct node));
if(p==NULL)

{
printf(“Error\n”):
exit(0);
1
p-> data = n;
p-> 1ink = NULL;
¥

else

{
temp = p;

© IETE 19

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

© IETE

3}

void main()

while (temp-> Tink != NULL)

temp = temp-> link;

temp-> link = (struct node *)malloc(sizeof(struct node)):
if(temp -> Tink == NULL)

{
printf(“Error\n”);
exit(0);

}
temp = temp-> link;
temp-> data = n;
temp-> link= NULL;
}

return (p);

void printlist (struct node *p)

printf(“The data values in the 1ist are\n”);
while (p!= NULL)

printf(“%d\t".p-> data):
p = p-> link;

int n;

int x;

struct node *start = NULL:

printf(“Enter the nodes to be created \n");
scanf(“xd" ,&n);

while (-~ >0)

printf(“Enter the data values to be placed in a node\n”);
scanf(“¥d",&x);
start = insert (start, x);
}
printf(“ The 1ist before deletion is\n");
printlist (start):
printf(“ \n Enter the node no \n"):
scanf (" ¥d".&n);
start = delet (start , n);

20

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

printf(* The 1ist after deletion is\n");
printlist (start);
}

/* a function to delete the specified node*/
struct node *delet (struct node *p , int node no)

{

struct node *prev , *curr :
int 1;

if (p = NULL)
{

}

else

printf(“There is no node to be deleted \n");

if (node_no > length (p))

printf(“Frror\n");
}
else
{
prev = NULL;
curr = p:
| [
while (i < node no)
{
prev = Curr;
curr = curr-> 1ink;
1 =i+l;
3
if (prev = NULL)
{
p = curr -> link;
free (curr);
}
else
{
prev -> link = curr -> link ;
free (curr);
}
}

© IETE 21

AES52/A
C52/AT52 C & DATASTRUCTURES | DEC 2015

}

return(p);

/* a function to compute the length of a linked 1i
: ist *
Ent length (struct node *p) /
int count = 0 ;
while (p != NULL)
{
count++;
p = p->1ink;
}

return (count) ;

}

Q.9 a. Write an algorithm i
1 n C to sear - - .
Binary Search. ch for an element in a list of elements using
Answer: (8)

BINARY SEARCH

Introduction

The prerequisite for using binary search is that the list must be a sorted one. We
compare the element to be searched with the element placed approximately in
the middle of the list. '

~ Ifamatchis found, the search terminates successfully: Otherwise, we continue
the search for the key in a similar manner either in the upper half or the lower
half. I the elements of the list are arranged in ascending order, and the key is
less than the element in the middle of the list, the search is continued in the
lower half. If the elements of the list are arranged in descending order, and the
key is greater than the element in the middle of the list, the search s continued
in the upper half of the list. The procedure for the binary search is given in the
following program. .

© IETE
22

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

Program

#include <stdio.h>
#define MAX 10

void bsearch(int 1ist[],int n.int element)

int 1,u,m, flag = 0;
1=0;

u=n-1%

while(]l <= u)

m= (1+u)/2;
if(list[m] = element)
{

printf(“ The element whose value is %d is present at

position %d in list\n”,
element.m):

flag =1;
break;

else
if(list[m] < element)

_ 1 ="m+l;
else
u=m-1;

3

if(flag == 0) _ t ; 2

;rintf(gThe element whose value is %d is not present in the Tlist\n”,
element) ;

}

void readlist(int 1ist[],int n)
{ 5
int 1:
printf(“Enter the elements\n");
for(i=0:1i<n;i++)
scanf(“%d”.&1ist[i]):

void printlist(int 1ist[],int n)
{
i)
printf(“The elements of the 1ist are: \n”):
for(i=0;1i<n;i++)
printf(“%d\t”, 1ist[i]):
}

void main()

{
int Tist[MAX], n, element:
printf(“Enter the number of elements in the 1ist max = 10\n”):
scanf(“%d”,&n) ;
readlist(1ist,n):
printf(“\nThe 1ist before sorting is:\n"):
printlist(1ist,n);
printf(“\nEnter the element to be searched\n”):
scanf(“%d”,&element) ;
bsearch(1ist,n,element);

© IETE 23

AE52/AC52/AT52 C & DATASTRUCTURES | DEC 2015

b. Traverse the following tree in
(i) Inorder
(i) Preorder
(iii) Postorder
and give the output.

(8)

Answer:
l : -

ey) {: & (:1-'\.
| "T\ ?f‘_“_‘ ; H é_- ! ’_,pb’ >)
g WO e 5 P |
: N e (/‘* # (: \
D . 8 7§ f\ ﬁ’f; D = A% J
{ >) E (s C-EF

]Dk X &»4\;’{ W £ F b

TEXT BOOK

I. C & Data Structures, P.S. Deshpande and O.G. Kakde, Dreamtech Press, 2005

© IETE 24

