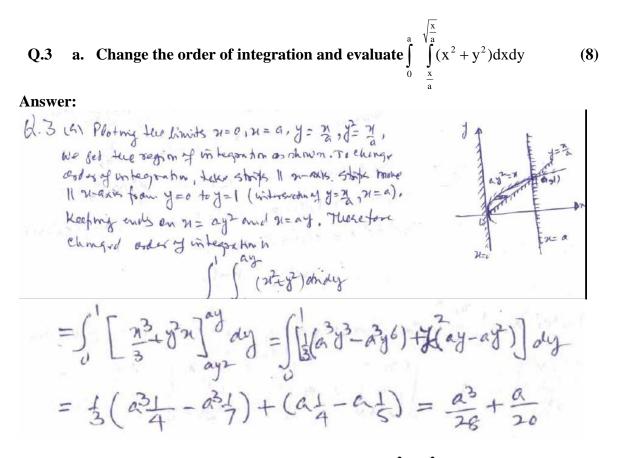
Q.2 a. State and Prove Euler's theorem (2+6)
Answer:


$$(2+6)$$
 Statement: If U is a homogeneous found in f degree π in π multiplies
then $\pi \frac{\partial U}{\partial u} + \frac{\partial U}{\partial y} = \pi U$.
Porf: Since U is a homogeneous found in π degree π in π and y , there
fore U can be written as
 $U = \pi f(\frac{\partial x}{\pi}) - (1)$
 $\partial y = \pi \pi^{n-1} f(\frac{\partial x}{\pi}) + \pi^n f'(\frac{\partial x}{\pi}) (-\frac{\partial}{\pi^2}) - (2)$
 $\frac{\partial U}{\partial u} = \pi \pi^{n-1} f(\frac{\partial x}{\pi}) + \pi^n f'(\frac{\partial x}{\pi}) (-\frac{\partial}{\pi^2}) - (2)$
 $\frac{\partial U}{\partial u} = \pi^n f'(\frac{\partial x}{\pi}) + \pi^n f'(\frac{\partial x}{\pi}) + \frac{\partial}{\pi^n} f'(\frac{\partial x$

b. If $\mathbf{u} = \mathbf{x} + \mathbf{y} + \mathbf{z}$, $\mathbf{uv} = \mathbf{y} + \mathbf{z}$, $\mathbf{uvw} = \mathbf{z}$, show that $\frac{\partial(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial(\mathbf{u}, \mathbf{v}, \mathbf{w})} = \mathbf{u}^2 \mathbf{v}$

Answer:

(b) there
$$U = x_{+}y_{+}z_{-}$$
, $Uv_{-}=y_{+}z_{-}$, $uv_{-}=z_{-}$
 $\therefore x = u - uv_{-}$, $y = uv_{-}uv_{-}$, $z = uv_{-}$
 $\frac{\partial(x_{+}y_{+}z_{-})}{\partial(u_{+}v_{+}w_{-})} = \begin{vmatrix} \partial y_{-} & \partial y_{-} & \partial y_{-} \\ \partial y_{-} & \partial y_{-} & \partial y_{-} \\ \partial y_{-} & \partial y_{-} & \partial y_{-} \\ \partial y_{-} & \partial y_{-} & \partial y_{-} \\ \partial y_{-} & \partial y_{-} & \partial y_{-} \\ \partial y_{-} & \partial y_{-} & \partial y_{-} \\ \partial y_{-} & \partial y_{-} & \partial y_{-} \\ R_{1}^{\prime} = R_{1} + R_{2} + R_{3}, R_{2}^{\prime} = R_{1} + R_{3}$
 $\begin{vmatrix} 1 & 0 & 0 \\ \partial y & u & 0 \\ \partial y & u & 0 \\ \partial w & uw & uv_{-} \end{vmatrix} = u^{2}v_{-}$

(8)

b. Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes y+z = 4and z = 0 (8)

Answer:

© IETE

Q.4 a. Investigate for consistency of the following equations and if possible find the solution: 4x - 2y + 6z = 8, x + y - 3z = -1, 15x - 3y + 9z = 21 (8)

Answer:
d. bith the given equations can be rewritten in matrix form at

$$\begin{bmatrix} 4 & -2 & 6 \\ 1 & 1 & -3 \\ 15 & -3 & 6 \end{bmatrix} \begin{bmatrix} 8 \\ -2 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 & 1 & -3 \\ -3 \end{bmatrix} \begin{bmatrix} 7 \\ -2 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ -1 \\ -1 \\ -3 \end{bmatrix} \begin{bmatrix} 7 \\ -2 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 6 \\ -1 \\ -1 \\ -3 \end{bmatrix} \begin{bmatrix} 7 \\ -2 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 6 \\ -1 \\ -1 \\ -3 \end{bmatrix} \begin{bmatrix} 7 \\ -2 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 6 \\ -1 \\ -1 \\ -3 \end{bmatrix}$$

Euridendry bank of coeff. Matrix = valk of Augmented habit = 2 LAR. If Vanishes.
* Equy are concerned these propositionale saluk m.
* $Gn = 6$ or $n = 1$
 $n + y - 32 = -1$. If $Z = K = y = -2 + 3K$ for all K 's.

b. Find the eigen values and eigen vectors of the matrix.

$$\begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

Answer:

(b) characteristic equation of the given metrix is

$$\begin{vmatrix} 3-\lambda & -1 & 1 \\ -1 & 5-\lambda & -1 \\ 1 & -1 & 3 \\ \end{vmatrix} = 0 \quad or \quad \lambda^3 - ||\lambda^2 + 36\lambda - 36 = 0$$
Routs of chyracteristic equation are 2, 3, 6 which are eigen values

(8)

Ergen Vietor
$$X_{1} = \begin{bmatrix} n_{1} \\ n_{2} \\ n_{2} \end{bmatrix}$$
 corresponding to expression Vietor $A = 2$ to $\frac{1}{2}$ Weaking

$$\begin{bmatrix} 2^{-2} - 1 & 1 \\ 1 & -3 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} 0 & 2 & 0 \\ 0 & 2 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp} \begin{bmatrix} n_{1} \\ n_{2} \end{bmatrix} = 0 \quad \text{exp$$

 $f(2) = 2(\log_{10} - 1.2) = -0.59744 = -400$ $f(3) = 3(\log_{10} - 1.2) = 0.23136 = +400$ i. Rod hies kietwein 2 and 3, the the approximation $X_0 = 2.571 = 3$ i. By millied of Regular-Falsi method. 160 approximation in $\Re_2 = \Re_1 - \frac{21-20}{f(m)-f(m_0)} = 2 - \frac{3-2}{0.312400} (-59744) = 2.7$ $f(2.721) = 2.721 \log_{10} 2.721 - 1.2 = -0.01709$ i. Rot his between 2.7210 and 3. Therefore near Approximation is

73= 2.7210 - 3-2.7210 × (-101704) = 2.7402

f (2.7402) = 2.7402/00 2.7402 -1.2 = -.0004 Ashows than seed approximation 2011 is 2.740

© IETE

b. Apply Runge-kutta method to find an approximate value of y for x = 0.2 if $\frac{dy}{dx} = x + y^2$ given that y = 1 when x = 0. Take h = 0.2 (8)

Answer:

(b) have
$$f(h_1 k_0) = h + k_0^{-1}$$
, $h_0 = 0$, $f_0 = 1$, $h = 0.2$
By Drugo-kutha nucleid
 $k_1 = -k_0 f(h_0, k_0) = \cdot 2(0+l^2) = 12$
 $k_2 = -k_0 f(h_0 + \frac{1}{2}, \frac{1}{2}0 + \frac{1}{2}) = \cdot 2(0+l^2) = 12$
 $k_3 = -k_0 f(h_0 + \frac{1}{2}, \frac{1}{2}0 + \frac{1}{2}) = \cdot 2(0+l^2) = \cdot 262$
 $k_3 = -k_0 f(h_0 + \frac{1}{2}, \frac{1}{2}0 + \frac{1}{2}) = \cdot 2(0+l^2) = \cdot 262$
 $k_3 = -k_0 f(h_0 + \frac{1}{2}, \frac{1}{2}0 + \frac{1}{2}) = \cdot 2[0+1) + (1+\frac{262}{2})^2]$
 $= \cdot 2[\cdot 1 + (1\cdot 13)^2] = 0.27532$
 $k_4 = -k_0 f(h_0 + \frac{1}{2}) = \cdot 2[(0+1) + (1+\frac{262}{2})^2]$
 $= \cdot 2[\cdot 1 + (1\cdot 13)^2] = \cdot 2655$
 $k_4 = -k_1 + 2k_5 + 2k_3 + k_4$
 $= \frac{(2+1)(24)(+55)(6+3655)}{6} = 427$
 $k = -k_1 + 2k_5 + 2k_3 + k_4$
 $= \frac{(2+1)(24)(+55)(6+3655)}{6} = 427$
 $k = -k_0 + k_1 = 1.2735$

Q.6 a. Use method of variation of parameters to solve $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = \frac{e^x}{x}$ (8) Answer:

Q. 6 Killiven egn. Com he rewortten as

$$\frac{dy}{d\eta} + \frac{y}{3\pi} = \frac{e^{-2\sqrt{2}}}{\sqrt{2}\pi} - 0$$
Which inderbritz's equation, where $P = \frac{1}{3\pi}$, $R = \frac{e^{-2\sqrt{2}}}{\sqrt{2}\pi}$
 $\therefore 1.F = e^{-\sqrt{2}\pi} dn = \frac{2\sqrt{2}}{e^{-\sqrt{2}\pi}}$
 $\therefore Rogd Sal. is \qquad y e^{2\sqrt{2}\pi} = \int e^{2\sqrt{2}\pi} \frac{e^{2\sqrt{2}\pi}}{\sqrt{2}\pi} dn + c$
 $y e^{2\sqrt{2}\pi} = \int e^{-\sqrt{2}\pi} dn + c$
 $y e^{2\sqrt{2}\pi} = 2\sqrt{2}\pi + c$ Answer

© iete

b. Solve the simultaneous equation: $\frac{dx}{dt} + y = \sin t$, $\frac{dy}{dt} + x = \cos t$ given that x = 2and y = 0 when t = 0. (8)

Answer:

(b) Differentials the given equation
$$ny = c^2$$
,
 $\frac{n dus}{dn} + y = 0$ (i)
Constant c is advancheorery eliminated. So eqn. of Dithogonal
togétongés (replace dus by - dn),
 $-n dM + y = 0$ Os noth-y dy = 0 - (2)
Integraling (2), we ser family of costugand system as
 $n^2 - y^2 = K$

Q.7 a. Obtain the series solution of $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$ (8) Answer:

$$i : CF is \qquad \mathcal{J} = (Cf + Cx) e^{2t}$$

$$Tefind P.E. by Unstation of protonetry method
$$lex \quad \mathcal{J}_{1} = e^{2t} \quad \mathcal{J}_{2} = 2te^{2t} \quad X = \frac{e^{2t}}{x}$$

$$i : Wronskin \qquad W = \left(\frac{\vartheta_{1}}{\vartheta_{1}} \cdot \frac{\vartheta_{2}}{\vartheta_{2}}\right) = \left(\frac{e^{2t}}{e^{2t}} \cdot \frac{2e^{2t}}{y}\right) \left(= e^{2x}\right)$$

$$i : P : F = -\mathcal{J} \int \frac{\vartheta_{2}x}{W} dw + \mathcal{J}_{2} \int \frac{\vartheta_{1}x}{W} dw$$

$$= -\frac{2t}{e} \int \frac{2te^{2t}}{e^{2t}} \cdot \frac{e^{2t}}{y} dw + \mathcal{J}_{2} \int \frac{\vartheta_{1}x}{W} dw$$

$$= -\frac{2t}{e} \int \frac{2te^{2t}}{e^{2t}} \cdot \frac{e^{2t}}{y} dw + \mathcal{J}_{2} \int \frac{\vartheta_{1}x}{W} dw$$

$$= -2te^{2t} \int \frac{2te^{2t}}{e^{2t}} \cdot \frac{e^{2t}}{y} dw$$$$

Acree Complete Sel is

$$\mathcal{J} = (c_{1} + c_{2}\pi) e^{n} - \pi e^{n} + \pi e^{n} \log \pi$$

= $(c_{1} + c_{2}\pi) e^{n} + \pi e^{n} \log \pi$ where $c_{2}^{n} = c_{2}^{-1}$
b. Show that $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} \, dx \times \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin x}} \, dx = \Pi$ (8)

Answer:

b. The Simultaneous equal Can be alconstrum as

$$Dn + Y = Sint - 0$$

$$R + DY = east - 0 \quad \text{where } D = \frac{d}{dt}$$
operate (0) has a and from it substances (a) where for $n = 0$ = $\frac{d}{dt} = \frac{d}{dt} = \frac{d}{$

© iete

Answer:

Q.9 (For Current Scheme students i.e. AE51/AC51/AT51)

a. Solve the differential equation
$$\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right)\frac{dx}{dy} = 1$$
 (8)

Answer:

Answer:

(b) We know
$e^{\frac{\chi}{2}(t-\frac{1}{2})} = e^{\frac{\chi}{2}} \cdot e^{\frac{\chi}{2}t}$
$= \left[1 + \frac{2t}{2} + \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \frac{3}{3^3} + \cdots \right] \left[1 - \frac{x}{2t} + \frac{1}{2} + \frac{3}{2t} + \frac{1}{2} + \frac{3}{2t} + \frac$
Must ply the two secies terms by term and collect coefficients of all
Coeff of t'= learning w dant of t = 1 - ($\frac{1}{2}$) ² + $\frac{1}{(\frac{1}{2})^{2}}$ ($\frac{1}{2}$) ⁴ + $\frac{1}{(\frac{1}{2})^{2}}$ ($\frac{1}{2}$) ⁶ =
$Coeffy t' = \frac{1}{2} - \frac{1}{2} \left(\frac{2}{2}\right)^3 + \frac{1}{2} \left(\frac{2}{2}\right)^5 - \frac{1}{2} \left(\frac{2}{2}\right)^7 + \cdots = \sum_{k=0}^{\infty} \frac{(-1)^k}{(k!k!k!(2))} + \frac{1}{2} \left(\frac{2}{2}\right)^2 + \frac{1}{2} \left(\frac{2}{2}\right)^5 + \frac{1}{2} \left(2$
$C_{1} = \frac{1}{(n)} \left(\frac{n}{2}\right)^{n} - \frac{1}{(n)} \left(\frac{n}{2}\right)^{n+1} + \frac{1}{(n+2)} \left(\frac{n}{2}\right)^{n+1} - \cdots$
$= \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(m+k)!^{k}} {\binom{n}{2}}^{n+2k} = \mathcal{T}_{n}(x)$
Similarly we can culter coeffs of visions powers of (-t). We find that
Coefficient of (-2)" is same as John or coeff of E is (-1) John = JM.
Aener weger
32(6-2)
$\Box = J_0(m) + J_1(m) + J_2(m) + e^{} + J_m(m) + e^{}$
+ J_M E1 + J_ E2 = + J_M E2 =+ J_M E2 =
Walk = Z J_MNEM
nad

Q.9 (For New Scheme students i.e. AE101/AC101/AT101)

a. Find the Fourier sine transform of
$$\frac{e^{-ax}}{x}$$
 (8)

Answer:

AE51/AC51/AT51 AE101/AC101/AT101

 $\begin{array}{l} (F(s)) = \int_{-\infty}^{\infty} \frac{1}{2} & \text{The Fourier Sine transform} \\ f_{s}(f(m)) = \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}$ = $\frac{a}{s_{7a^2}} p_a ds = tan_a^2 + c$ (2). F(s)=0 when s=0, => c=0 :. F(s)=lan s **b.** Find the z-transform of $\cos\left(\frac{n\pi}{2} + \frac{\pi}{4}\right)$ (8) Answer: Z (los (1 + A)) = Z [los 2 los 4 - Sin 7 (. A)] 9(6) = los # Z(los n =) - Sin # Z/Sin n #) $= \frac{1}{\sqrt{2}} \left\{ \frac{z(z - \log \pi/2)}{z^2 - 2z(\omega + 1)} - \frac{z \sin \pi/2}{z^2 - 2z(\omega + 1)} \right\} (2+2)$ $=\frac{1}{\sqrt{2}}\left(\frac{Z^{2}}{Z^{2}+1}-\frac{Z}{Z^{2}+1}\right)=\frac{1}{\sqrt{2}}\frac{Z(Z-1)}{(Z^{2}+1)}$ (2)

AE51/AC51/AT51 AE101/AC101/AT101

Marknig Scheme For Ergs. Maths-P (AESA

- 3 KI W here is for charge of walks of integration and left value has af integral
 - (b) 2 for correct formule val = SSS drauger, 2 mous for correct limits, efri fuy correct
- 4161 himerkester concessioney and h for Sacution.
- 161 2 mares characteristic eque 13-112 +367 -36=0, 2 more marks for expendicular. + 4 freezon Vectors
- Sig1 2 marks for Skownig that orthin hetween 2 and 3, Shunnksfor Cossect formula. In more for cossect exclusion

BILMAR for each KIIK21 K31K4, 2 for K & Stortule y (12)

6 KI 2 marksfor withing indertmits form (), 2 menus for 1. F., & for full co Cooreef.

(b) 2 for eqn. (), 2 for xi placing dy by - dh , & for full cossech

- 7672 mainster C.E., 3 months for Wornskinn, 2 markes for crossect formula for P.E., and & for full cossist.
 - (b) amoustor waiting equin Ot@form, I moves that had not il-fordased n= ciet + get. 2 for getting y = mit-ciet + get, 2 move for getting Ci+C2 + correct Aussier
- Q. 8(6) 2 more to chorging J= Got (124512, JLF 9,126, nt ..., y. 292+3,26, ne ... 4 more Conserver Company of like powers of n getting C12 - Go, 13 = -G, etc 6 to full conserver. (5) 2 more 5 Jon du = 2 P(3, 12), 2 mores to 5 (2) Join ch = 2 p(4, 2) and 8 tor full conserver.

AG 1612 marks for writing (0, 2 minutes for (2), 2 marks for climmeting Print 1, 8 for twee coorder

TEXT BOOK

I. Higher Engineering Mathematics, Dr. B.S.Grewal, 40th edition 2007, Khanna publishers, Delhi

II. Text book of Engineering Mathematics, N.P. Bali and Manish Goyal, 7th Edition 2007, Laxmi Publication (P) Ltd