ACT8

ADVANCED MICROPROCESSORS

DEC 2015

Q.2

Answer:

a. Explain the action of 8086 when NMI and INTR pins are activated.

NMI and INTR: Any pP will have some interrupt pins. In a microcomputer
system whenever an /O port wants 1o communicate with the puP urgently, it
inlecrupts the pI*.

In such a case, the uP campletes the instruction it is presently executing.
Then, it saves the address of the next instruction on the stack top, and branches
to an Interrupt Service Subroutine (ISS), to service the interrupting 1/0O port.
After completing the ISS, the 8086 returns to the original program, by making
use of the address that was saved on the stack top. The Stack and the stack
operations are described in a later chapter.

In 8086 we have 2 interrupt pins. They are NMI and INTR.

INTR stands for Interrupt. It is an input pin to the 8086, and is an active
high signal. Whenever an external device activates this pin, the pP will be
interrupted oaly if interrupts are enabled using a STI (set interrupt flag)
instruction.

If interrupts are disabled using CLI (clear interrupt flag) instruction, the uP
will not get interrupted even if INTR line gets activated by an external device.
In other words, INTR can be masked.

INTR is a non vectered interrupt. This means, the B086 does not know
where to branch, (o service'the interrupt. The 8086 has 1o be told by an external
device like a Programmable Interrupt Controller regarding the branch to be
made.

MMI stands for Non Maskable [nterrupt. 1t is an input pin to the 8086, and
is an active high signal. Whenever an external device activates this pin, the pP
will be interrupted. CLI and ST1 instructions have no effect on NMI. In other
words, this signal cannot be masked.

NM1is a vectored interrupt. This means, the 8086 knows where to branch,
ta service the NMI interrupt,

Ifboth NMI and INTR are activated at the same time, NM] will be serviced
first. Thus NMI has a higher priority than INTR.

(8)

b. Explain with examples indirect addressing modes available in microprocessor 8086.

Answer:

© IETE

(8)

ACT8 ADVANCED MICROPROCESSORS | DEC 2015

Indirect Addressing Modes

[n indirect addressing, the EA is calculated from the contents of one or two
registers, along with a displacement value, if any, provided in the instruction.
Accordingly, Indirect addressing can be subdivided into the following five
addressing modes.

a. Register indirect

b. Based addressing with displacement

c. Indexed addressing with displacement

d. Based Indexed addressing

e. Based Indexed addressing with displacement

a. Register Indirect Addressing In this mode, the EA is provided in an
Index register or a Base register. The Index register can be SI or DI. But the
Base register can only be BX. It cannot be BP.

Example 1. MOV [DI],0AC24H
In this example, the source is specified using Immediate addressing. [t is the
16 bit data AC24H. The destination is a memory location specified using
Register indirect addressing. It moves AC24H to a memory location whose
16 bit EA is provided in DI
Before After
(DI) A3D2 A3D2
(DS:A3D2) 1246 AC24

It is a 4 byte instruction. This is because, to specify a 16 bit immediate data
2extra bytes are needed.

b. Based Addressing with Displacement [f an operand is specified using
based addressing with displacement, a part of the EA is specified as the contents
of a Painter register (BP or BX), and the other part is provided in the instruction
itself. This part provided in the instruction is called as the Displacement.

Sign Extension Let us digress for a moment to understand the term *Sign
Extension’. Inside a computer anything and every thing must be represented in
the forin of 1s and Os. Thus, even a negative number has to be represcnted in
the form of 1s and Os only. 8086, like most other processors, uses
2's complement notation to represent signed numbers.

Representation of positive numbers In 2's complement notation, a positive
number starts with a 0 in the MS bit position, and the other bits provide its
magnitude. The MS bit of a signed number is generally called the Sign bit.
Thus, +2 is represented using 8 bits as 0 000 0010. Same +2 using 16 bits is
represented as 0000 0000 0 000 0010. Note that this has been achieved by

© IETE 2

ACT8 ADVANCED MICROPROCESSORS

DEC 2015

simply putting copies of the sign bit in the MS byte. This process is known as
Sign Extension.

Representation of negative numbers [n 2's complement notation, a negative
number is represented as the 2's complement of the same magnitude positive
number. Thus, because +2 is represented as 0 (00 0010 using 8 bits, -2 is
represented as 1 111 1110 or FEH, which is the 2's complemeat of +2.
Similarly, as +2 is represented as 0000 0000 0000 0010 using 16 bits, -2 is
represented using 16 bits as 1111 1111 1111 1110 or FFFEH. Once again,
nofice that we have simply pul copies of the sign bit of the B bit number FEH
in the MS byte of the word.

Generation of EA The displacement is a signed number. Depending on the
magnitude of the displacement, the assembler codes the displacement using
one or two bytes, If the displacement is a small value in the range -128 1o 127,
it is coded as a one byte value. This value sign extended to 16 bits is called the
Effective displacement.

If the magnitude of the displacement is larger than the above mentioned
range, the assembler codes it a5 a two byte value. In this case, the effective
displacement is same as the actual displacement.

For example, in the instruction ‘MOV -2[BX],AC24H’ the displacement
value is -2. The assembler codes this displacement as FEH. This FEH sign
extended as FFFEH forms part of the EA. If BX contents is 4200H, the other
part of the EA is taken as 4200H. So, the complete EA is taken as 41FEH,
which is the sum of 4200H and FFFEH. In this addition, any carry that is
generated is ignored.

If the displacement is greater than 127, or less than -128, the assembler
codes it as a 2 byte displacerncnl. For example, in the instruction ‘MOV
300H[BX],AC24H’, as the displacement is greater thao 127, the assembler
codes the displacement as the 2 byte value 0300H. The sum of 0300H and the
contents of BX provides the EA. The 20 bit PA is then generated using the
appropriatz Segment register.

Example 1. MOV 2345H[BX],0AC24H

In this example, the source is specified using Immediate addressing. It is the
16 bit data AC24H. The destination is a memory location specified using Based
addressing with 16 bil displacement. It moves AC24H to a memory location
whaose 16 bit EA is provided as the sum of the contents in BX, and the 16 bit
displacement 2345H.

Before After
(BX) A3D2 A3D2
(DS:C717) 1246 AC24

© IETE

ACT8

ADVANCED MICROPROCESSORS

DEC 2015

© IETE

In this example, C717 is the sum of A3D2H , which is the contents of BX,
and 2345H, which is the 16 bit displacement provided as part of the instruction.
It is a 6 byte instruction. This is because, 2 bytes are used to specify Lhe
displacement, and another 2 extra byles are needed to provide the 16 bit
immediate data. MOV [BX+2345H] 0AC24H iz an alternative way of wriling
the same mstruction in the assembly language of 8086.

MOV [BX-05H].0AC24H results in moving the immediate data AC24H to
the memory location whose effective address is 0SH less than the contents of
BX register. This will be a 5 byte instruction in which the displacement is
given by the byte value FBH, which is -05H in 2’s complement notation. The
Effective Displacement will be raken as FFFBH, which is the 16 bil sign
extended value of FBH.

Example 2. MOV 45H[BP],0AC24
Inthis example, the source is specificd using Immediate addressing. It is the
16 bit data AC24H. The destination is a memory location specified using Based
addressing with B bit displacement. It moves AC24H to a memory location
whose 16 bit EA is provided as the sum of the contents in BP and the 16 bit
effective displacement 0045H.
Before After
(BF) A3D2 A3D2
(S5:A417) 1246 AC24
In this example, A417 is the sum of A3AD2H |, which is the contents of BP,
and 0045H, which is the 16 bit effective displacement. Note that 88 register is
used for generating the PA, as BP is used for obtaining the EA. It isa 5 byte
instruction. This is because, in the instruction code only 1 byte is used for
specifying the displacement.

Example 3. MOV [BX+85H],0AC24H
In this example, the source is specified using Jmmediate addressing, Itis the
16 bit data AC24H. The destination is a memory location specified using Based
addressing with 16 bit displacement. It moves AC2Z4H to a memory location
whose 16 bit EA is provided 2s the sum of the contents in BX, and the 16 bit
displacement D0B5H.
Before After
(BX) A3D2 A3D2
(DS:A457) 1246 AC24
Here, A457 is the sum of A3JD2H , which is the contents of BX, and 0085H,
which is the 16 bit displacement. It is a 6 byte instruction. This is because,
2bytes (D08SH) are used in the instruction code to specify the displacement.

ACT8 ADVANCED MICROPROCESSORS | DEC 2015

c. Indexed Addressing with Displacement 11 is very similar to the Based
addressing with displacement. If an operand is specified using Indexed
addressing with displacement, a part of the EA s specified as the contents of
an Index register (S1 or DI), and the other part is provided in the instruction
itself. This part provided in the instruction is called as the Displacement. For
explanation of the displacement part, see Based addressing with displacement,
described a while ago.

The sum of the contents of part of the EA specified in an Index register, and
the 16 bit effective displacement as described above, provides the complete 16
bit EA. The 20 bit PAjs then generated using DS as the Segment register.

Example 1. MOV 2345H[DI],0AC24H
In this example, the source is specified using Immediate addressing. It is the
16 bit data AC24H. The destination is a memory location specified using Based
addressing with 16 bit displacement. It moves AC24H to a memory location
whose 16 bit EA is provided as the sum of the contents in DI, and the 16 bit
displacement 2345H.
Before After
(DI) A3D2 A3D2
(DS:CT17) 1246 AC24
In this example, C717 is the sum of A3D2H , which is the contents of DI,
and 2345H, which is the 16 bit displacement provided as part of the instruction.
It is a 6 byte instruction.
Example 2. MOV [DI+45H],0AC24H
In this example, the source is specified using Immediate addressing. It is the
16 bit data AC24H. The destinalion is a memory location specified using Based
addressing with 8 bit displacement. It moves AC24H to a memory location
whose 16 bit EA is provided as the sum of the contents in DI and the 16 bit
effective displacement (045H.
Before After
(DI) A3D2 A3D2
(DS:A417) 1246 AC24
In this example, A417 is the sum of A3D2H , which is the contents of DI,
and 0045H, which is the 16 bit effective displacement. Itis a 5 byte instruction.
This is because, in the instruction code only 1 byite is used for specifying the
displacement.
Example 3. MOV 85H([DI],0AC24H
In this example, the source is specified using Immediate addressing. It is the

© IETE 5

ACT8 ADVANCED MICROPROCESSORS | DEC 2015

16 bit data AC24H. The destination is a memory location specified using Based
addressing with 16 bit displacement. It moves AC24H to a memory location
whose 16 bit EA is provided as the sum of the contents in DI, and the 16 bit
displacement OU85H.
Before After
(DI) A3D2 A3D2
(DS:A457) 1246 AC24
In this example, A457 is the sum of A3D2H , which is the contents of DI,
and 0085H, which is the 16 bit displacement. It is a 6 byte instruction. This is
because, 2 byles (DO85H) are used in the instruction code to specify the
displacement.

d. Based Indexed Addressing In this addressing mode, the EA is provided
partly in a Base register (BX or BP), and partly in an Index regisier (SI.or DI).
Their sum provides the EA. In this mode, displacement is not provided as a
part of the instruction. The final 20 bit PA is generated using the appropriate
Segment Register.

Example 1. MOV [DI)[BX],0AC24H

In this example, the source is specified using Immediate addressing. Itis the
16 bit data AC24H. The destination is a memory location specified using Based
Indexed addressing. It moves AC24H to a memory location whose 16 bit EA
is provided as the sum of the contents in DI and BX.

Before Afier
(DD A3D2 A2
(BX) 7234 7234

(DS:1606) 1246 AC24
In this example, 1606 is the sum of AID2H . which is the contents of DI,
and 7224H which is the contents of BX. The carry generated i this addition is
ignored. [tis a 4 byte instruction. This is because, there is no displacement in
the instruction. MOV [BX+DI},0AC24H is an alternative way of writing the
same instruction.

Example 2. MOV [DI+BP],0AC24H

In this example, the source is specified using Immediate addressing. It is the
16 bit data AC24H. The destination is 2 memory location specified using Based
Indexed addressing. It moves AC24H to a memory location whose 16 bit EA.
is provided as the sum of the contents in DI and BP.

If DI contents is A3D2H and BP contents is 1234H, the EA is their sum,
which is B605H. This is also a 4 byte instruction. Note that 88 is used for

© IETE 6

ACT8 ADVANCED MICROPROCESSORS

DEC 2015

pencrating the PAL
Before After
(DI) A3D2 A3D2
(BP) 1234 1234
(55:B606) 1246 AC24

e. Based Indexed Addressing with Displacement 1t is same as Based
Indexed addressing, with displacement of 8 bits or 16 bits, also provided as
part of the instruction.

Example 1. MOV 3TH[DI][BX],0AC24H

In this example, the source is specified using Immediate addressing. It is the
16 bit data AC24H, The destination is a memory location specified using Based
Indexed addressing with B bit displacement. It moves AC24H to a memory
location whose 16 bit EA is provided as the sum of the contents in DI, BX, and
the 16 bit effective offset of 0037H.

Before After
(DI) A3D2 A3D2

(BX) 7234 7234
(DS:163D) 1246 AC24

In this example, 163D is the sum of A3D2H , which is the contents of DI,
7234H which is the contents of BX, and 0037H which is the effective
displacement. The carry generated in this addition is ignored. ILis a 5 byte
instruction. This is because, one extra byte is vsed for specilying the
displacement in the instruction. MOV [BX+D[+37H),0AC24H is an aliernative
way of writing the same instruction.

Example 2. MOV [DI+BP+85H],0AC24H

In this example, the source is specified using Immediate addressing. It is the
16 bit data AC24H. The destination is a memory location specified using Based
Indexed addressing with 16 bit displacement. It moves AC24H to a memory
location whose 16 bit EA is provided as the sum of the contents in DI, BP, and
the 16 bit displacement of 008511

Before After
(DI A3D2 A3D2

(BF) 1234 1234
(S5:B68B) 1246 AC24

In this example, B68B is the sum of ASD2H , which is the contents of DI,
1234H which is the contents of BP, and 0085H which is the 16 bit displacement.

© IETE

AC78 ADVANCED MICROPROCESSORS

DEC 2015

This is a 6 byte instruction. This is because, the instruction code uses 2 bytes
10 specify the displacement of 00BSH. Note that SS is used for generating
the PA.

Example 3. MOV [DI+BX+1234H],0AC24H
In this example, the source is specified using Immediate addressing. It is the
16 bit data AC24H. The destination is a memory location specified using Based
Indexed addressing with 16 bit displacement. It moves AC24H to a memory
location whose 16 bit EA is provided as the sum of the contents in DI, BX, and
the 16 bit offset of 1234H.
Before After
(DI) A3D2 A3D2
(BX) 7234 7234
(DS:283A) 1246 AC24
In this example, 283A is the sum of A3D2H , which is the contents of DI,
7234H which is the contents of BX, and 1234H which is the displacement.
The carry generated in this addition is ignored. Itis a 6 byte instruction, This
is because, two extra bytes are vsed for spedfying the displacement in the
instruction.
In all the above examples, we always used word operations on memory.
However, it is also possible to perform byte oparations on memory. We come
across many such examples in later chapters.

Q.3 a. Explain following instructions in 8086 family and their effect on flag.

(i) CWwWD
(i) IDIV
(iii)) AAS
(iv) SAR
(v) LOOP
(vi) SAHF
(vii) BOUND
(viii) IMUL

Answer:

© IETE

AC78 ADVANCED MICROPROCESSORS

DEC 2015

Soln., CWD (Convert signed word to signed double word): CWD instruction
extends the sign bit of a word in AX register to all the bits of the DX register. It is
used before a signed word in AX is to be divided by another signed word using
IDIV instruction. No flags arc affected.

IDIV : This instruction is used to divide a 16-bit signed number by an 8-bit signed
number or 32 bit signed number by a 16-bit signed number. The 32 bit dividend is
placed in DX and AX registers. The 16 bit divisor is placed in a specified 16-bit
register or memory locations. No flags are affected.

AAS: (ASCII adjust after subtraction) It is used to adjust the AX register after a
subtraction operation.

SAR: (Shift each bit of operand right by specified number of bits), this instruction
shifts each bit of the operand which is contained in an 8-bit or 16-bit register or
memory locations, right by the specified number of bits. The LSB of the operand
is shifted into carry flag. The MSB which is a sign bit for the sign operand is
retained in MSB position.

Flags affected are: OF, SF, ZF, PF and CF.

LOOP: (Jump to specified label until CX = 0) this is used to repeat a sequence of
instructions for the specified number of times. The number of times the specified
sequence is to be repeated 1s stored in CX register. No flags are affected.

SAHF: (Store AH register into flag register) It is an instruction used to store the
data in the AH register into the lower eight bits of the flag register.

BOUND: The BOUND instruction, which has two ¢perands, compares a register
with two words of memory data.

IMUL: This is an instruction for multiplication of two signed numbers. The result
is a signed numbers. The OF (Over flow) and CF (Carry flag) are get affected.

b. Explain with examples LDS and LES instructions.
Answer:

© IETE

(4)

AC78 ADVANCED MICROPROCESSORS | DEC 2015

LDS INSTRUCTION
Purpose: To load the register of the data segment
Syntax: LDS destiny, source

The source operator must be a double word in memory. The word associated with the
largest address is transferred to DS, in other words it is taken as the segment address. The
word associated with the smaller address is the displacement address and it is deposiled in
the register indicated as destiny,

LES INSTRUCTION

Purpose: To load the register of the extra segment
Syntax:

LES destiny, source

The source operator must be a double word operator in memory. The content of the word

with the larger address is interpreted as the segment address and it is placed in ES. The

word with the smaller address is the displacement address and it is placed in the specified

register on the destiny parameter.

Q.4 a. Explain with examples conditional jump instructions which perform a jump based

on the value of a single flag. What is the change needed in the code to branch
anywhere in the segment based on a condition? (8)

Answer:

© IETE 10

AC78 ADVANCED MICROPROCESSORS | DEC 2015

Conditional jumps are always short jumps in the 8086 microprocessor. This limits the range of
the jump to within +127 bytes and -128 bytes from the location following the conditional jump.
The conditional jump instructions test the following flag bits: sign (S), zero (£), carry (C), parity
(P). and overflow (0). If the condition under test is true a branch to the label associated with the
jump instruction occurs, If the condition is false, the next sequential step in the programme
executes. The operation of most conditional jump instructions is straightforward because they
often test just one flag bit, but some test more than one flag. Relative magnitude comparisons
require more complicated conditional jump instructions that test more than one flag bit.

Because we use both signed and unsigned numbers. and the order of these numbers is different,
there are two sets of magnitude comparison conditional jump instructions, both signed and
unsigned 8-bit numbers. The 16- and 32-bit numbers follow the same order as the 8-bit numbers
except they are larger. Notice that an FFH is above the 00H in the set of unsigned numbers, but
an FFH (-1) is less than 00H for signed numbers. Therefore, an unsigned FFH is above 00H, but
a signed FFH is less than 00H.

When we compare signed numbers, we use JG, JE, JGE, JLE, JE, and JNE. The terms greater
than and less than refer to signed numbers. When we compare unsigned numbers, we use JA, JB,
JAE, JBE, JE, and JNE. The terms above and below refer to unsigned numbers. The remaining
conditional jumps test individual flag bits such as overflow and parity. Notice that JE has an
alternative opcode JZ. All instructions have alternate opcodes.

Far Jumps in Real-Address or Virtual-8086 Mode. When executing a far jump in real-address
or virtual-8086 mode, the processor jumps to the code segment and offset specified with the
target operand. Here the target operand specifies an absolute far address either directly with a
pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With
the pointer method, the segment and address of the called procedure is encoded in the
instruction, using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address
immediate. With the indirect method, the target operand specifies a memory location that
contains a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address. The far
address is loaded directly into the CS and EIP registers. If the operand-size attribute is 16, the
upper two bytes of the EIP register are cleared to 0s.
b. Enlists the different steps results in the execution of an INT3 instruction. (8)

Answer:

© IETE 11

ACT8 ADVANCED MICROPROCESSORS | DEC 2015

INT 3 - Break Point Interrupt Instruction

The mnemonic for the instruction is INT 3. Tt isa 1 byte instruction. It is used
to implement a break point in the program. Opeode for this instruction is CCH.
As it is a widely used instruction, the assembler translates INT (3H as the
single byte CCH, instead of the 2 bytes CD 03H, where CD is the code for
INT instruction with type specified in the next byte.
The execution of an INT 3 instruction resulis in the following.
1. Flags register value is pushed on to the stack.
2. CS value of the Return address is pushed on to the stack.
3. IP value of the Return address is pushed on to the stack.
4. IP is loaded from contents of word location 3 x 4 = 0000CH.
5. CSis loaded from contents of next word location.
6. Interrupt flag and Trap flag are reset to 0.
Thus a branch to the ISS takes place. During the ISS, interrupts are disabled

because the Interrupt flag is reset to (. Also, because Trap flag is reset to (),
the IS5 will oot be executed in single step.

Al the end of the 1SS, there will be an [RET instruction which performs as
[ollows,
1. Pop from the stack top to IP register.
2. Pop from the stack top to CS register.
3. Pop from the stack top to Flags register.
Thus a return back 10 the interrupted programtakes place, with Flags register
value unchanped.

Q.5 a. Explain the 8087 instructions to load special constants. (8)

Answer:
13.5 LOAD SPECIAL CONSTANTS INSTRUCTIONS

There is a ROM inside the 8087 which holds frequently used constants, like
x, needed in the calculations. There are instructions to load these constants
above the top of stack. They are discussed below.

Push zero value above the stack top

FLDZ pushes the constant value of zero above the top of stack of registers.
‘LDZ’ stands for ‘Load Zero' in this instruction. The opcode for this

© IETE 12

AC78 ADVANCED MICROPROCESSORS | DEC 2015

instruction is D9 EEH. However, the assembler generates the code
as 9B D9 EEH.

Push the constant +1.0 above the stack top

FLD1 pushes the constant value of +1.0 above the top of stack of registers.
‘LD1’ stands for ‘Load 1’ in this instruction. The opcode for this instruction
is D9 E8H. However, the assembler generates the code as 9B D9 ES8H.

Push = value above the stack top

FLDPI pushes the value of & above the top of stack of registers. “LDPI’
stands for ‘Load = in this instruction. The opcode for this instruction is
D9 EBH. However, the assembler generates the code as 9B D9 EBH.

Push logarithm of 10 to base 2

FLDL2T pushes the constant value of logarithm of 10 to base 2 above the top
of stack of registers. ‘LDL2T" stands for ‘Load Log,10’ in this instruction.
The opeode for this instruction is D9 E9H. However, the assembler generates
the code as 9B D9 E9H.

Push logarithm of e to base 2

FLDL2E pushes the constant value of logarithm of e to base 2 above the top
of stack of registers, ‘LDL2E’ stands for ‘Load Log.e” in this instruction.
The opcode for this instruction is D9 EAH. However, the assembler generates
the code as 9B D9 EAH.

Push logarithm of 2 to base 10

FLDLG?2 pushes the constant value of logarithm of 2 to base 10 above the
top of stack of registers. ‘LDLG2’ stands for ‘Load Log, 2’ in this instruction.
The opcode for this instruction is D9 ECH. However, the assembler generates
the code as 9B D9 ECH.

Push logarithm of 2 to base e

FLDLN2 pushes the constant value of logarithm of 2 to base e above the top
of stack of registers. ‘LDLN2’ stands for ‘Load Log 2’ in this instruction.
The opcode for this instruction is D9 EDH. However, the assembler generates
the code as 9B D9 EDH.
b. Describe the programmer’s view of tag register and exception pointer of 8087.(8)
Answer:

© IETE 13

ACT8 ADVANCED MICROPROCESSORS | DEC 2015

Exception Pointer of B087

When the 8086 comes across an BOB7 instruction, it saves the following
information in a 4 word area termed as the exception pointer.

1. 20 bit physical address of the instruction

2. 11 bit opeode of the instruction

3. 20 bit physical address of the data, if 8087 needs it.
4. Remainiog 13 bits are zeros.

However, some instructions like FLDCW which need a memory operand,
do not affect the 20 bit area of the exception pointer meant for address of
data.

The exception pointer is located in the 8086, and not in 8087, but appears
to be part of BOB7.

Tag Register of 8087

The Tag register is 16 bits wide. The contents of the Tag register indicates
the status of each of the 80 bit registers of the 8087. A common way of
storing the contents of the Tag register is by execuling the instruction
‘FSTENV dst’, where “dst’ is the address of a memory location. It stores the
environment of 8087, of which Tag word is a part. FSTENV stands for ‘Store
environment’. For example, FSTENV [BX] insiruction siores the environment
of B087 into 14 byte memory locations whose 16 bit effective address iz
provided in BX register.

The Tag register is loaded with a new value, when one of FINIT, FLDENV,

or FRSTOR instructions are executed.

The bit description of the Tag register is shown below.

Bitmo | 15 14|13 12|11 10]9 8|7 6 5 43 2[/1 0

! i :

~TAGT|TAGH ET#GS TAG 4 fTFILG 3 |TAGZ TAG | |[TAGO

The status of each 80 bit stack register is provided using a 2 bit field in the

Tag register. The field labeled TAG 3 indicates the status of R3. It should be

noted that TAG 3 is not indicating the status of ST(3). The Tag bits indicate

the status of a stack register as shown below.

Tagbits | Status

00 | Valid data in the register
01 | Zero value in the register

10 | Special number, like _ or denormal, in the register
11 | The register is empty

The Tag word is not normally used in programs. However, it can be used
to quickly interpret the contents of a floating point register, without the need
for extensive decoding.

Q.6 a. Write a Program in assembly language to find the largest of n numbers stored in the
memory. (8)
Answer:

© IETE 14

AC78 ADVANCED MICROPROCESSORS

DEC 2015

Soln.,

MOV AX, 0000
MOV SL 0200
MOV CX, [S1]
BACK : INC SI
INC SI

CMP AX, [SI]
JAE GO

MOV AX, [ST]
GO: LOOP BACK
MOV [0251], AX

INT 3.
b. Discuss the following assembler directives with example
(i) DWORD
(i) OFFSET
(iiil) SEGMENT
(iv) MACRO
Answer:
Soln.,

DWORD: It defines word type variable. The defined variable may have one or
more initial values in the directive statement. If there is one value, two bytes of
memory space are reserved. The general format is

Name of variable DW Initial value or values.
OFFSET: It is an operator to determine the offset (displacement) of a variable or
procedure with respect to the base of the segment which contains the named
variable or procedure. The operator can be used to laod a register with the ofTset
of a variable,
The operator can be used as follows:

MOV SL OFFSET ARRAY

SEGMENT: This directive defines to the assembler the start of a segment with
name segement-name. The segment name should be unique and follows the rules
of the assembler

© IETE

15

AC78 ADVANCED MICROPROCESSORS | DEC 2015

v " F

I'he Syntax is as follows: l'zﬁﬁ ER A
Segment Name SEGMENT { Operand (Optional) } : Comment

Segment Name ENDS.

MACRO: A sequence of instructions to which a name is assigned is called
macro. Macros and subroutines are similar. Macros are used for short sequence of
instructions whereas subroutines for longer ones. Macros executes faster than
subroutines,

The MACRO directive informs assembler the beginning of a macro This is used
with ENDM directive to enclose a macro. The general format of the MACRO
directive is:

Macro Name MACRO ARGI, ARG2, ARG N.
Q.7 a. Write an 8086 assembly language program to search for a given 8 bit value using
linear search in an array of 8 bit numbers. (8)
Answer:

Linear Search Program

Write an 8086 assembly language program to search for a given 8 bit value
using linear search in an array of 8 bil numbers. Message should be displayed
on CRT indicating whether the search was a failure or a success. If it is a
success case, the position of the element in the array is to be displayed.

Approach Methodology Let us say, we want to search for the element 35 in
the set of numbers 55,33,44,66,22 using linear search. We keep comparing
the number 35 with each of the elements in the array, till we come across a
maich or till all the elemenis are compared.

In this example, because 35 is not found, we display the message
"ELEMENT 35 NOT FOUND" on the CRT. Suppose we were searching for
the number 66. Because it is found at position 4, the program should display
the message "ELEMENT 66 FOUND AT POSITION : 4" on the CRT.

© IETE 16

AC78 ADVANCED MICROPROCESSORS | DEC 2015

Program for Linear Search

{With Trace shown for unsuccessful search)

NANE LINEARSEARCH
PAGE 60,80
TITLE LINEAR SEARCH PROGRAM
-HODEL SMALL
. STACK 64
DATR
R EaU 13
LF EQU 10
ARRAY (11} 55H, 33H, 44H, 66H , 22H
LENTH OW $ - ARRAY i LENTH = 5
SRCHEEY Eau B5H
ASC_SK1 Eal CSRCHIKEY / 10H)+'0" ; ASC_sK1 = -3¢
ASC_SK2 Enu (SRCHKEY MoD 10H)+'D' ; ASC_SK2 = -5'
SUCHSG DB *ELENENT *,ASC_SK1,ASC_SK2,' FOUND AT POSITION :
RESULT DE ?,CR,LF, 'S’
FAILNSG DB *ELEMENT *,ASC_SK1,ASC_SK2, ' NOT FOUND *,CR,LF,’$’
. CODE
JPARA 1
LINSRCH:
MOV AX,BDATA
MOV DS,AX
MoV ES, AX
JPARA 2
CLD ;b flag=0
MOV DI1,0 ;DI =0
ROV AL, SRCHKEY ; AL = 35
WOV CX,LENTH ;X =S
iPARA 3 _
REPNE SCASB ;35v655 |35vs33 |Bvedd |35vssé [35vsrz 1
EX = 4|3 |2 I o I
;REP |REP |REP |REP [NOREP . |
1= |2 iz |4 I5 |
9 SUCCESS i I= |- |na al
:PARA & e :
LEA DX,FAILMSG ; s |ox =RFAILMSS ¢|
JHP DISPLAY

; DX = BFAILNSG means that DX is Loaded with offset address of FAILMSG
b. Write an 8086 assembly language program to rename a file, if it exists, using DOS
interrupt. Otherwise display on error message. (8)
Answer:

© IETE 17

ACT8 ADVANCED MICROPROCESSORS

DEC 2015

19.3 RENAME A FILE

Write an BOB6 assembly language program to rename a file, if it exists,
using DOS interrupt. Otherwise display an error message.

Approach Methodology

Let us say, we want the file BUBSORT.ASM 1o be renamed as
BUBBLE.ASM. DOS function call 56H is used for the renaming. Details of
DOS function call 56H is provided in the next section. Move to DS and ES,
the segment address of DATA area. Load DX with the offset address of OL.D
in DATA area. Starting from location OLD, the name of the file to be renamed
i.e. BUBSORT.ASM is stored, This file name terminated with a ‘0’ as per
the reguirement of DOS function call 56H. Thus, D5:DX points to the filename
which is to be renamed.

Load DI with the offset address of NEW in DATA area. Starting from
location NEW, the new name of the file i.e. BUBBLE.ASM is stored. This
file name is terminated with a ‘0" as per the requirement of DOS function
call 56H. Thus, ES:DI points to the new filename.

Now, DOS function call 56H is invoked to rename the file, If there is an
error, the carry flag will be set. Depending on the success/failure of the
operation, a suitable message is displayed on the CRT, and the program is
then terminated.

Working of DOS function call 56H

DS:DX should contain a pointer to ASCIIZ string (ASCII string terminated
by a *0") that identifies the file to be renamed. This string can contain drive,
path, and filepame, ES:DI should contain a pointer to an ASCIIZ string
that id=ntifies the new name of the file. In this string, the drive must be the
same, If there is an error, the carry will be set. An error occurs in the foilowing
cases:

a) the file was not found

b) one of the pathnames specified for the files does not exist

c) access denied

d) trying to rename the file to a different drive

Program to rename a file

HAME REMAME_FILE
PAGE 60,80 "
TITLE PROGRAM TO RENAME A FILE (DOS FUNCTION 56H)

© IETE

18

AC78 ADVANCED MICROPROCESSORS | DEC 2015

. HODEL SHALL
-STACK &4
.DATA
QLD o]z} ‘BUBSORT.ASHM",0
HEW o]] ‘BUBBLE.ASH',0
SUCHEG LB ‘BUBSORT.ASH REMAMED AS BUBBLE.ASM','s*
FAILMSG 0B *ERROR | BUBSGRT.ASH IS NOT RENAMED','$'
LCODE
JPARA 1
KEWNARE :
HOV AN, ADATA ;[Move to DS and E%
Hov 0S, A ;the segment address
MoV ES, A ;of DATA area]
;PARA 2
LEA 0X,0LD ;[Load DX with offset of OLD. Now DS:DX points to
LEA D1,MEW ;the ASCIIZ string ‘BUBSORT.ASH',0 . Load DX with
MoV AH,S56H ;offset of NEW. How ES:DI points ta the ASCIIZ
INT 21H ;string *‘BUBBLE.ASM' ,0 . DOS function 56H is used
JC ERROR ;for renaming BUBSORT.ASM as BUBBLE.ASM. IT there
;is an error for any reason, carry flag is
;set. In such & case go to para &.]
;PARA 3
LEA bX , SUCHSG ;[We come here from para 2 if renaming was a
JMF DISPLAY jwas a success. In such a case, load OX with
joffset of SUCMSG and go to para 5 to display
rsuccess message]
;PARA &
ERROR:

LEA DX,FAILMSG ;[We come here from para 2 if renaming was a
:fajlure. In such & case, load DX with offset

;of FAILMSG.)
JPARA 5
DISPLAY:
HOY AH,O%H ; [Display success/failure message on the CRT
INT 21H sdepending on result using DOS function call O9H]
iPARA &
EXIT:
MoV AH, 4CH ; [Terminate the program using
ENT 218 2005 function call &CH)
END NEUNAME

Q.8 a. Using DOS function call, write a C program to obtain the size of given file. Message
should be displayed on the screen indicating the size in hexadecimal and decimal
format. If the file is not found suitable error message should be displayed. (8)

Answer:

© IETE 19

AC78 ADVANCED MICROPROCESSORS | DEC 2015

213 GETTHE SIZE OF A FILE

Using DOS function call write a C program to obtain size (in bytes) of a
given file. Message should be displayed on the screen indicating the size in
hexadecimal and decimal. If the file is not found suitable error message has
to be displayed.

Approach Methodology

The program prompts the user to enter the file name whose size is required to
be displayed. The program invokes DOS function call 23H to get the file

© IETE 20

AC78 ADVANCED MICROPROCESSORS | DEC 2015

Program to obtain size of a file

f* get file size using BOS function request 23h #/
Finclude <dos.h>

union REGS inregs,outregs;

char fil_namel171;

/* indicated below is the structure of FC(B */

struct
{ char drive_num; /* 1 byte to indicate the drive number w/
char filename[11] ; /* B bytes to indicate file name and

3 bytes to indicate filesame extenzion */
unsigned curblk;

unsigned recsize; f* 2 bytes to indicate record size in bytes */

char fiLL01T) ;

unsigned Long ranrec; /* & bytes to indicate Tile size in records */
T ek

void maing)

{
printf(*Enter a file name, using & characters for the name , \n=J);
printfi~and 3 for the extension. For example, T your interest \n");
printf{~iz to find size of makedir.c type +makedir ¢ ‘,where \nv};
printf(=the blanks also must be typed \n=);

gets{fil_nrame);

T_c_b.drive_num = {; /* 0 stends for current drive ®/
strepy(f_c_b, filename, 1il_pane); e move fil-name to f_c_b.filename *f
f_c b.recsize =1; /% set record size in the FCB to 1 %/
inregs_x.dx = (int) Bf_c_ b, f* point DX to FCB */

inregs.h.ah = (n25;

intdes(Rinregs, Boutregsl; J% dnvoke DOS function call 23n =/

/* display failure or success message based on the value of AL #/
it loutrege . h.al I= O}
printf(=\n FILE ¥s NOT FOUND.\n", fil_name);
else
{ -printf{-\n size of %s in hex = Xix \n-,fil_name,f_c_b.ranrec};
printf(-\n size of Xs in decimal = Xlu\n",Til_nase,f c_b.ranrec);

b. Using BIOS routines, write a C program to display a suitable message on CRT in the
middle of the screen, after clearing the screen first. (8)
Answer:

© IETE 21

AC78 ADVANCED MICROPROCESSORS | DEC 2015

Program to Control Display on the CRT

/* Sereen control program in € to clear screen, then display a message on
screen, a portion of which blinks, another iz highlighted, and the
Last portion displayed in reverse video =/

#include <dos.h»

union REGS inregs,outregs;

char HSE[40] ;

void maini)

{int 1,J,K,COL,ATRIB;
printf{=Enter a string containing 3 words. After the \n*);
printf{~third word, leave a blank space, and thenm \n~};
printf{-type <CR>, Mow, the first word will blink, Yn=);
printf(=the second will be highlighted, and the third \nv};
printf(=will be displayed in reverse videa. \nin*);
printf{~To get back to DOS prompt type CLS \n");

gets{NSE);

/* Invoke function O&H of BIOS interrupt 10H,

for scrolling of window, to clear screen */

inregs.x. cx=0; /* Top left of window is at (CH,CL) i.e.00,00 */
inregs.x. dx=0x184f; /* Bottom right is at (DH,DL) 1.e. (18H,4FH) */
inregs. h. bh=0; f* As BH = 0, we get blank belov the window %/
inregs.h.al=0; /* As AL = 0, the entire window vill be blanked */
inregs.h.ah=é; /% Invoke function call D5H */f

© IETE 22

ADVANCED MICROPROCESSORS

DEC 2015

AC78
intB&6(0x70, Binregs, Boutregs); /* of BIDS interrupt 10H &/
oL = 26; /™ toL initialized to column number
of beginning of message display */
J=0; f* 4 initialized to beginning of message &/
for (K=1; K3 ;+4K) /* Execute the loop 3 times 1o display

the thres portions of the message 4/

f* Set display attributes for the three portiocns of message %/

if (K == 1) ATRIB = (mB87; e

if (K == 2) ATRIB = DxOf; L

if (K == 3) ATRIB = Ox70; b

for (1 = J; MSGII1l= + +; ++1)

blinking normal white characters
on black background ./
nanblinking high intensity white
characters on black background */
ronblinking black characters on
white background (reverse video)%/

/" [Execute the ‘for’ loop till & blank is encountered, to display

8 portion of message */f

{
/® Invoke function 024 of BIOS interrupt 10M,
for setting the cursor position on the CRT. %/

inregs.h.dh=12; /* RoW number of cursor = DH = 12 #/
inregs.h.dl = COLH ; /* COL is moved to DL. Then

COL 5 incresented uf
inregs. h.bh=0; /* Video page number = BH = 0 &/
inregs. h.ah=2; J* Invoke function call O2H+/
intB&{0x10, &inregs, Boutregs); /* of BIOS interrupt I0H*/
f* Invoke function O9H of BIOS interrupt 10H, for

displaying the character in AL on the CRT *f

inregs. h. bh=0; /* Video page number = BH = 0 =/
inregs.h.bl=ATRIE; /™ BL contains attribute byte »/
inregs.x.cx=1; /™ Character written once

only, because (X =0 #/
inregs.h.al=NSG[1]; /®* move to AL character to be written®/
inregs.h_ah=0x09; /% Invoke function call 09w/
intB&(0x10,Binregs, Boutregs); /* of BIOS interrupt T0H*/

}
4 = I#1; /™ J initialized to next portion of messege */
inregs.h.dl = COL#+; /* DL initialized to column number of

next portion of message display */

)

Q.9 a. Explain the Architecture of 80486.

Answer:

© IETE

(8)

23

ACT8 ADVANCED MICROPROCESSORS | DEC 2015

32 Architecture of 80486

J2bit pipelined architecture of Intel's 80486 is shown in Fig. 10.15. The internal architecture of
0 be broadly divided into three sections, namely bus interface unit, execution and control wunit
floating-point unit.

e bus interface wnit is mainly responsible for coordinating all the bus activities. The address driver
faces the internal 32-bit address output of cache unit with the system bus. The data bus transreceivers
ce the interpal 32-bit data bus with the system bus, The 4X80 write data buffer is a queue of four
gisters which hold the 80-bit data to be written to the memory Cavailable in advance due to
ed execution of write operation). The bus control and request sequencer handles the signals like
L WIR#, DICE, MAO#, PCD, PWT, RDY#, LOCK#, PLOCK#, BOFF#, A20M#, BRE(), HOLD,
LDA, RESET, INTR, NMI, FERR# and IGNNE# which basically control the bus access and operations.
The burst conivol signal BRDY# informs the processor that the burst is ready (i.e. it acts as ready
in burst cycle). The BLAST# output indicales to the external system that the previous burst cycle
gover. The bus size control signals BS .# and BS # are used for dynamic bus sizing. The cache control
jnals KEN#, FLUSH, AHOLD and EADS# control and maintain the cache in coordination with the
e control unit. The parity generation and control unit maintain the parity and carry out the related
during the processor operation. The boundary scan contrel unir, that is built in 50 MHz and
ivinced versions only, subject the processor operation to boundary scan lests (o ensure the correct
geration of various components of the circuit on the mother board, provided the TCK input is not tied

I instructions. But prior to execution, the provection unif checks, if there is any violation of
prolection norms, In case of violation, an appropriate exception is generated. The control ROM stores
illi_cmpmgmm for deriving control signals for execution of different instructions. The register bank

rotate algorithms. The segmentation unit, descriptor registers, paging unit, transilation look asvide buffer
ind fimit and atiribure PLA work together to manage the virlual memory of the system and provide
‘equate protection to the codes or data in the physical memory. The floaring-peint unit with its register
‘bank communicates with the bus inferface unit under the control of memory management unit, via its
.bit internal data bus, The floating-point unit is responsible for carrying out mathematical data
\processing at a higher speed as compared to the ALU, with its built in floating-point algorithms.

© IETE 24

ADVANCED MICROPROCESSORS | DEC 2015

ACT8

S
Sd0 - Oy
MHOd

ey
S0%3 "TI0OHY
HEMT=2 % N3

— g |

#1syig e ey

-
W LEWI8 § AQJd]

N
FAMND| #uEad
AR |
JIETH YO OI0H
CEHE ANV #4408
FAIC £ADON AT |

Liviel 'O #o0 ————— |

WO HEi #EOY

]

S pUs
uofiRlauan U

e e - 1Y

dacuanhag psanbay)
DA S

RN LR
sng EEg

0g =
E12UNG Ajlian

AN IRRIpEY

[S
#-3g-wlag
.U(.NJ.

enelUl sng

9RFOg Jo aumpanyy 51001 Sig

g
WOTEIN L
pepasay WioH |

—

2
oGS e8| o o
n Il
1581 Uopasniy oy
PIE oy Bunea|4

O3NS U| -oaany

b

]

r
id
ik ik BpHEEy0 wﬁﬁnﬁ . Ny
uogepsuel | |
s [=,
o iopdiiose fr——2—| @ 1=ysiBay
L2y 1 wn b =
s Buie 4 FLTRCRE Hﬂ._m“ SEYIUS jBUeg |
4 ._U.hvﬂ Ly
R |
Lul:) ShwapEy E=ew)
i
ZE
i =
35 SN EEIE-ZE e — |
.4 s R B
T\
Sng IBjSUEL| PUNS UG $9

(8)

Explain the register organization of 80286.

b.
Answer:

25

© IETE

ACT8 ADVANCED MICROPROCESSORS

DEC 2015

9.2 INTERNAL ARCHITECTURE OF 801856

9.2.1 Register Organisation of 80286
The 80286 CPU contains almost the same set of registers, as in 8086, viz.

ta) Eight 16-bit general purpose regislers
(h) Four 16-bit segment registers

() Status and control register

(d) Instruction pointer.

The register set of 80286 is shown in Fig. 9.1.

16-8IT Special
REGISTER anmm' .
NAME 7 a7 0 oo
BYTE AX | AH AL MULTIPLY/DIVIDE
mssms ox| oM DL IO INSTRUGTON
EGESTER cx| cH cL LOOP/SHIFT/REPEAT COUNT
SHOWN) BX| BH B BASE REGISTERS
BF
st L ! | INDEXREGISTERS
e
sp| - STACK POINTER
15 gEMERAL D
15 0 REGISTERS 15 0
cs | CODE SEGMENT SELECTION F
DS DATA SEGMENT SELECTION P
ss STACK SEGMENT SELECTION STATUS AND CONTROL
ES EXTRA SEGMENT SELECTION SV EEN
SEGMENT REGISTERS

Fig. 9.1 Regster Set of 80286 (Intel Corp.)

The flag regisier reflects the results of logical and arithmetic instructions. The flag register
D, Dy, Dy, D5 and D, are modified according to the result of the execution of logical and a
instructions, These are called as status flag bits. The bits Dy and Dy namely, Trap Flag (TF)and
Flag (TF) bits, are used for controlling machine operation and thus they are called coatrol flag
dbove discussed flags are also available in 8086, Figure 9.2 shows the flag register of R0286 with
bit definitions, and the additional field definitions, '

© IETE 26

ADVANCED MICROPROCESSORS | DEC 2015

ACT78
come pCIH SUBJECT _Ad Wpeed Mtk et
(Marlang Scheme)
R e e e T e e Wuit, T
I I Bool,
.' Q.2 . A4 WaRlig ;Fﬂ/ MM Pﬁ:'“’-'%-
! ¢ Wl fr THTR fwam
|
! I "?,:x 'ﬁ_w'\-{-i} ‘*f»' Qtul'i‘hbj gt.\"{c{w”b‘a W*&Q {‘ lldd Iﬁl ;
[¢ weaily for € .EXFZILLL-}QU A eath we AL

X 2 VPl Wogadh Twihuchm .

|
!

[x

T W~awdih ‘Ta-“' eaclt |wnS huchou

U vl Tl 2 Condibon TWwcbund ™
7. WwaAdy .KV' j\\,{b_-} Qccaﬂw‘ufl ! 5-11“-1.]15 -

b | W eoch $h2P 2U Liphed. 1
2 W~ah Ll:t '{:v' .Lm"\"‘;.ur.*t' ﬁ-i_a‘c'l__p“,c wid [t :v.-"\z]uj \,{’EF&U‘

© IETE 27

ACT8

ADVANCED MICROPROCESSORS

DEC 2015

1'.'_m,d|. {.:_ 'Ki-f :?,-'l‘.'_ AA ::!_,"\'L

[1} WAl {":\,L- L;"- i’,‘ I._ o L Wl L'-j qI'?‘ ¢ { Ul b fj\lr‘f.—[\,-']

9 ~ald fio

J f{ Wadls for

Tag fegitly

s ™ wiladd (L _

EX {t-'.l % 1H"v‘-’{"*)

_I” 1 1A ald

|
| 1 TR el T) 4§l e S I
0 - . =
) ! J . £ ey ﬁ for hr ny |\ & fL‘~ s i
I 2L WAR WU gx' Lok D 'l‘J' \J"Jk.r;‘
it p \ .
f ls. % Waad (A ff\‘_ @ o AN ({ | -Vf'{ﬁ_"\ V@
P
\
Q7 Tn T L s b Vi algeathe T
'_'I I'l-'L_ il L-E 1|r‘1,._ / -1'- '-| 'l,‘--ll o 3 H
- {
b C‘ WAasmAL ".t:,'_. r_"\.i ': oY1 f vt
‘ Q.8 - ‘I:':/_ I(L\“\Lt'] {n— r"' "':f- IH'-'-"\ PR F
LN v P
I Y. i j ,}0(waedts fr R R{}p.f-’\f
| 5] . f f ol
4 Waody)y Ao _,gt.fi.{ Al
f% W) ﬁ._ { l.'f A fasic

SIS -
.9 a. ¢
‘."}?

1
5. /!

WaetAA Ao

| Hz\-j Aa W
oot A [; :

Y f“{’ {anat

Waauds4 <ﬁ fiy'e “Fla s

Wit L;-' 7€- =N J}"IL (e

L

L

{
D

1

TEXT BOOK

I Advanced Microprocessors & IBM-PC Assembly Language Programming, K. Udaya

Kumar and B.S. Umashankar, TMH, 1996
Il. Advanced Microprocessors and Peripherals, A.K. Ray and K.M. Burchandi, TMH, 2000

© IETE

28

