
AC72/AT72/AC117/AT117 LINUX INTERNALS DEC 2015

© IETE 1

 Q.2 a. Provide a list of 14 main characteristics of LINUX (no description required)
 (7)
Answer:

1. Multitasking
2. Multi-user access
3. Multi-processing
4. Architecture independence
5. Demand load executables
6. Paging
7. Dynamic Cache for hard disk
8. Shared Libraries
9. Support for POSIX 1003.1
10. Various formats for executable files
11. Memory protected mode
12. Support for national keyboards and fonts
13. Different files systems
14. TCP/IP, SLIP and PPP support

 b. What are the strengths and drawbacks of LINUX? (9)
Answer:

STRENGTHS: The LINUX software is developed under open and distributed conditions. “Open”
means that anyone can become involved if they are able to do so. This requires LINUX activists
to be able to communicate quickly, efficiently, and above all, globally. The medium for this is the
internet. It is therefore no surprise that many of the developments are the product of gifted
students with access to the internet at their universities and colleges. The development systems
available to these students tend to be relatively modest and therefore LINUX is still the 32-bit
operating system that uses the least resources without sacrificing functionality. As LINUX is
distributed under the conditions of the GNU Public Licence [GPL], the complete source code is
available to users. This allows anyone to find out how the system works, and trace and remove
any bugs.

DRAWBACKS: LINUX is a “programmer system” like UNIX. Cryptic commands,
configurations that are difficult to follow, and documentation that is not always comprehensible
make it far from easy to use – and not only for beginners.

 Q.3 a. Distinguish between the file structure and inode structure. (6)
Answer:

The inode structure describes a file. The concept inode is used more than once in different
contexts. Both the data structure in the kernel and the data structure on the hard disk describe files
(each from their own viewpoint) and are therefore inodes. Inodes contain information such as the
file’s owner and access rights. There is exactly one inode entry in the kernel for each file used in
the system.

File structures (that is, data structures of the struct file type), on the other hand, contain the view
of a process on these files (represented by inodes). This view on the file includes attributes, such
as the mode in which the file can be used (read, write, read+write), or the current position of the
next I/O operation.

 b. Explain the system call nice. (6)
Answer:

The system call nice is a little more complicated that the system call getuid. It expects a
number by which the static priority of the current process is to be modified as its
argument.

AC72/AT72/AC117/AT117 LINUX INTERNALS DEC 2015

© IETE 2

All system calls which process arguments must test the arguments for plausibility.

asmlinkage int sys_nice (int increment)
{

 int newpriority;

Note that a larger argument for sys_nice() indicates a lower priority. This makes the
name increment for the argument of nice a bit confusing.

 if (increment < 0 && !capable (CAP_SYS_NICE))
 return –EPERM;

capable() checks whether the current process has the right to increase its priority. This is
the case with the classical UNIX systems when the process has privileges. LINUX has a
concept of subdividing these privileges in a finer way.

The new priority for the process can now be calculated. Among other things, a check is
made at this point to ensure that the new priority for the process is within a reasonable
range.

 Newpriority = …

 if (newpriority < -20)

newpriority = -20;
if (newpriority > 19)

newpriority = 19;
 current -> nice = newpriority;

return 0;

} /* sys_nice */

 c. Describe any four important states in a process. (4)
Answer:

1. Running State
The task is active and running in non-privileged User Mode. In this case the process will go
through the program in a perfectly normal way. This state can only be exited via an interrupt
or a system call. System calls are no more than special cases of interrupts. In either case, the
processor is switched to the privileged System Mode and the appropriate interrupt routine is
activated.

2. Interrupt Routine State
The interrupt routines become active when the hardware signals an exception condition,
which may be new characters input at the keyboard or the clock generator issuing a signal
every 10 milliseconds.

3. System Call State
System calls are initiated by software interrupts. A system call is able to suspend the task to
wait for an event.

4. Return from system call State
This state is automatically adopted after every system call and after some interrupts. At this
point checks are made as to whether the scheduler needs to be called and whether there are

AC72/AT72/AC117/AT117 LINUX INTERNALS DEC 2015

© IETE 3

signals to process. The scheduler can switch the process to the ‘Ready’ state and activate
another process.

 Q.4 a. What are bdflush and kupdate and how are they used? What is the

advantage of the combination of bdflush and kupdate? (8)
Answer:

Bdflusg and kupdate are kernel threads that write the buffer back to the hard disk.
Kupdate writes the old modified buffers back to the hard disk, including the superblock
and inode information.

Kupdate writes all modified buffer blocks that have not been used since a certain time
period back to the hard disk, including any superblock and inode information. The
kupdate interval used under LINUX is five seconds by default. The time that kupdate
waits to write a modified buffer to the disk is 30 seconds by default.

Bdflush writes the number of blocks (standard 64) provided by means of the bdflush
parameter to the hard disk in an endless loop. If the total number of modified blocks is
higher than a percentage (standard 30) the buffers are written back to the disk. The
system call bdflush sets the parameters for both kernel threads during the ongoing
operation.

The advantage of using the combination of bdflush and kupdate is: the number of block
buffers contained in the modified buffer cache is minimized.

 b. Provide a complete list of memory page flags along with the respective
descriptions. (8)

Answer:
 --------------------- --
 Flags Description
 --------------------- --

PG_locked The page is locked

AC72/AT72/AC117/AT117 LINUX INTERNALS DEC 2015

© IETE 4

PG_error This flag indicates an error condition
PG_referenced This page has been recently accessed
PG_uptodate This page matches the hard disk contents
PG_free_after This page should be released after an I/O operation
PG_decr_after The counter nr_async_pages is decremented after reading this page
PG_swap_unlock_after After reading from the swap space, the page should be unlocked by

calling swap_after_unlock_page () function
PG_reserved The page is reserved
--------------------- --

 Q.5 a. Discuss how Shared Memory is used for inter process communication. (8)
Answer:
Shared Memory is an efficeint means of passing data between programs. One program will

create a memory portion which other processes (if permitted) can access.

 In the Solaris 2.x operating system, the most efficient way to implement shared

memory applications is to rely on the mmap() function and on the system's native
virtual memory facility. Solaris 2.x also supports System V shared memory,
which is another way to let multiple processes attach a segment of physical
memory to their virtual address spaces. When write access is allowed for more
than one process, an outside protocol or mechanism such as a semaphore can be
used to prevent inconsistencies and collisions.

 A process creates a shared memory segment using shmget(). The original owner

of a shared memory segment can assign ownership to another user with shmctl().
It can also revoke this assignment. Other processes with proper permission can
perform various control functions on the shared memory segment using shmctl().
Once created, a shared segment can be attached to a process address space using
shmat(). It can be detached using shmdt(). The attaching process must have the
appropriate permissions for shmat(). Once attached, the process can read or write
to the segment, as allowed by the permission requested in the attach operation. A
shared segment can be attached multiple times by the same process. A shared
memory segment is described by a control structure with a unique ID that points
to an area of physical memory. The identifier of the segment is called the shmid.
The structure definition for the shared memory segment control structures and
prototypews can be found in <sys/shm.h>.

 b. What is the purpose of socket programming? What is the advantage of using

socket? Illustrate with an example. (8)
Answer:

The socket programming interface provides for communication via a network as well as locally
on a single computer.

The advantage of this interface is that it allows network applications to be programmed using the
long-established UNIX concept of file descriptions.

A particularly good example of this is the INET demon. The daemon waits for incoming network
service requests and then calls the appropriate service program with the socket descriptor as
standard input and output. For very simple services, the program called need not contain a single
line of network-relevant code.

AC72/AT72/AC117/AT117 LINUX INTERNALS DEC 2015

© IETE 5

 Q.6 a. Describe the two algorithms used by Ext2 file system to limit the
fragmentation of files? (4)

Answer:
A. Target Oriented allocation.

New data blocks are searched for near a “target block”. If this block is free, it is allocated.
Otherwise, a free block is sought within 32 blocks of the target block, and if found, is
allocated. If this fails, the block allocation routine tries to find a free block which is at least in
the same block group as the target block. Only after these avenues have been exhausted are
the other groups investigated.

B. Pre-allocation.
If a free block is found, a number of the following blocks are reserved (if they are free). The
number can be inserted in the Ext2 superblock, otherwise
EXT2_DEFAULT_PREALLOC_BLOCKS (8) blocks are reserved. If the file is closed, the
rest of reserved blocks will be released. This also guarantees that as many data blocks as
possible are collected into one cluster. Pre-allocation of blocks can be deselected by
removing the definition of EXT2_PREAALOCATE from the file <linux/ext2_fs.h>.

 b. Discuss about the Superblock of the Ext2 file system. (4)
Answer:

 c. Describe the structure of a directory entry in the Ext2 file system. How is an
entry deleted? (8)

Answer:
In the ext2 file system, directories are administered using a singly linked list. Each entry in this list has

the following structure.

 Struct ext2_dir_entry
 {
 unsigned long inode; /* inode number */
 unsigned short rec_len; /* length of directory entry */

AC72/AT72/AC117/AT117 LINUX INTERNALS DEC 2015

© IETE 6

 unsigned short name_len; /* length of filename */
 char name [EXT2_NAME_LEN]; /* filename */
 };
 The field rec_len contains the length of the current entry, and is always rounded up to a multiple
of 4. This enables the start of the next entry to be calculated. The name_len field holds the length of the
filename. It is perfectly possible for a directory entry to be longer than is required to store the filename. A
possible structure is shown below.

 An entry is deleted by setting the inode number to zero and removing the directory entry from the

linked list: that is, the previous entry is simply extended. This eliminates the need for shift
operations in the directory, which might otherwise exceed the limits of the buffers. However, the
‘lost space’ is not wasted, but is reused when a new name is entered, either by overwriting an
entry with a value of 0 or by using the additional space by removal of the link.

 Q.7 a. What is a device driver and what special attention must be taken while
implementing a device driver? (8)

Answer:
Device drives are a collection of routines, which write magical numbers to magical places in the
hardware. So that these routines can be sensibly fitted into an OS, an interface is implemented,
which can be called by the OS with definite actions to be carried out on the hardware. The OS, in
addition to hardware access, takes on the task of coordinating resource distribution. The device
driver runs in the memory of the kernel, and therefore has the same rights as the kernel. Therefore
special care and attention should be taken when implementing a device driver, as an entry in the
wrong register can have devastating consequences. The device driver should always use the
resources as economically as possible, especially if it is permanently inserted in the kernel.

 b. How many broad types of devices are allowed in LINUX? Describe them.(4)
Answer:
There are two basic types of device: block-oriented devices and character-oriented devices.

Block devices are those to which there is random access, which means that any block can be read
or written to at will. Under LINUX, these read and write accesses are handled transparently by
the cache. Random access is an absolute necessity for file systems, which means that they can
only be mounted on block devices.

Character devices, on the other hand, are devices which can usually only be processed
sequentially and are therefore accessed without a buffer. This class includes the commonest
hardware, such as sound cards, scanners, printers and so on, even where internal operation uses
blocks. These blocks, however, are sequential in nature, and cannot be accessed randomly.

 c. Briefly describe four different transfer operation modes supported by the

DMA controller. (4)
Answer:

Demand transfer operation mode

 2

12

0 12 24 44 56

1

..

2

12

2

..

11

20

10

lost + found

2017

12

4

home

AC72/AT72/AC117/AT117 LINUX INTERNALS DEC 2015

© IETE 7

In this mode, the DMA controller continues transferring data until the terminal count is reached
or the device deactivates the DREQ. The transfer is then suspended until the device reactivates
the DREQ.

 Single transfer operation mode
In this mode, the DMA controller transfers one value at a time and then returns the bus to the
processor. Each further transfer must be requested by the DREQ signal or an access to the request
register. This mode is used for slow devices, such as floppy disks and scanners.

 Block transfer operation mode

In this mode, the DMA controller carries out a block transfer without relinquishing the bus. The
transfer initiated by a DREQ.

 Cascade operation mode

Cascading of another DMA controller: in this mode the DMA controller passes requests it
receives and thus enables more than one controller to be used. By default, DMA channel 0 of the
second controller (or DMA channel 4 in consecutive numbering), which is the master in the AT,
is in this mode.

 Q.8 a. Briefly explain the layer model of the network implementation using TCP/IP.
 (8)

Answer:

AC72/AT72/AC117/AT117 LINUX INTERNALS DEC 2015

© IETE 8

 b. What are the differences between SLIP and PLIP? (8)
Answer:

The most significant difference between SLIP and PLIP is that one protocol uses the
computer’s serial interface for data transfer while the other transfers data via the parallel
port. When we speak of the parallel interface here, we do not mean Ethernet pocket
adapters but the “bare” interface.

While PLIP enables a very powerful link to be set up between two computers, SLIP is the
simplest way of connecting a computer or a local network to the internet via a serial link
(a modern connection to a telephone network). SLIP and PLIP differ from Ethernet in
that they can only transfer IP packets. For simplicity, SLIP does not even use a hardware
header, nor does PLIP make great demands. It simply sets the hardware address to “fd:fd”
plus the IP address and then uses the Ethernet functions for the protocol header.

 Q.9 a. List the eight Macros for modules along with their functions. (8)
Answer:

 Macro Functions of the macro

MODULE_AUTHOR(name) Author of the module

MODULE_DESCRIPTION(desc) Brief description of the module

MODULE_SUPPORTED_DEVICE(dev) Device that is implemented by the module

MODULE_PARM(var, type) A module parameter

MODULE_PARM_DESC(var, desc) Brief description of the module parameter

EXPORT_SYMBOL(var) Export the variables or functions

Module_init(func) Defines the func function for the module as

the init function

Module_exit(func) Defines the func function for the module as

the cleanup function

 b. Explain using diagram the symmetric multiprocessing (SMP) system with

two processors. (8)
Answer:

AC72/AT72/AC117/AT117 LINUX INTERNALS DEC 2015

© IETE 9

TEXT BOOK

I. Linux Kernel Internals, M. Beck, H. Bome, et al, Pearson Education, Second Edition,
2001

