ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

Q.2 a. Explain salient features of UNIX operating system. 4)

Answer:

Unix (officially UNIX) is a registered trademark of The Open Group that refers to a family of
computer operating systems and tools conforming to The Open Group Base Specification, Issue
7 (also known as POSIX.1-2008 or IEEE Std 1003.1 - 2008). To use the Unix trademark, an
operating system vendor must pay a licensing fee and annual trademark royalties to The Open
Group. Officially licensed Unix operating systems (and their vendors) include OS X (Apple),
Solaris (Oracle), AIX (IBM), IRIX (SGI), and HP-UX (Hewlett-Packard).

Note: Operating systems that behave like Unix systems and provide similar utilities, but do not
conform to Unix specification or are not licensed by The Open Group, are commonly known as
Unix-like systems. These include a wide variety of Linux distributions (e.g., Red Hat Enterprise
Linux, Ubuntu, and CentOS) and several descendents of the Berkeley Software Distribution
operating system (e.g., FreeBSD, OpenBSD, and NetBSD).

Propietary Unix operating systems (and Unix-like variants) run on a wide variety of digital
architectures, and are commonly used on web servers, mainframes, and supercomputers. In
recent years, smartphones, tablets, and personal computers running versions or variants of Unix
have become increasingly popular.

The original Unix operating system was developed at AT&T's Bell Labs research center in 19609.
In the 1970s and 1980s, AT&T licensed Unix to third-party vendors, leading to the development
of several Unix variants, including Berkeley Unix, HP-UX, AIX, and Microsoft's Xenix. In
1993, AT&T sold the rights to the Unix operating system to Novell, Inc., which a few years later
sold the Unix trademark to the consortium that eventually became The Open Group.

Unix was developed using a high-level programming language (C) instead of platform-specific
assembly language, enabling its portability across multiple computer platforms. Unix also was
developed as a self-contained software system, comprising the operating system, development
environment, utilities, documentation, and modifiable source code. These key factors led to
widespread use and further development in commercial settings, and helped Unix and its variants
become an important teaching and learning tool used in academic settings.

b. Compare internal and external commands of UNIX with suitable examples.
Also explain the file attributes displayed by Is - command. (8)
Answer:
UNIX commands are classified into two types

o Internal Commands - Ex: cd, source, fg
o External Commands - Ex: Is, cat

Let us look at these in detalil

Internal Command:

Internal commands are something which is built into the shell. For the shell built in
commands, the execution speed is really high. It is because no process needs to be
spawned for executing it. For example, when using the "cd" command, no process is
created. The current directory simply gets changed on executing it.

© IETE 1

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

External Command:

External commands are not built into the shell. These are executables present in a
separate file. When an external command has to be executed, a new process has to be
spawned and the command gets executed. For example, when you execute the "cat"
command, which usually is at /usr/bin, the executable /usr/bin/cat gets executed.

How to get the list of Internal commands?
You can get only if you are in bash shell. Bash shell has a command called "help" which
will list out all the built-in shell commands.

$ help
alias [-p] [name[=value] ...] bg [job_spec ...]
bind [-1pvsPVS] [-m keymap] [-f fi break [n]
builtin [shell-builtin [arg -..]] caller [EXPR]
case WORD in [PATTERN [] PATTERN]. cd [-L|-P] [dir]

command [-pVv] command [arg ...] compgen [-abcdefgjksuv] [-
0 option

How to find out whether a command is internal or external?
type command:

$ type cd
cd 1s a shell builtin
$ type cat

cat is /bin/cat

For the internal commands, the type command will clearly say its shell built-in, however
for the external commands, it gives the path of the command from where it is executed.

Internal vs External?
The question whether should we use an internal command or an external command OR
which is better always does not make sense. Because in most of the situations you will end

© IETE 2

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

up using the command which does your job which could be either internal or external.

The big difference in internal vs external command is performance. Internal command are
much much faster compared to external for the simple reason that no process needs to be
spawned for an internal command since it is all built-into the shell. So, as the size of a script
gets bigger, using external commands a lot does adds to its performance.

Not always we get a choice to choose an internal over an external command. However, a
careful look at our scripting practices, we might find quite a few places where we can avoid
external commands.

Example:
Say to add 2 numbers say x & y:

Not good:

z="expr $x+$y"

Good:

let z=x+y

let is a shell built-in command, whereas expr is an external command. Using expr will be
slower. This might be very negligible when you are using it at an one-off instance. Using it in
a place say on every record of a file containing million records does give a different
dimension to it.

c. Explain the following commands: (2x2)
I. creat function
ii. Iseek function
Answer:

34 creat Function

A new file can also be created by calling the creat function

int creat coenst char *pathname, wmode t mode)

| : . e |
Beturns: file descriptor openad for write-only if OK, —1 on error

© IETE 3

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

Note that this function is equivalent to

open (pathname, O_WRONLY | O CREAT | O_TRUNMC, muMe);

Histocically, ir eacly versions of the UNIX System, the second arpument o open could be only
0, 1, or 2. There was no way to cpen a file that didn't almeedy exist. Therefore, a separate
system call, creat, was needed to ereate new files. With the O_CREAT and ©_TRUNC aptions
now provided by cpen, a separate ereat function is no longer neeched.

We'll show how to specify mode in Section 4.5 when we deseribe a file's access
permissions in detail.

One deficiency with creat is that the file is opened only for writing. Before the
new version of cpen was provided, if we were creating a temporary file that we wanted
to write and then read back, we had to call creat, close, and then open. A belter
way is to use the open function, as in

open (patimame, © RDWE | O _CREAT | O_TRUNC, wmode) ;
36 lseek Function

ey Every open file has an associated “rurrent file offset,” normally a non-negative integer
/ that measures the number of bytes from the beginning of the file. (We describe some
exceptions to the "non-negative” qualifier later in this section.) Read and write
operations normally start at the current file offset and cause the offset to be incremented
by the number l][; bytes read or written, By default, this offset is initialized to " when a
file is opened, unless the O_APPEND option is specified.
An open file’s offset can be set exppllntlv by calling 1seek.

o

fiinclude sunistd hs
off_t lseek(int filades, off_t offset, int whence)y

Eeturns; new file offset if G, =1 cn erfor }

The interpretation of the offset depends on the value of the whence argument.
® [f whence is SEEE_SET, the file's offset is set to offset bytes from the beginning of
the file.
s [f whence is SEEK_CUR, the file s offset is set to its current value plus the offsel.
The affset can be positive or negative.
* [If whence is SEEK_END, the file's offset is set to the size of the file plus the offsel.
The offsef can be positive or negative.
Because a sucressful call to 1seek returns the new file offset, we can seek zero byfes
from the current position to determine the current offset:
off t CUrrpos;
currpos = lseek(fd, 0, SEEE _CUR);

This technique can also be used to determine if a file is capable of seeking. If the file
descriptor refers to a pipe, FIFO, or socket, 1seek sets errno to ESPIPE and returns —]’L%

Q.3 a. Explain the procedure of process creation in UNIX with the help of system

calls. (4)
Answer:

Process creation in UNIX

© IETE 4

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

The seven-state logical process model we considered in a previous lecture can
accommodate the UNIX process model with some modifications, actually becoming a
ten state model.

First, as we previously observed, UNIX executes most kernel services within a
process's context, by implementing a mechanism which separates between the two
possible modes of execution of a process. Hence our previously unique “"Running”
state must actually be split in a “"User Running" state and a =~ Kernel Running" state.
Moreover a process preemption mechanism is usually implemented in the UNIX
scheduler to enforce priority. This allows a process returning from a system call
(hence after having run in kernel mode) to be immediately blocked and put in the
ready processes queue instead of returning to user mode running, leaving the CPU to
another process. So it's worth considering a =" Preempted" state as a special case of
“"Blocked". Moreover, among exited processes there's a distinction between those
which have a parent process that waits for their completion (possibly to clean after
them), and those which upon termination have an active parent that might decide to
wait for them sometime in the future (and then be immediately notified of its
children's termination)~~. These last processes are called ~"Zombie", while the others
are " Exited". The difference is that the system needs to maintain an entry in the
process table for a zombie, since its parent might reference it in the future, while the
entry for an exited (and waited for) process can be discarded without further fiddling.
So the much talked about ~"Zombie" processes of UNIX are nothing but entries in a
system table, the system having already disposed of all the rest of their image. This
process model is depicted in fig. 5.

© IETE 5

http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes/footnode.html#224
http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes/node16.html#figunixprocstates

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

Eetum

Kernel Kunnin g)_

User Hunninyg

Tmp, syecall, iotemupt

Dizpatch Timeout Event Wit
Feady
Event occour
Blocked
Beady
Zeate
Activate Suzpeod Activate Suzpend
(e

| ———
"fSuap:ud:d- Event accur Buapended-
ready Blocked

Figure 5: UNIX process state model

All processes in UNIX~- are created using the fork() system call. System calls in
UNIX can be best thought of as C functions provided with the standard C library.
Even if their particular implementation is depends on the particular UNIX flavor (and
on hardware, for many of them), a C API~~ is always provided, and is consistent
among the different unices, at least in the fundamental traits.

UNIX implements through the fork() and exec() system calls an elegant two-step
mechanism for process creation and execution. fork() is used to create the image of a
process using the one of an existing one, and exec is used to execute a program by
overwriting that image with the program's one. This separation allows to perform
some interesting housekeeping actions in between, as we'll see in the following
lectures.

A call to fork() of the form:

#include <sys/types.h>

pid_t childpid;

éﬁildpid = fork(); /* child"s pid in the parent, O in the child */

éée-ates (if it succeeds) a new process, which a child of the caller's, and is an exact
copy of of the (parent) caller itself. By exact copy we mean that it's image is a

physical bitwise copy of the parent's (in principle, they do not share the image in
memory: though there can be exceptions to this rule, we can always thing of the two

© IETE 6

http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes/footnode.html#226
http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes/footnode.html#160

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

images as being stored in two separate and protected address spaces in memory, hence
a manipulation of the parent's variables won't affect the child's copies, and vice versa).
The only visible differences are in the PCB, and the most relevant (for now) of them
are the following:

« The two processes obviously have two different process id.s. (pid). Ina C
program process id.s are conveniently represented by variables of pid_t type,
the type being defined in the sys/types.h header.

« In UNIX the PCB of a process contains the id of the process's parent, hence the
child's PCB will contain as parent id (ppid) the pid of the process that
calledfork(), while the caller will have as ppid the pid of the process that
spawned it.

« The child process has its own copy of the parent's file descriptors. These
descriptors reference the same under-lying objects, so that files are shared
between the child and the parent. This makes sense, since other processes might
access those files as well, and having them already open in the child is a time-
saver.

The fork() call returns in both the parent and the child, and both resume their
execution from the statement immediately following the call. One usually wants that
parent and child behave differently, and the way to distinguish between them in the
program's source code is to test the value returned by fork(). This value is 0 in the
child, and the child's pid in the parent. Since fork() returns -1 in case the child
spawning fails, a catch-all C code fragment to separate behaviours may look like the
following:

#include <sys/types.h>
#include <errno.h>
#include <stdio.h>

pid_t childpid;

childpid=fork(Q);
switch(childpid)
{
case -1:
fprintf(stderr,"ERROR: %s\n", sys errlist[errno]);
exit(l);
break;
case O:
/* Child"s code goes here */
break;
default:
/* Parent®"s code goes here */
break;

© IETE 7

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

The array of strings char *sys_errlist[] and the global integer variable int
errno are defined in the errno.h header. The former contains a list of system error
messages, and the latter is set to index the appropriate message whenever an error
occurs. For each system call several possible error conditions are defined. Each of
them is associated to an integer constant - defined via a #define directive in one
system header file - whose value is exactly the one that errno takes when an error
occurs. A sample definition (from the sys/errno.h header) is:

#define ENOMEM 12

which defines the error that might occur when a process creation fails because there's
not enough memory available-.

Note that a child (i.e. a process whatsoever, since they are all children of some other
process, with the exception of processes 0, swapper and 1, init) cannot use the value
returned by fork() to know its pid, since this is always 0 in the child. A system call
named getpid() is provided for this purpose, and another one, named getppid() IS
used to ask the system about the parent's id. Both functions take no arguments and
return the requested value in pid_t type, or -1 in case of failure.

In the above program fragment, a system call to exit() is made in case of failure,
which causes the program to abort (you might want to deal with the errors in a
smoother way, depending on your application, and perform some application-
dependent error recovery action). We'll see later that the exit() call returns the lower
8 bits of its argument (1, in the above example) to a waiting parent process, which can
use them to determine the child's exit status and behave accordingly. The usual
convention is to exit with 0 on correct termination, and with a meaningful (for the
parent) error code on abort.

It is often the case that a parent process must coordinate its actions with those of its
children, maybe exchanging with them various kind of messages. UNIX defines
several sophisticated inter-process communication (IPC) mechanisms, the simplest of
which is a parent's ability to test the termination status of its children. A
synchronization mechanism is provided via the wait() system call, that allows a
parent to sleep until one of its children exits, and then get its exit status. This call
actually comes in three flavors, ~~ one simply called wait¢) and common to all
version of UNIX (that i know of), one called waitpid(), which is a POSIX extension,
and one called wait3(), and it's a BSD extension.

b. With the help of suitable diagram, explain UNIX file system and also explain
the various types of files supported in UNIX. (8)
Answer:

© IETE 8

http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes/footnode.html#227
http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes/footnode.html#228

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

A file system is a logical collection of files on a partition or disk. A partition is a container for information
and can span an entire hard drive if desired.

Your hard drive can have various partitions which usually contains only one file system, such as one file
system housing the / file system or another containing the /home file system.

One file system per partition allows for the logical maintenance and management of differing file systems.

Everything in Unix is considered to be a file, including physical devices such as DVD-ROMs, USB
devices, floppy drives, and so forth.

Directory Structure:

Unix uses a hierarchical file system structure, much like an upside-down tree, with root (/) at the base of
the file system and all other directories spreading from there.

A UNIX filesystem is a collection of files and directories that has the following properties:
It has a root directory (/) that contains other files and directories.

Each file or directory is uniquely identified by its name, the directory in which it resides, and a
unique identifier, typically called an inode.

By convention, the root directory has an inode number of 2 and the lost+found directory has an
inode number of 3. Inode numbers 0 and 1 are not used. File inode numbers can be seen by specifying
the -i option to Is command.

It is self contained. There are no dependencies between one filesystem and any other.

The directories have specific purposes and generally hold the same types of information for easily
locating files. Following are the directories that exist on the major versions of Unix:

Directory Description

This is the root directory which should contain only the directories needed at the top level

J of the file structure.

/bin This is where the executable files are located. They are available to all user.

/dev These are device drivers.

lete Supervisor directory commands, configurg_tion files, disk configuration files, valid user lists,
groups, ethernet, hosts, where to send critical messages.

/lib Contains shared library files and sometimes other kernel-related files.

/boot Contains files for booting the system.

/home Contains the home directory for users and other accounts.

mnt Uged to mount other temporary file systems, such as cdrom and floppy for the CD-ROM
drive and floppy diskette drive, respectively

oroc Contains all processes marked as a file by process number or other information that is
dynamic to the system.

/tmp Holds temporary files used between system boots

© IETE 9

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

Used for miscellaneous purposes, or can be used by many users. Includes administrative

s commands, shared files, library files, and others

Nar Typically contains variable-length files such as log and print files and any other type of file
that may contain a variable amount of data

/shin Contains binary (executable) files, usually for system administration. For
examplefdisk and ifconfig utlities.

/kernel Contains kernel files

c. Explain the commands Umask and chown. Give syntax and examples. (4)
Answer:

4.8 umask Function “* 280 “ T T - W
LT e s e SR Pt
Now that we've d%crih&d the nine permission bits associated with every file, we can
dLbLl‘th the file mode creation mask that is associated with every process.
vileiey The vkl finstion'setd thefilemode tréatioh g sk FOr thie pmaearmﬂ returns the
tey p;ﬁévmuswa‘]uef {Th’!&lh pra'of e few. funetions thiatdoas't Trave div erfor fettim.)

e B g ol s . ral Frpprar evigr bE gealil taripy Sde o el - b MO T e i S EES 4. i . ~——

, 1[_:_ #I:guq:']..;cjg ﬁ.%‘fSa stat. h“_"r fairrrn swr Baldans e wig fnizeinesn |
pon Bdyrle amedait L msk:m:d&'ml‘crrﬁwi:# guErE o drEw o "-':-[-'Hi-f'- T3] .,uj---‘-'i.f;l:': I
=PIy T 153 Jaeatge 1 fan sillg A ERmL { el 1]
g - matkes dodia At Jat 9 Ilturm.ll_m-uﬁuﬁhlc rncc'leu‘ml.um mdsk -
i_._- A N LT e = !-—;-'—-I_ ik 'l.-'i.-.—--.-o—..._t.'.-. T Sl AR W e S |
hoe = The thiask; atgurnent is formied - as” the bitwise @R-mﬁ aﬂ}r of :?he’l'tﬂm:‘ constants from
v Figlise 46: 5| TRUSR, ar| Bty dnidbstpbrpnd ot i ow giolod Azem noieoT)

(il Thefile mode creation inask! is' vsed whihever Hwe‘pmecs ‘OrpAtes. @ mew ﬁle or a
t inpew directory (Recalbfrom Seetiony 3.3 and B4 mmr&i@wnpﬁhr‘mbihi_ wpan and creat
functions. Both accept a mode argument that specifie e new File%s addess permission

it ool We disseribehow to creatd a:hew dirdctory (' &:ﬁﬂﬁ'ﬂﬁ'ﬂiz“ﬂ‘ Any bits'that are on in

i ﬂnenﬁle rdide creation mpskiare turrsd: nﬁfm*rhecmu sﬂ.rm.}a'f. ¢l kil B
TR s rei - Lesiriab "-!. (3579 SFTCIE ---..-,'.- R B [”" fil siarie 26 (170 BpAest
E‘.Iﬂa‘!'l'lplEl] e ‘g rd Y YRy =Ry ARSI 1T TSt] . .r._, | |. :n:'i.l_ IO

b -_-?he pmgra:n i FLgurc 49 cregtrﬁ t'-m fﬂem one: w]th a L.snask, o i] amﬂ ome with a
umask that disables all the j.}I'ULip and other per:mb,t,mn bits. .

$includa "apue, h"
$includes <fontl.he-

HTETRS]S 1 Aasl

Wdefine RWRWRW (S IRUSR|S. IWUSR|S_IRGRP|S_IWGRP|S_TROTH|S_IWOTH)
int ety j
mainvoid) i, i
{ ol A -
umagk (0} ; Bk) RE
if f(creat{"foo", | RWEMRA) = 0) ...
arr sys("creat.exrpu for fonlh,
umask (6 IRGRP | & IWGRP -~ & IROTH-| & IWOTH);
if (oreat|'bart, RHRERW) s O - J7 o

ard Ed ankigis

© IETE 10

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

arr_sys|"creat error for bar"):
exit (0] ; i

3

Figure 4.9 Example of umazk function

If we run this program, we can see how the permission bits have been set.

£ umask first prind the curren! file mode erestion mask
Qo2

£ .fa.out

£ la -1 foo bar

~¥W--=--=-- 1 Bar 0 Dec 7 21:20 bar

=EW-Irw-rw- 1 gar 0 Dec 7 21:20 foo

5 umask e if the file momde creation mask clarged
002

O

Most users of UNIX systems never deal with their umask value. 1t is usually set
ance, on login, by the shell’s start-up file, and never changed. Nevertheless, when
wriling programs that create new files, if we want to ensure that specific access
permission bits are enabled, we must modify the umask value while the process is
running. For example, if we want to ensure that anyone can read a file, we should set
the umask to (. Otherwise, the umask value that is in effect when our process is
running can cause permission bits to be turned off.

In the preceding example, we use the shell’s umask command to print the file mode
creation mask before we run the program and after. This shows us that changing the
file mode creation mask of a process doesn’t affect the mask of its parent (often a shell).
All of the shells have a built-in umask command that we can use to set or print the
current file mode creation mask.

Users can set the umask value to control the default permissions on the files they
create. The value is expressed in octal, with one bit representing one permission to be
masked off, as shown in Figure 410 TPermissions can be denied by setting the
corresponding bits. Some common umask values are 002 o prevent others from
writing vour files 021 to prevent group members and others from writing your files,
and 027 to prevent group members from writing your files and others from reading,
writing, or executing your files.

Mask bit | Meaning]
naoo (user-read '

Q200 user-write
a1l USEr-Execube
o040 | group-read
| ovao Eroup-wrile
0018 Eroup-execite
| oDoo4 other read

| onnoz other-write
i_ 0001 other-execule

Figure .10 The wmask fly access permission bits

© IETE 11

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

The Single UNIX Specification requires that the shell support a symbolic form of the

umask command. Unlike the octal format, the symbolic format specifies which

issions are to be allowed (i.e.. clear in the file creation mask) instead of which ones

are to be denied (ie., set in the file creation mask). Compare both forms of the
command, shown below,,

4 umask fivud print the current file mode creation mask
Qo2

§ umask -8 print the symbelic firm

UsTWX, G=IWK, OsIX

£ umask 027 change the file mode creation mask

£ umask -8 prrind the symbolic form

U=rwX,g=rx, o= 4,’;

4.11 chown, fchown, and lchown Functions

/,r:” The chown functions allow us to change the user ID of a file and the group ID of a file.

#inciude <unistd.h>
int chowniconst char *patheeme, uid t ewner, gid t group) ;
int fchown(int filedes, uid_t owmer, gid _t groupl;
int lchown(const char *pathmame, uid_t ewner, gid_t growp) ;
All three return: § if OK, =1 on error

These three functions operate similarly unless the referenced file is a symbolic link. In
that case, 1chown changes the owners of the symbolic link itself, not the file pointed to
by the symbolic link.
The lchown Funchion §s an X5 extension to the POSIXN] functonality defined in the Single
UNIX Specification. As such, all UNIX System implementations are expected to provide it
If either of the arguments owner or group is -1, the corresponding 1D is left unchanged.
Historically, BSD-based systems have enforced the restriction that only the
superuser can change the ownership of a file. This is to prevent users from giving away

© IETE 12

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

their files to others, thereby defeating any disk space quota restrictions. System V,
however, has allowed any user to change the ownership of any files they own.

POERE allonver pithar form of oporation, depanding o the walue of
~POSIX CHOWN RESTRICTED.

With Solaris 9, this functionality 18 a configuration option, whose defauli value is toenforce the
meptriction. FreeBSD 521, Linux 2.4.22, and Mac 05 X 105 always enforce tHe chown
restriction,

&call from Section 2.6that the _POSIX_CHOWN RESTRICTED constant = 1 pptionally
be defined in the header <unistd.hs, and (i always be quesied using either the
pathconf function or the fpathconf function, Also recall that this option can

d on the referenced file; it (.11 be enabled o+ disabled on per file system basis.
We'll use the phrase, if POSIX CHOWN RESTRICTED is in effect, to mean if if applies
te the particular file that we're talkmg about, regardless of whether this actual constant

isdefined in the header.)
If _POSIX_CHOWN RESTRICTED is in effect for thespecified file. than

. Onlya su;:-rcnrscr process can change the user JD of the file.

2. A nonsuperuser process can change the group 1D of the file if the process owns
the file (the effective user 1D equals the user 1D of the file), owner is specified as
~1 or equals the user [D of the file, and group equals either the effective group ID
of the process or one of the process's supplemenmry group 1Ds.

This means that when POSIX CHOWN RESTRICTED is in effect, yvou can’t change the
user 1D of other users’ files. You can change the group ID of files that you own, but only
to groups that you belong to.

If these functions are called by a process other than a superuser process, on
successful return, both the set-user-ID and the set-group-1D bits are cleared.

Q.4 a. What do you mean by standard input, standard output and standard error? (8)

Answer:
53 Standard Input, Standard Output, and Standard Errof
I"f'; ;EHESIIERMEWE

and: it prosamedileniasdingfile

descriptors STDIN_FILENQ, STDOUT FILEND, and STDERR_FILENO, which we
mentioned in Section 32,

"These three standard /O streans are referenced through the predefined file
pnmhim- atdin, stdout, and stderr, The filepointers are defined i the <gtdio, h>

¥ header, - _ -

b. Write short note on:
(i) Password file (i) Shadow passwords (8)

Answer:
6.2 Password File

/ The UNIX System's passwaord file, called the user database by POSIX.1, contalns the
fields shown in Figure 6.1. These fields are contained in a passwd structure that ia
defined in <pwd.lx.

Note thar POSEX, Y specifies only five of the ten Aelds in the passwd structure. Most platforms
support atleast seven o the fields ':'h-:-:.-"-- ferived platfon ll|=|'--u.ali:f-‘-'l-

© IETE 13

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

W struct passwd FreeBSD Limux Mac(O5X Solans

i member | Posix 521 2422 103 9
user name char “pw _name - . - . .
encrypted password char “pw_passwd
numerical user [D juid t pw uid . . - . .
numerical group 1 gid t pw gid -
comment field char *pw_gecos | . - . e |
initial working directory :II:hqr “pw_dir - ! - - . - |
initial shell (user program)} [char +*pw_shell * |I
UseT arcess Class char *pw_class | * .
niext Hme to c'i'lanj.:;c password time t pw_change . .
account expiration time eime t pw_explre . .

Figure 6.1 Fields in /eto/pasewd file

Historically, the password file has been stored in /etc/passwd and has been an
ASCII file. Each line contains the fields described in Figure 6.1, separated by colons.

For example, four lines from the /etec/passwd file on Linux could be

root:¥x:0:0:root: /root: /bin/bash

squid:a:23:23; : /var/epool /aquid: /dev/null
nobody:x:65534: 65534 :Nobaedy: /home: /bin/eh
sar:x:205:105:5cephen Rago: /home/sar: /bin/bash

Note the following points about these entries.

* There is usually an entry with the user name root. This entry has a user ID of 0
(the superuser).

* The encrypted password field contains a single character as a placeholder where
older versions of the UNIX System used to store the encrypted password.
Because it is a security hole to store the encrypted password in a file that is
readable by everyone, encrypted passwords are now kept elsewhere. We'll
cover this issue in more detail in the next section when we discuss passwords.

* Some fields in a password file entry can be empty. If the encrypted password
field is empty, it usually means that the user does not have a password. (This is
not recommended,) The entry for squid has one blank field: the comment field.
An empty comment field has no effect,

* The shell field contains the name of the executable program to be used as the
login shell for the user. The default value for an empty shell field is usually
/bin/sh. Note, however, that the entry for squid has /dev/null as the login
shell. Obviously, this is a device and cannot be executed, so its use here is to
prevent anyone from logging in to our system as user squid.

Mary services have separate user [Ds for the daemon processes (Chapter 13) that help

implement the service. The aquid entry is for the processes implementing the sguid prosy
cache service.

© IETE 14

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

¥ * There arc several alternatives to using /dev/null to prevent a particula: user

from logging in to a system. Itis common to see /bin/false used as the login
shell. It simply exits with an unsuccessful (nonzero) status; the shell evaluates
the exit status as false. [t is also common to see fbin/true used to disable an
account. All it does is exit with a successful (zero) status. Some systems provide
the nologin command. [t prints a customizable error message and exits with a
nonzero exit status.

* The nobody user name can be used to allow people to log in to a system, but
with a user 1D (65534) and group ID (65534) that provide no privileges. The
only files that this user ID and group 1D can access are those that are readable or
writable by the world. (This assumes that there are no files specifically owned
by user 1D 65534 or group 1D 65534, which should be the case.)

* Some systems that provide the finger(l) command support additional
information in the comment field. Each of these fields is separated by a comma:
the user's name, office location, office phone number, and home phone number.
Additionally, an ampersand in the comment field is replaced with the login
name (capitalized) by some utilities. For example, we could have

Sar:x:205:105:5teve Rago, 5F 5-121, 555-1111, 555-2222:/home/gzar:/bin/sh
Then we could use £ inger to print information about Steve Rago.
L finger -p Bar
login: sar Hame: Steva Rago
Directory: /home/sar Shell: /binfsh -
Office: BSF 5-121, B555-1111 Home FPhone: 555-22232

on since Mon Jan 195 03:57 (EST) on ttyvD [messages off)
No Mail.

Even if your system doesn’t support the £inger command, these fields can still
go into the comment field, since that field is simply a comment and not
mterpreted by system utilities,

:
|

Some systems provide the vipw command to allow administrators to edit the
password file. The vipw command serializes changes to the password file and makes
sure that any additional files are consistent with the changes made. It is also common
for systems to provide similar functionality through graphical user interfaces.

POSIX.1 defines only two functions to fetch entries from the password file. These
functions allow us to look up an entry given a user’s login name or numerical user ID

finclude <pwd._h>
struct passwd *getpwuid{uid t wid)
struct passwd *getpwnam(const char wname)

Both retum: pointer if O, NULL on error

The getpwuid function is used by the 1s(1} program to map the numerical user ID
contained in an i-node into a user’s login name. The getpwnam function is used by the
login(l) program when we enter our login name.

© IETE 15

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

Both functions return a pointer D a passwd structure that the functions fill in, This
structure is usually 2 static variable within the function, S0 its <ontents an
overwritten each time we call either of these-functions.

These two POSIX.1 functions are fine if we want to look up either a login name ora
user 1D, but some programs need to go through the entire password file. The following

b three functions can be used for this.

#include «pwd.h>

struct passwd *getpwent (veoid);

Returns: pointer if OK, NULL on error or end of file
void setpwent [vpid);
vold endpwent (void);

These theee functions are not part o the base POSIX.1 standard. They are defined as X8
extensions in the Single UNIX Specification. As such, all UNIX systems are expected i
provide them

We call getpwent to return the next entry in the password file. As with the two
POSIX.1 functions, get pwent returnis a pointer to a structure that it has filled in. This
structure is normally overwritten each time we call this function. If this is the first call
to this function, it opens whatever files it uses. There is no order implied when we usp
this function; the entries can be in any order, because some systems use a hashed
version of the file fetc/passwd.

The function secpwent rewinds whatever files it uses, and endpwent closes these
files. When using getpwent, w e must-always be sure to close ‘these files by calling
endpwent whenwe're through. Althoughgetpwent is smart enough to know when it
has to open its files (the first time w e call it), it never knows when we’re through. '

ixample
Figure 6.2 shows an implementation of the function gecpwnam.

#include <pwd.hs
ginclude <stddef.h>
#include <string.h>

struct passwd
getpwnam(const char *mame)

struct passwd *ptr;

getpwent () r
while {{ptr =-getpwent.(}} I= NULL)
if (strcmp(name, ptr-spw name) == 0)
break; [* found a match =/
endpwent {} ;
return(ptr); {* ptr is NULL if no match found "/

Figure 6.2 The getpwnam function

© IETE 16

ACT71/ATT71/AC124/AT124

UNIX SYSTEMS PROGRAMS

DEC 2015

6.3

[tw call to s=tpwent at the beginning is self-defense: we ensure that the files are
rewound, in case the caller has already opened them by calling setpwent. The call to
endpwent when we're done is because netther get pwnam nor setpwuid should leave
any of Lhe files open. £

Shadow Passwords

I'e encrypted password is a copy of the user’s password fhat has been put through a
one-way encryption algorithm. Because this algorithm is one-way, we can't guess thy
uriginal password fyom Lic encrypted versien.

Historically, the algorithm that was used (see Morris and Thompson [1979]) alway-
generated 13 printable characlers from the 64-character set [a-zA Zo-9./]. Somw
newer svstems use an MD5 algorithm to encrypt passwords, generating 31 characters
per encrypted password. (The mwore characters usvd to store the encrypied password,
the more combinations there are, and the harder it will be to guess the password by
trying all possible variations.) When we place a single character in the cncrypted
password field, we ensure that ap encrypted password will never match this value.

Given an encrypted password, we can't apply an algorithm that inverts it and
returns the plaintext password. (The plaintext password i- what we enter at the
Password: prompt.) But we could guess a password, run it through the one-way
algerithm, and compare thy result to the encrypled password. It user passwords were
randomly chosen, this hrufe-force approach wouldn't be [0 successful. Lsers,
however, tend to ¢house nonrandom passwords, such as spouse's name, street names,
or pet names. A common experiment is for someone to obtain a copy of the password
file and frv :;..;L:-e:--_;ing the passwords. (Chapier 4 of Gacfinkel et al. [2003] contains
additional details and history on passwords and the password encryption scheme used
om UMNEX systems,)

To make it more difficult to obtain the raw materials (the encrypted passwords),
systems now stepe the encrypted password in another file, often called the shadow
password file. Minimally, this file has o contain the user pame and the encrypted
password. Other information relating to the password is also stored here (Figure6.3).

; abruct spwd

Y E.‘escri]:-hon rernbeer
USCT Jonzin Dae “hat Fmp_namp |
ererypted passwond char *sppwdp
days sinee Epoch of last passwordichange | int =p istehg ‘
days until change allowed int =p min
days before change required int ep_max
days warming tar expiration int Bp_ watm ‘
day- befone account inactive int sp_inact
davs stk Epoch when account expires ' iar sp_sxplze I
reseried | unsigned int sp flag]

Figure 53 Fieldsin /etie/shadow(ile

© IETE

17

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

The only twe mandatory fields are the user’s login name and encrypted password.
The other fields control how often the password is to change—known as “password
aging” —and how long an account is allowed to remain active.

The shadow password file should not be readable by the world. Only a few
programs need to access encrypted passwords—loginll) and passwdl(l), for
example—and these programs are often set-user-ID root. With shadow passwords, the
regular password file, /et e /passwd, can be left readable by the world.

On Linux 2.4.22 and Solaris 9, a separate set of functions is available to access the
shadow password file, similar to the set of functions used to access the password file.

i . i =
| #include =shadow.h=
struct spwd *getspnam{const char *mame) ;
ruct apwd *getapent {void); |

RBnth return: pointer it OK, NULL on etror

void endspent (void) ; |

On FreeB5D 5.2.1 and Mac OS5 X 10.3, there is no shadow password structure. The
additional account information is stored in the password file (refer back to Figure 6.1).

Q.5 a. Discuss the concept of pipes. Illustrate the syntax and working of DUP and
open system calls. (8)
Answer:

« A Unix pipe provides a one-way flow of data.

« For example, if a Unix users issues the command
e who | sort | Ipr

then the Unix shell would create three processes with two pipes between them:

who process oYt process lpr pracess
o |read fd
writefd | writefd | e read fd

[pipel— [pipeﬂ—

—= flowofdata — — flowofdata —

« A pipe can be explicitly created in Unix using the pipe system call. Two file
descriptors are returned--fildes[0] and fildes[1], and they are both open for
reading and writing. A read from fildes[0] accesses the data written to fildes[1]

© IETE 18

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

on a first-in-first-out (FIFO) basis and a read from fildes[1] accesses the data
written to fildes[0] also on a FIFO basis.

« When a pipe is used in a Unix command line, the first process is assumed to be
writing to stdout and the second is assumed to be reading from stdin. So, it is
common practice to assign the pipe write device descriptor to stdout in the first
process and assign the pipe read device descriptor to stdin in the second
process. This is elaborated below in the discussion of multiple command
pipelines.

parent process . child process
pipe

stdout stdin

Multiple Command Pipelines: Architecture

Creating a pipeline between two processes is fairly simple, but building a multiple
command pipeline is more complicated. The relationship between all of the processes
In question is different than what one would expect when creating a simple pipeline
between two processes. Normally a pipeline between two processes results in a fork()
where child and parent are able to communicate.

In an extension of this model to n pipes, it is natural to assume a chain of processes in
which each is the child of the previous one, until the n'th child is forked. But this
model does not work because the parent shell must wait for the last command in the
pipeline to complete, not the first, as would be the case with a chained pipeline.

A multiple process pipeline can be represented graphically as:

ps | sort | less
shel] erec 5
{203) — : il]) 3
&
(ﬂljglj’]) fork | (sgglzl) -
ﬁ;& ¥
shel] erec ot
aiec (204) E— o0
less R
() - pipelite 2

© IETE 19

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

Dup:
#include <unistd.h>

int dup(int oldfd);

int dup2(int oldfd, int newfd);

DESCRIPTION
dup() and dup2() create a copy of the file descriptor oldfd.

After a successful return from dup() or dup2(),the old and new file descriptors may be used
interchangeably. They refer to the same open file description (see open(2)) and thus share file
offset and file status flags; for example, if the file offset is modified by using Iseek(2) on one of
the descriptors, the offset is also changed for the other.

The two descriptors do not share file descriptor flags (the close-on-exec flag). The close-on-exec
flag (FD_CLOEXEC; see fcntl(2)) for the duplicate descriptor is off.

dup() uses the lowest-numbered unused descriptor for the new descriptor.
dup2() makes newfd be the copy of oldfd, closing newfd first if necessary.

RETURN VALUE
dup() and dup2() return the new descriptor, or -1 if an error occurred (in which case, errno is set

appropriately).

b. What are standard input, output and errors? Explain in context of Unix.
Give examples. (6)
Answer:
Standard input, standard output, and standard error files
When a command begins running, it usually expects that the following files are already open:
standard input, standard output, and standard error (sometimes called error output or diagnostic
output).

A number, called a file descriptor, is associated with each of these files, as follows:

File descriptor 0 Standard input

File descriptor 1 Standard output

File descriptor 2 Standard error (diagnostic) output

A child process normally inherits these files from its parent. All three files are initially assigned
to the workstation (0 to the keyboard, 1 and 2 to the display). The shell permits them to be
redirected elsewhere before control is passed to a command.

© IETE 20

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

When you enter a command, if no file name is given, your keyboard is the standard input,
sometimes denoted as stdin. When a command finishes, the results are displayed on your screen.

Your screen is the standard output, sometimes denoted as stdout. By default, commands take
input from the standard input and send the results to standard output.

Error messages are directed to standard error, sometimes denoted as stderr. By default, this is
your screen.

These default actions of input and output can be varied. You can use a file as input and write
results of a command to a file. This is called input/output redirection.

The output from a command, which normally goes to the display device, can be redirected to a
file instead. This is known as output redirection. This is useful when you have a lot of output that
is difficult to read on the screen or when you want to put files together to create a larger file.

Though not used as much as output redirection, the input for a command, which normally comes
from the keyboard, can also be redirected from a file. This is known as input redirection.
Redirection of input lets you prepare a file in advance and then have the command read the file.

c. Differentiate between a wildcard and a regular expression. (2)
Answer:
In the Formal definition the symbols of regular expressions operators are
- which is concatenation like a.b.c would match a text having abc . Some times to
indicate concatenation simply two symbols are used back to back.
* : match 0 more more times the last symbol, (abc)* would match a null string, abc,
abcabc, abcabcabc, but not abcaabc. Known as the Kleen's star.
+ : would match either the left hand side or the right hand side . (abc + def) would
match abc or def. Also the union operator or the | operator is used.
These are applied on a set of symbols sigma, which includes the symbols in your
language within other special sumbols are the epsilon which denotes the empty string,
and the null means no symbols at all. For details see 3
These are the formal definitions.
When you use applications accepting the POSIX regular expression syntax the meaning of
the different operators are like this:

Q.6 a. Write a AWK program to find the square root of all the numbers from 1-10.
(8)

Answer:

In this

example, the value of “sqrt(ARGUMENT)" is the square root of ARGUMENT.
The following program reads numbers, one number per line, and prints the
square root of each one:

$ awk "{ print "The square root of", $1, "is", sqrt($l) }-
1

-] The square root of 1 is 1

3

© IETE 21

http://rads.stackoverflow.com/amzn/click/053494728X

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

-] The square root of 3 is 1.73205
5

-] The square root of 5 is 2.23607
ctri-d

b. Discuss the following:
(i) setymp and longjmp functions
(if) getrlimt and setrlimit functions (8)
Answer:

setjmp and longimp Functions

Ih O, we can’t goto 2 labe| that's in another fundion. [nstead, we mustuse he setjns
and 1ongime functions to perform this type of branching. As we'll <=1, these two
functions are useful for handling e1eo conditions Lhat occur it a deeply nested function
call.

Consider the skeleton in Figune 7.9, It consists of @ mairt loop that reads lines from
standard input and calls the function do 1w to process each line. Thes function then
calls get- roicen to fetod the next token from the mput line, The tirst token or a line i
assumed to be a command of some form, and a switch statement selects each
command For the single command shown, the function emd_=dd iskallud

The skeleton in Figure 7.9 is tvpical lor programs that read command:, determine
the commainl type, and thea call funciigng o process each command. Figun‘ C10
shows what the stack could koek like after cod_add has been calledl.

© IETE 22

ACT71/ATT71/AC124/AT124

UNIX SYSTEMS PROGRAMS

DEC 2015

#include *apue. h"

fidefine TOK_ADD 5
void do_line{char *};
void cmd add{veld) ;
int get boken (vodd];
inc

main {(void)

{

char line (MAXLINE] ;

while (fgetsiline, MAXLINE, stdin) != NULL)
do_line(line);

axitc{0);
?
chax rEok pEr; [* glebal pointér for get token() ¥/
void
do_line (char w»ptr) f* process one line of input «/
{
inc cmd;

tok _ptr = .ptr;

while ((cmd = get_token()) » 0) |
switch (emd) { /% one case for each command */
cage TOK ARDD:

cmd _add(} ;
break;
t
!
}
void
emd_add (void)
{
int token;

token = get token();
/* rest of processing for this command +/

)

int
get token (void)

{
}

/* fetch next token from line pointed to by tok ptr */

Figure 7.9 I":'pical program skeleton for command processing

© IETE

lll.lluL.ll | e s, i, it T i\ e 0 i et il i i e BT B W e el i e R LY

23

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

bottom of stack higher address

stack frame
formain

stack frame

fordo line
stack frame
for emd_add
direchion of |
stack growth |
lower address

Figure 7,10 Stack frames after cmd_add has been called

Storage for the automatic variables is within the stack frame for each function. The
array line is in the stack frame for main, the integer emd is in the stack frame for
do_line, and the integer token is in the stack frame for cmd_add.

As we've said, this type of arrangement of the stack is typical, but not required.
Stacks do not have to grow toward lower memory addresses. On systems that don't
have built-in hardware support for stacks, a C implementation might use a linked list
for its stack frames.

The coding problem that's often encountered with programs like the one shown in
Figure 7.9 is how to handle nonfatal errors. For example, if the cmd_add function
encounters an error—say, an invalid number—it might want to print an error, ignore
the rest of the input line, and return to the main function to read the next input line.
But when we're deeply nested numerous levels down from the main function, this is
difficult to do in C. {In this example, in the cmd add function, we're only two levels
down from main, but it's not uncommon to be five or more levels down from where we
want to return to.) It becomes messy if we have to code each function with a special
return value that tells it to return one level.

The solution to this problem is to use a nonlocal goto: the setjmp and longimp
functions. The adjective nonlocal is because we're not doing a normal C goto
staternent within a function; instead, we're branching back through the call frames to a
function that is in the call path of the current function.

#include egzetimp.hs |
int setjop(jmp buf env); |

Returns: 0 if called directly, nonzero if returning from a call to longimp |

*roid longimp (jmp_buf éiv, int o) ; |

© IETE 24

ACT71/ATT71/AC124/AT124

UNIX SYSTEMS PROGRAMS

DEC 2015

We cnll ;2 mp from the location that we want ta return to, which in this example
15 i the ma i funchion. Inthis case, set jmp return:, 0 because we called it divectly. In
the call ko sst jup, the argument ¢no is of the special type xnc_bur. This data type Is
some form of array \ha! is capable of holding all the information required to restone e
status Of the stack to the stale when we call Longjmp. Normally, the env variable isa
global wariable, since we'll need to referenceit from another function.

When we encounter an error- =ay, in the cind_add function — we call 1ongjap
with bwo arguments. The first is the same env that we used in a call to set jmp. and the
second, tvi, is a nonzew value that becomes the return value from wet jmec. The reason
for the second argument is [0 allow us Ly have more than one 1ongjmp for eadi
setimp. For example, we could ©ongjmp trom ond_add with a pal of 1 and also call
Long jmp from g2t 1 cken with a val of 2. Inthe main function the return value from
set jmp 15 either 1 or 2, and we can test this value,; if we want, and determige whether
the _craimpwas from cmd_add orget_token.

Let's return to the example. Figure 7.11 shows both the main and rnd_add
hunctions. (Theotherlwafunchions, do-lineand get token, haven'tchanged §

Hiﬂﬂiuﬂe Tapue.hn
Hinel. i~ _setimp f=

fdefine TOK ADD 5
jmp buf jmpeuffer;
ink

main(void)

{

char line [MAXLINE] ;

if setjmp{jmpbuffer] 1= 0]
print | | "error”t s

while [fgets line, MAXLIME. =cdin) '= NULLI
do line{line]r

axi) It
f
void
emd_add (void)
{
int coken;

token get tokenf);

if [tokenm = O} % an arror has ogQourred *,
sanaimptampbuef e, 11

* rest i processing for this command */

Figure T.11 Frample of set ~ngand longjmp

© IETE

25

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

When main is executed, we call set jmp, which records whatever information it needs
to in the variable jmpbuffcr and retuens 0. We then <all do line, which calls
cmd _add, and assume that an error of some torm is detected. Hetore the call to
lengimp in emd_add, the stack looks like that in Figure 7,10, But lengimp causes the
stack to be “unwound” back to the main function, throwing away the stack frames for
emd_add and do_1ine (Figure 7.12}). Calling longjmp causes the setjmp in main to
return, but this time it returns with a value of 1 {the second argument for longjmp).

bottom of stack | higgher address
stack frame
for main
direction of
stack growth
lower address

Figure 7.12 - Stack frame after 1ong) mp hasbeencalled

matic, Register, and Volatile Variables

We've seen what the stack looks likeafter calling 1ongjmp. - The next question is, "what
are the states of-the automatic variables and regjster variables in the main function?”
When main is returned to by the longjmp, do these variables have values
corrcaponding to when the actimp was previously called (ie, arc their values rolled
back), or are their values left alone so that their values are whatever they were when
do_line was called (which caused cmd_add to be called, which caused longjmp to be
called)? Unfortunately, the answer is “it depends.” Muost implementations do not try to
roll back these automatic variables and register variables, but the standards say only
that their values are indeterminate. If you have an automatic variable that you don't
want rolled back, define it with the volatile attribute. Variables that are declared
global or static are left alone when longjmp is executed.

The program in Figure 7.13 demonstrates the different behavior that can be seen with
automatic, global, register, static, and volatile variables after calling longjmp.

i

© IETE 26

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

finclude "apue.h"
#includa <satimp.hs

gtatic void filint, int, dint, int);
static woid £I(wvoid);

static jmp buf jmpbuffer;

atatiec int globval;

int

main (void)

{
int autoval ;
regiater int regival;
volatile int volaval;
static int statval;

gleBval = 1; autoval = 2; regival = 3; volaval = 4; statval = 5;

if (setjmp(jmpbuffer) != 0O} {
printf(*after longjmp:\n®}|;
printf(*globval = %d, autoval = %¥d, regival = %d,"
* yolaval = %d, statwval = &3\n",
globval, autoval, regival, volaval, statval);
exit (0);
}
."l.
* Change variables alter setjmp, but before longjmp.
L ¥
glebval = 95; autoval = 56; regival = 97; wvolaval = 98;
atatval = 9%;

fllautoval, regival, wvolaval, statval); /* never returns */
axit (0}

}

static void
£1(ine 1, “int §, int Xk, int 1)
{
princf{=in f1():\n");
printf ("globval = %d, auctoval = %d, regival = %d4,"
" yolaval = ¥d, statval = ¥d\n", glabwval, i, j. k, 1};
£2{);
1

static void
E2 {veid)

longimp (jmpbuffer, 1);

Figare 7.13 Effect of Longjmp on various types of variables

© IETE 27

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

If we compile and test the program in Figure 7.13, with and without compiler
optimizations, the results are different:

S ce tastimp.e compile withou! any optmization

5 .fa.out

inm E1(}:

globwal = 85, autoval = 96, regival = 97, volaval = 98, statval = 53

after longimp:

globval = 35, autoval = 96, regival = 97, volaval = 98, statval = %29
£ ce -0 testimp.c compile with full oplimization

£ Jfa.out

in £1():

globval = 95, autoval = 926, regival = 97, volaval = 98, statval = %9
afcer longjmp:

globwal = 95, autoval = 2, regival = 3, wvolaval = 98, statval = 99

Note that the optimizations don't affect the global, static, and volatile variables; their
values after the 1ongimp are the last values that they assumed. The set jmp(3) manual
page on one system states that variables stored in memory will have values as of the
time of the longjmp, whereas variables in the CPU and floating-point registers are
restored to their values when set jmp was called. This is indeed what we see when we
run the program in Figure 7.13. Without optimization, all five variables are stored in
memaory (the register hint is ignored for regival). When we enable optimization,
both autoval and regival go into registers, even though the former wasn’t declared
register, and the volatile variable stays in memory. The thing to realize with this
example is that you must use the volatile attribute if you're writing portable code
that uses nonlocal jumps. Anything else can change from one system to the next.

Some printf format strings in Figure 7.13 are Jonger than will fit comfortably for
display in a programming text. Instead of making multiple calls to print £, we rely on
ISO C's string concatenation feature, where the sequence

"geringl" "string2*
is equivalent to

"stringlstringz*” A

We’ll return to these two functions, set jmp and Longjmp, in Chapter 10 when we
discuss signal handlers and their signal versions: sigsetjmp and siglongjmp.

Potential Problem with Automatic Variables

Having looked at the way stack frames are usually handled, it is worth looking at a
potential error in dealing with automatic variables. The basic rule is that an automatic
variable can never be referenced after the function that declared it returns. There are
numerous warnings about this throughout the UNIX System manuals,

Figure 7.14 shows a function called epen_data that opens a standard 1/O stream
and sets the buffering for the stream.

© IETE 28

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS

DEC 2015

#include estdio. he
fdaefine DATAFILE *datafile®

FILE *
open_data (vodd)

{

FILE ‘fp;
char databuf [BUFSIZ]; /* setvbuf makes this the stdio buffer *f

if ((fp = fopen(DATAFILE, "z"}} -= NULL)
returm {HULL) ;

if (aetvbuf (fp, databuf, _IOLBF, BUFSIZ) != 0)
return (NULL] ;

return {(£p) ; /* sxxor +/

Figure 7.14 Locomect usage of an automatic variable

The problem is that when cpen_data returns, the space it used on the stack will be
used by the stack frame for the next function that is called. But the standard 1,/0 library
will still be using that portion of memory for its stream buffer. Chaos is sure to result
To correct this problem, the array databuf needs to be allocated from global memory,
either statically (static or extern) or dynamically (one of the allac funchm‘ls}/“;

ST T II.‘lk.lII

711 getrlimit and setrlimit Functions

/ Ewvery process has a set of resource limits, some of which can be quened and changed by
" thegetrlimit and secrlimit functions.

ginclude <sys/resource.h>
" int getrlimit {int nmowre, struct rlimit *riplr);
int setrlimit (int resowrce, const struct rlimit *Hpir) ;
Both return: 0 if OK, nonzero on error

These twoe functions are defied a5 X5 exiensions in e Single UNIX Specification. The
resource limits for a process are normally established by process 0 when the system &
initialized and then inherited by each suctéssive process. Each implementation has its own
way of tuning the varlous limits,

Each call to these two functions. specifies a single resource and a pointer to the
following structure:
gtruck rlimic {

riim £ ' rlim eur; /[« goft limit: current limit =/
rlim t rlim max; /* hard limit: maximum value for rlim cur */

bi

© IETE 29

ACT71/ATT71/AC124/AT124

UNIX SYSTEMS PROGRAMS

DEC 2015

Three rules govern the changing of the resource limits.

1. A processcan change its soft limit to a value less than or equal to its hard limit.

2. A process can lower its hard limit to a vaiue greater than or equal to its soft
limit. Thislowering of the hard limit is icreversible for normal users.

3. Only asuperuser process can raise a hard limit.

An infinite limit is specified by the constant RL1M_INFINITY.
The resousce argument takes on one of the following values. Figure 7.15 shows
which limits are defined by the Single WNIX Specification and supported by each

implementation.
RLIMIT AS
RLIMIT CORE
RLIMIT CPU
RLIMIT_DATA
RLIMIT_FSIZE

RLIMIT LOCKS

RLIMIT MEMLOCK

RLIMIT_NOFILE
RLIMIT_NPROC
RLIMIT RES

RLIMIT SBSIZE

RLIMIT_STACK
RLIMIT_VMEM

© IETE

“The maximum size in bytes of a process's total available memory.

This affects the sbrk function (Section L.11) and the mmap
function (Section14.9).

The maximum size in bytes of a core file. A limit of 0 prevents the
creation of a core file.

The maximum amount of CPU time i seconds. When the soft
limit is exceeded, the S IGXCFUsignal is sent to the process.

The maximum size in bytes of the data segment: the sum of the
initialized data, uninitlalized data, and heap from Figure 7.6

The maximum size in bytes of a file that may be created. When
the soft limit B exceeded, the process issent the SIGXFSE signal.
The maximum number of file locks a process can hold. (This
number also includes file leases, a Linux-specific feature. See the
Linux fentl(2) manual page for more information.)

" The'maximum amount of memory in bytes that a process can lock

into memory using mloci(Z},

The maximum number of gpen files per process. Changing this
limit affects the value returned by the syscénf function for its
=5C_OPEN_MAX argument (Section 2.5.4). See Figure2.16 also,
The maximum number of child processes per e user ID.
Changing this limit affects the value returned for
~5C_CHILD_MAX by the aysconf function (Section25.4).
Maximum resident st size (RSS) in bytes, If available physical
memory 15 low, the kemnel takes memory from processes that
exceed their RSS.

The maximum size in bytes of socket buffers that a user <an
CONSUMme at any given dme.

The maximum size in bytes of thestack. See Figure 7.6.
This isa synorym for RLIMIT_AS.

30

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

I s FreeBSD Linux MacOSX Solaris
| Xl 521 422 10.3
RLIMIT_AS |]
RLIMIT_CORE
RLIMIT_CPU
RLIM IT -CATA
RLIMIT FSIZE
RLIMIT_LOCKS

RLIMIT_MEMLOCK
RLIMIT_NOFILE "
RLIMIT_NEROC
| RLIMIT RS
| RLIMIT SBSIZE
RLIMIT_STACK - (
| RLIMIT_VMEM

—— e
L T T ™
- ® = =
" ok & w
s 8 8 & [0

= & = &8 8 = 8

Figure 715 Supportiorresource limits

The resource limits affect the calling process and are inherited by any of it children.
This means that the setting of resource limits needs to be built into the shells to affect all
our future processes. Indeed, the Bourne shell, the GNU Bourne-again shell, and the
Korn shell have the built-in u13mit command, and the C shell has the built-in 1imit
command. (The umask and chdir functions also have to be handled as shell bujlthim.]_-';

Example

The program in Figure 7.16 prints out the current soft limit and hard limit for all the
resource limits supported on the system. To compile this program on all the 3
implementations, we have conditionally included the resource names that differ. Note
also that we must use a different printf format on platforms that define rlim ttobe
an unegigned long long instead of an unsigned long,

#include "apus.h"
§if defined (BSD) |{ defined (MACOS)

#include <sya/time h> ;I
#idefine FMT "%1011d " L]
f#alse ._‘}
#define FMT "%10ld -~ =
depdif |

#include <sys/resource h=

#define doit (name) Pr_limits(fname, name)
static void pr limits(char ", int);

int

main(veid)

{

© IETE 31

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

f#ifdef RLIMIT AS
doit (RLINIT_AS) ;
fendif
doit (RLINIT_CORE) ;
doit (RLINIT_CBU}
doit (RLIMIT DATA) ;
doit (RLIMIT FSIEZE);
#ifdef RLIMIT LOCKS
doit (RLIMIT LOCKS) ;:
#endif
#ifdef RLIMIT_MEMLOCK
. doit (RLIMIT MEMLOCK);
tendif
doit (RLIMIT NUFILE);
#ifdef RLIMIT NPROC
doit (RLIMIT MPROC) ;
tendif
f#ifdef RLIMIT_RSS
doit {RLIMIT_RSS) ;
fendif
fifdef RLIMIT SBSIZE
dolt (RLIMIT SBSIZE) ¢
fendif
deit (RLIMIT STACK) ;
#iLdel RLIMNIT_WMEM
doit (RLIMIT VMEM) ;
fendif
exit {0}
t

static void
_pr_limitsichar *name, int resource]

{

struct rlimit limik;

if {gecrlimic({resource, Elimit) = 0)
err sys("getrlimit error for ¥s*, name};

printf ("%-14z ", nama);

if (limit.rlim_cur == RLIM_INFINITY)
printf ("dinfinite) =);

else
printf (FMT, limic.rlim_cur);

if (limit.rlim max == RLIM INFINITY)
printf ("(infinice)");

else
printf (FMT, limit.rlim max) ;

putchar ((inch*\n*);

!

e e e

Figure 7.16 Print the current resource limit

© IETE 32

ACT71/ATT71/AC124/AT124

UNIX SYSTEMS PROGRAMS

DEC 2015

the C preprocessor expands this into

Note that we've used the IS0 C string-creation operator (#) in the doit macro, &
generale the string value for cach resource name. When we say

doic (ELIMIT CORE] ;

pr_limits("RLIMIT_COCRE", RLIMIT_CORE);

Running, this program under FreeBSD gives us the following,:

& .fa.out
RLIMIT CORE {infinite) (infinite)
RLIMIT CPU infinite) (infinite)
RLTMIT DATA 51570013 536870812 'I
RLTMIT FSIZE {infinite} (infinite) 1
RLIMIT MEMLOCK (infinite) {(infinite) - |
RLIMIT NOFILE 1735 17as |
RLIMIT WBROOD B&7 86T 3
RLIMIT RsSS {infinite) {(infinite) |
RLIMIT SBSIZZ (infinite) (infinite) 3
FELIMIT STACK S TLOBEE4 E7100864
ELJ.:-!I:T:VH'EH {infinite]l (infinite)

Solaris gives us the following results:
§ .fa.out
RLIMIT AS finfinice) {infinite)
RLIMIT CORE {(infinite) +(infinice)
RLIMIT CPO {infinite) (infinite)
RLIMIT CATA {infinite) (infinice)
RLIMIT FSIZE (infipnite) (infinite)
ALIMIT NOFILE 256 65536
ELIMIT STA BigBs0B (infinite)
RLIMIT_ VMEM finfinite] {infinite) o

Exercise 10.1]1 continues the discussion of resource limits, after we've covered signalsﬁ

a. Differentiate between the following: (4x2)

Q.7

(i) kill and raise functions
(if) alarm and pause functions

Answer:
kill and rai=se Functions

10.9
<

The kill function sends a signal to a process or a group of processes. The raise
function allows a process to send a signal to itself.

© IETE

raise was originally defined by IS0 C. POSIX] includes it to align itself with the 150 C
standard, but POSDLT extends the specification of raise to deal with threads (we discuss how
threads interact with signals in Section 12.5). Since 5O C does not deal with multiple
processes, it could not define a function, such as kill, that requires a process I argument.

33

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

fiinclude <signal.h>
int killlpid_t pid, int signo) ;

int raise(int sigro};
Both return: 0 if OK, =1 on errer

The call
raise (signol ;

is equivalent to the call
kill (getpid(), signo);
There are four different conditions for the pid argument tokill.

pid = 0 The signal is sent to the process whose process D is pid.

pid == The signal is sent to all processes whose process group [D equals the
process group D of the sender and for which the sender has permissia
to send the signal. Note that the term all processes excludes
implementation-defined set of system processes. For most
systems, this set of system processes includes the kernel processes ard
init (pid 1). _

pid = 0 The signal is sent to all processes whose process group 1D equals the
absolute value of pid and for which the sender has permission to send the
signal. Again, the set of all processes excludes certain system processes,
as described earlier.

pid == -1 The signal is sent to all processes on the system for which the sender has
permission to send the signal. As before, the set of processes excludes
certain system processes.

As we've mentioned, a process needs permission to send a signal to another
process. The superuser can send a signal to any process. For other users, the basic rule
is that the real or effective user ID of the sender has to equal the real or effective user ID
of the receiver. If the implementation supports POSIX_SAVED_IDS (as POSIX.1 now
requires), the saved set-user-ID of the receiver is checked instead of its effective user ID.
There is also one special case for the permission testing: if the signal being sent i
SIGCONT, a process can send it to any other process in the same session. -

POSIX.1 defines signal number 0 as the null signal. If the signo argument is 0, then
the notmal error checking is performed by kill, but no signal is sent. This is often
used to determine if a specific process still exists. If we send the process the null signal
and it doesn’t exist, kill returns -1 and errno is set to ESRCH. Be aware, however,
that UNIX systems recycle process [Ds after some amount of time, so the existence of a
process with a given process ID does not mean that it's the process that you think it s

Also understand that the test for process existence is not atomic. By the time that
kill returns the answer to the caller, the process in question might have exited, so the
answer is of limited value.

© IETE 34

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

If the call to kill causes thesignal to be generated for the calling process and if the
_signal & not blacked, either s i p or some other pending, unblocked signal is delivered
_to the process before kill retums. (Additional copditions oocur with threads: see
*Section 12.8 fox more information.)

)10 alarm and pause Functions
The alarm function allows ue to set a timer that will expire at a specified time in the

fiture. When the timer expires, the SIGALRM signal is generated. If we ignore or don't
caich this signal, its default action is to terminate the process.

rrTE—

finclude cunial:d..h:\r
unsigned int alarm{unsiomed int seconds):

Returns: b o number of seconds until previously setalarm]

The seconds value iz the number of clock seconds in the future when the signal should
be generated. Be aware that when that time ccours, the signal is generated by the
kemel, but there could be additional time before the process gets control to handle the
signal, because of processor scheduling delays.

Eaplier UNTX System implementations warned that the signal could also be sent up 01 second
early. POSIN.1 does not allow this,

There is only one of these alarm clocks per process. If, when we call alarm, a
previously registered alarm clock for the process has not yet expired, the number of
seconds left for that alarm clock is returmed as the value of this function. That
previously registered alarm clock is replaced by the new value.

i ¥ a previously registered alarm clock for the process has not yet expired and if the
seconds value i 0, the previous alarm clock is canceled. The number of seconds left for
that previous alarm clock & still returned as the value of the function.

though the default action for STEALRM 1s to terminate the process, most processes
that use an alarm clock catch this signal. I the process then wants to terminate, it can
perform whatever cleanup is required before terminating. If we intend to catch
SIGALRM, we need to be careful to install its signal handler before calling alarm. If we
call alarm first and are sent SIGALRM before we can install the signal handler, our
process will terminate.

The pause function suspends the calling process until asignal is caught,

#;.nc lude <unistd. h=
int pause({void):
Returns: -1 with errng set to EINTR

The only time pause returns is if a signal handler is executed and that handler returns.
In that case, pause returns ~1 with errno setto EINTR.

© IETE 35

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

Example
. ysﬁlgﬁlam and pause, we can put a process o sleep for a specified amount of i
The sleepl function in Figure 10.7 appears to do this (but it has problems, as wesh

see shortly).
#include <gignal.h>
#include cunigtd.h>

static woid
eig alrm{int #igned

f/* nothing te do, Jugt return teo wake up the pause */

unsigned izt
sleepl (unsigned int nsecs)

if f(signal (SIGALRM, gig_alrm) == SIG_ERR
return inseca) ; :

alarmineecs) ; /* start the timer +/
~ pausef) ; f* next rcaught aignal wakes us up */
recurn (alarm (0} ; /* turn off timer, returr unslept tims *)

Figure 10.7 Simple. incomplete implemantation of eleep

This functivn Jooks like the sl sep function, which we describe in Section 1019, bul th
simple implementation has three problems. '

L. If the caller already has an alarm set. that alarm is erased by the first call
alarm, We can correct this by looking at the return value from the first
alarm. If the number of seconds until some previously set alarm is less
the argument, then we should wait only until the previously set alarm e
If the previously set alarm will go off after ours, then before returni
should reset this alarm to occur at iis designated time in the future

2. We have modified the disposition for SIGALRM. If we're writing a funct
others to call, we should save the disposition when we're called and res
when we're done. We can correct this by saving the return value from s
and resetting the dispositionbeforew e r=tion.

3. There is a race condition between the first call to alarm and the call to pause
Omn a busy system, it's possible for the alarm to go off and the signal ha
be called before we call pause. If that happens, the caller is suspended fo
in the call to pause (assuming that some other signal isn’t caught).

Earlier implementations of sleep looked like our program, with problems 1 2 d 2
corrected as described. There are two ways to correct problem 3. The first
setjmp, which we show in the next example. The other uses sigprocmask
sigsuspend, and we describe it in Section 10,19.

© IETE 36

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

Example

The SVR2 implementation of sleep used setimp and longimp (Section 7.10) to avoid
the race cendition described in problem 3 of the previous example. A simple version of
this function, called sleep2, is shown in Figure 10.8. (To reduce the size of this
example, we don’t handle problems 1 and 2 described earlier.)

fipclude <gebjmp.h>
#include <signal . h>
#include <unistd.hs

static]rnp_]:i-u[env_alrm;

static wold
gig alrm|int signe)

longimp {env_almm, 1};

unsigned int
sleep2lunsigned int nsecs)

{signal (SIGALRM, sig alrm) == SIG_ERR)
return (nsecs) ;
if (setimp(env_alrm) w. @l {

alarm(nseca) ; /* start the timer */
pause () : /* next caught signal wakes us up +/
1
return{alarmi{al) ; f* turn off timer, return unslept time */

Figure 10.8 Angther (imperfect) implementation of sleep

The sleep2 function avoids the race condition from Figure 10.7. Even if the pause is
never executed, the sleep2 function returns when the SIGALRM cccurs,

There is, however, another subtle problem with the sleep2 function that involves
its interaction with other signals. If the SIGALRM interrupts some other signal handler,
wheh we call longjmp, we abort the other signal handler. Figure 10.9 shows this
scenario. The loop in the SIGINT handler was written so that it executes for longer
than 5 seconds on one of the systems used by the author. We simply want it to execute
longer than the argument to sleep2. The integer k is declared volatile to prevent
an optimizing compiler from discarding the loop. Executing the program shown in
Figure 10.9 gives us

§ .fa.out

°7 uw hype the interrupt characler

gig int starting

glesp? yeturned: O

We can see that the longimp from the sleep2 function aborted the other signal
handler, sig_int, even though it wasn't finished. This is what you'll encounter if you
mix the SVR2 sleep function with other signal handling. See Exercise 10.3. o

© IETE 37

ACT71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015
#inelude "aEua.h" a
unsigned int slecp2 (ungigned ink) ; j
gtatic wvoid sig int{ink) ; |
ink

Example

© IETE

main (volid)

{

unsigned int unslept ;

if (signal (SIGINT, eig_int) == SIG_ERR)
err_sys({"eignal (SIGINT) erroc");

unslept = sleep2(5);

printf ("sleep? retumned: ¥u\n", unalept);

exit (0} ;

}.

starcic wold
gig_int (int signol

int : W
volatile int ki
S

* Tune theses loops te run for more than 5 seconds

* on whatever system this btest program is run.

*/
printf ("\nsig int stacting\n®);

for (i = 0; 1 < 300000; 1i++)

for (j = 0;] = 4000; J++)
k += 1 * §;

printf ('sig int finished\n"};:

Figure 10.9 Calling a1 ¢ep2 from a progran that calches other signals

The purpose of these two examples, the s1eepl and sleep2 functions, is to show
the pitfalls in dealing naively with signals. The following sections will show

other pieces of code.

A common use for alaxm, in addition to implementing the aleep function, is to puts

upper time limit on operations that can block. For example, if we have a read
operation on a device that can block (a “slow"” device, as described in Sechion 10.5), we
might want the read to time out after some amount of time. The program
Figure 10.10 does this, reading one line from standard input and writing it to standard
output.

38

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

fin~lude "apue. h”
static void silg_alym(int) ;

int
mainvoid!
{
int n;
char line [MAYLINE] ;

if (signal (SIGALRM, sig alrm) == SIG_ERR|
exrt_pys|"signal (SIGALRM} error”);

slazm {10},

if {{n = read{STDIN PILENC, lime, MAXLIKE)) < 0}
err_ays("read arror*);

alarm|O} ;

write (STDOUT FILENO, line, n};
exit(0);

J

gtatic wvoid
eig_almmiint signe)

{/* nothing to do, just return to interrupt the read */

Figure 10,10 Calling read with a imeout

This sequence of code is common in UNIX applications, but this program has two
problems.

1. The program in Figure 10.10 has one of the same flaws that we described in
Figure 10.7: a race condition between the first call to alarmand the call to read.
If the kemel blocks the process between these two function calls for longer than
the alarm period, the read could block forever. Most operations of this type use
a leng alarm period, such as a minute or more, making this unlikely;
nevertheless, it is a race condition.

2, Ifsystem calls are automatically restarted, the read is not interrupted when the
SICGALEM signal handler retums, In this case, the timeout does nothing.

Here, we specifically want a slow system call to be interrupted. POSIX.1 does not give
us a portable way to do this; however, the XSI extension in the Single UNIX
Specification does. We'll discuss this more in Section 10.14. a

—y—y

Exampie

Let's redo the preceding example using longjmp. This way, we don't need to worry
about whether a slow system call is interrupted.

© IETE 39

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

#include *"apue.h*
#include <setjmp.h=

gtatic wvoid sig alrm{int);
static jmp buf env alrm;

int
main (void)

int n;

char line [MAXLINE] ;

if (signal {(SIGALRM, sig alrm| == SIG_ERR)
err ays("signal (SIGALRM) error"|;

if (getjmplenv_alrm) (= 0)
err gquit ("read timeout™)];

alarm{1i0);

if (A = read(STDIN FILENO, line, MAXLINE}) < 0}
err aygi"read error");

alarmiQ);

write (STOOUT FILEND, line, n)
exit (0}

r

gtatic wvoid

sig alrmlint signo)
'}

{

longimp (emv_alrm, 1);

Figure 10.11 Calling read with a Hreout, using Longjmp

This version works as expected, regardless of whether the system restarts interrupted
system calls. Realize, however, that we still have the problem of interactions with other
signal handlers, as in Figure 10.8, g

If we want to set a time limit on an [/0O operation, we need to use longjmp, a
shown previously, realizing its possible interaction with other signal handlers. Another
option is to use the select or poll functions, described in Sections 14.5.1 and 1452, V.

b. Create a script file called file properties that reads a file name entered and

output its properties. (8)
Answer:
echo “enter filename”
read file
c=1
if [-e $file] #checks the existence of the file
then

for i in "Is -1 $file | tr —s “
“tr —s “ “” treats 2 or more spaces as a single space
do

© IETE 40

ACT1/ATT71/AC124/AT124

UNIX SYSTEMS PROGRAMS

DEC 2015

case “$c” iIn

1) echo “file
2) echo “link
3) echo “file
4) echo “file
5) echo “file
6) echo “file
7) echo “file
8) echo “last
9) echo “file
esac

c="expr $c + 1~
done
else
echo “file does not
fi

Qutput
$sh lab4a.sh

#case condition starts

permission=" $i ;;

=7 8$i;;

owner =" $i;;
group="%$i ;;
size=" $i ;;

created month="" $i
created date="" $i
modified time=" $i
name="" $i

#end of case condition

exist”

enter filename

lab8a.sh

file permission=-rw-r- -r- -

link=1

file owner=hegde
file group=hegde
file size =339

file created
file created

month=april
date=7

last modified time=05:19
file name=l1ab8a.sh

Q.8 a. Your printer has stopped working, and you want to be sure whether the
printing daemon is working. How will you ensure that?

Answer:

Printing can be enabled in 1pc using its start command and disabled using

its stop command. Jobs held in a print queue when a printer is stopped will remain

there until printing is restarted. The stop command functions by setting a lock file in

the printer spool directory and killing the print daemon for that queue, but it allows

the currently printing job to complete. The abort command works like stop, but halts

© IETE

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

any printing job immediately, too. (Since the job did not complete, 1prretains it and
starts over again when the queue is restarted.)

The down command functions as though both a disable and a stop command were
issued, and the up command does the reverse, issuing enable and start commands.

You could also limit the display to one printer:

$ Ipc status crow

crow:
queuing is enabled
printing is enabled
1 entry in spool area
crow is ready and printing

The status-reporting feature is useful for anyone, and 1pc allows all users to use it.
The real work for 1pc usually involves solving a printing crisis. Sometimes a print
daemon dies, and printing jobs back up. Sometimes a printer runs out of ink or paper,
or even fails. Jobs in the print spools have to be suspended or moved to another spool
where they can be printed. Someone may simply have an urgent printing task that
needs to be moved to the top of the queue.

The 1pc command is a classic Unix command: tight-lipped and forbidding. When you
simply enter the 1pc command, all you get back is a prompt:

Ipc>

The command is interactive and waiting for your instructions. You can get help by
entering help or a question mark at therpc prompt. 1pc responds and gives you a new
prompt. For example, entering a question mark displays:

Ipc

Ipc> ?

Commands may be abbreviated. Commands are:

abort enable disable help restart status topq ?
clean exit down quit start stop up

Ipc>

You can get additional help by asking for help about a specific command. For
example, to learn more about restarting a stalled print queue, type:

Ipc> help restart
restart kill (if possible) and restart a spooling daemon
Ipc>

© IETE 42

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

The 1pc help message does not offer online help about the secondary arguments you
can specify in some places. The manual page will offer you some guidance. Most of
the commands accept a1 or a print spool hame as a secondary argument.

The 1pc topg command recognizes a print spool name as the first argument and
printer job numbers or user IDs as following arguments. The arguments are used to
reorder the print queue. For example, to move job 237 to the top of the ada print
queue, followed by all jobs owned by bckeller in the queue, enter:

Ipc> topq ada 237 bckeller

The 1pd daemon will start job 237 as soon as the current job is finished and will put
any files in the queue owned by bckeller before the rest of the print spool. If you were
very impatient, you could use the abort and clean commands to kill and purge the
currently printing job, then use topq to put the job you want at the top of the queue,
before usingrestart to create a new 1pd and restart the queue.

When you use the stop command to stop a print spool (or all print spools) you can
broadcast a message to all system users at the same time. For example:

Ipc> stop ada "Printer Ada taken down to replace toner cartridge."

b. Write a shell script to display the period for which a given user has been
working in the system. (8)
Answer:

/* In order to get the valid user names use the “who” command */

tl="who | grep "$1" | tr -s ™" " J cut -d " " -F 5] cut -d ":"
-f 1"
t2="who | grep "$1" | tr -s " " J cut -d " " -F 5 | cut -d ":" -
f2°

tl="expr $t1 * 60 °
minl="expr $tl + $t2°
dl="date +%H"
d2="date +%M"
dl="expr $d1 * 60"

min2="expr $d1 + $d2°
© IETE 43

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

sub="expr $min2 - $minl"”
p="expr $min2 - $minl”
p="expr $p /7 60"
pl="expr $min2 - $minl”
pl="expr $pl % 60"

echo " The user $1 has been working since : $pr Hrs $prl
minutes "

Output
$sh 10a.sh mca30

The user mca30 has been working since : 2 Hrs 30 minutes

c. Explain the command gzip with their syntax also. 4)

Answer:

gzip reduces the size of the named files using Lempel-Ziv coding (LZ77). Whenever possible,
each file is replaced by one with the extension .gz, while keeping the same ownership modes,
access, and modification times. (The default extension is -gz for VMS, z for MSDOS, 0S/2
FAT, Windows NT FAT and Atari.) If no files are specified, or if a file name is "-", the standard
input is compressed to the standard output. gzip will only attempt to compress regular files. In
particular, it will ignore symbolic links.

If the compressed file name is too long for its file system, gzip truncates it. gzip attempts to
truncate only the parts of the file name longer than 3 characters. (A part is delimited by dots.) If
the name consists of small parts only, the longest parts are truncated. For example, if file names
are limited to 14 characters, gzip.msdos.exe is compressed to gzi.msd.exe.gz. Names are not
truncated on systems which do not have a limit on file name length.

By default, gzip keeps the original file name and timestamp in the compressed file. These are
used when decompressing the file with the -N option. This is useful when the compressed file
name was truncated or when the time stamp was not preserved after a file transfer.

Q.9 a. Differentiate between popen and pclose functions. (8)
Answer:

© IETE 44

ACT71/ATT71/AC124/AT124

UNIX SYSTEMS PROGRAMS

DEC 2015

153 popen and pclose Functions

=
v

Since a common operation is to create a pipe to another process, to either read its output
or send it input, the standard 1/0 library has historically provided the popen and
pclose functions. These two functions handle all the dirty work that we've been doing
ourselves: creating a pipe, forking a child, closing the unused ends of the pipe,
executing a shell to run the command, and waiting for the command to terminate.

hincluﬁ {E;G?a,'ﬁ:-

FILE *popen(const char *cmdsiring, comst char *hped;

| Returns: file pointer il OK, NULL on error
| int pclose (FILE *fp),;

‘ Returns: termination status of coudstring, or =1 on error

The function popen does a fork and exec lo execute the cmistring, and returns a
standard 1/0 file pointer. If type is "r", the file pointer is connected to the standard
output of cmdstring (Figure 15.9).

parent cmadstring (child)

Figure 15.9 HResultof Ep = popen|cmdstnng, "r"l

If type is "w", the file pointer is connected to the standard input of cmdstring, as shown
in Figure 15.10.

© IETE

45

ACT71/ATT71/AC124/AT124

UNIX SYSTEMS PROGRAMS

DEC 2015

Example

parent cmdstring {child)
fp shidin

Figure 1510 Resultof £p = popen(ondstring, “w*)

One way to remember the final argument to popen is to remember that, like fopen, f u:._

returned file pointer is readable if type is "x " or writable if type is "w™.
The pclose function closes the standard 1/0 stream, waits for the mmmmj'

terminate, and returns the termination status of the shell. (We described the

termination status in Section 8.6. The system function, described in Section 8.13, als

returns the termination status.) If the shell cannot be executed, the termination status

returned by pclose is as if the shell had executed exit (127).
The cmdstring is executed by the Bourne shell, as in

sh -c cmdsiring

This means that the shell expands any of its special characters in crdsiring. This allo
us to say, for example,

fp = popen{"la *. g, "pt);
or

fp = popen{*omd 3-&1", "r"});

Let's redo the program from Figure 15.6, using popen. This is shown in Figure 15.11.

#include "apue.h"
ftinclude <eys/wait.hs

idefine PREER "5(|PAGER:-more}" /* envircnment variable, or default 1/

ine
main{int argc, char *argv(])

{ !
char lipe [MAXLINE] ; .
FILE *fpin, vfpout; 1

if (argc = 2)]
err_guit("usage: a.out zpathnames"); 3

if ((fpin = fopenlargv[l], "zr")) == NULL)
err_sye("can’'t open %¥s", argv(i]};

if {{fpout = popen{BPAGER, "w")) == NULL) |
err_sys("popen error"};

/* copy argvil] to pager */ |

© IETE

46

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

y while (fgets{line, MAXLINE, fpin) != NULL) |
if (fputs(line, fpout) == EGF)
err—aye{®"fputs error to pipe®);

I
[i1f (ferror{fpin})
err_sys("fgets error"):
L if (pcloseifpout) == =1)
arr_sys("pclose error");

[exit(0);
E Figure 15.11 Copy file to pager prograi using popen

Using popen reduces the amount of codé we have to write.
The shell command ${ PAGER: -more} says to use the value of the shell variable
PAGER if it is defined and non-null; otherwise, use the stringmore. o

Example—popen and pelose Functions

Figure 15.12 shows our version of popen and pclose.

#includa "apue.h*
#include cerrno.hs
#includa <fentl.hs
#ginclude <sys/wait.h>

l—'-ru;-.-l'-"-"m m

i*
* Pointer to array allocated at run-tima.
L

" static pid_t *childpid = WULL;

et]

*

* From our open_max({}, Figure 2.16
w
i_ static int maxid;

FILE -)
popenlconst char "cmdstring, const char *type)

int °i;

int pEd(2] ;
pid_v pid;
FILE *Lp:

/* only allow "I" or "w™ %/

if ((type(0] I= 'r' && typelo] != 'w') || typelil 1= o} {
arrng = EINVAL; required by POSIX =f
return(NOLL)

© IETE 47

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

if {childpid == NOLL) { /* firxst time throuwgh. ¥/ ..
/* allocate zeroed cut Affay for child pide */
maxfd = open_max(};.
¥ | (childpid = calloc(maxfd, sizeof{pid t)}) == NULL)
return (NULL) y

if [pipe(pfd) < @} .
raturn (MULL); /" errmo ret by pipef) */

If ((~i=d Eork()) <« 0} {
returniNULLY:; — /* ergme set bv forki] =/

} else if (pid = 0} { [* child +/
* If [vtype == ‘¥') {
close(pfdlo]),

if (pfd[l] != STDOUT_FILENO) |
dup2 (pfd [1], STDOUT_FILENJ) ;
cloase (pEd[1]);

}

} else |

clope(pfd[1]) ; ’

if (pfdic] != STDIN_FILEMO) [
dupd (PEA[0] , STDIN_FILENQ) ; W)
closa (pfd [0} ;

1 -

}

/™ close all descriptors in childpid[) */
for (4 = 0; 1 c maxfd; 1++)
if (childpidfil > 0)
close (i) ;-

execl ("/bin/sh® wgpr =-C™ emdstring, (char *}0);
_exit(127):

1,.

f* parent contipyea,.,
1if {*t'_lrl'PE = L)
closa(pFd[1]):

L

if ((fp = fdopen(pfd[0), type)) == NULL) a2
returniNILL) 7
} elee {
close (pra (0]}
if ((fp = fdopen(pfd[l], type)) == NULL) -
return (NULL) 7
}
childpid(fileno(fp)] = pid; /* remember child pid for this fd */
return{fp) :

© IETE 48

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

int

pelose (FILE wEp)

{
int fd, stat;
pid_t pid;

if {childpid == NULL) |
errno = EINVAL;
return{-1| ; /* popen() has never been called »/

53

fd = fileno(fp);
if (({pid = childpid[fd]} == 0} |
errno = BINVAL;
return{-1) ; /* fp wasn't opened by popen() %/

?

childpidtd] = 0O;
if (felose(Ep) == EOF)
return(-1) ;

while (waitpidipid, &stat, 11 = 0}
if (errno 1. EINTR)
teturn(-1i, /+ error other than EINTR from waitpid{l »f

return (stat; - J* return child's cerminart i Scatud */f

]

— e —— ——— — — Ty

Figure 1512 The popen and pel ose funciions

- . — e —

Although the corc ot popen is similar to the code we've used earlier in this chapler,
there are many details that we need lo take care c£. First, cach time popen iscalled, we
have 0 remeimber the process JLof the chuld that we crcate and vither it file descriptor
or FILE pomnter Wi choose te save the chuld’s process [D in the array childpid,
which we index by the (ile descriptor. This way, when polose is Called with the FILE
pointer as its argument, we <all the standard 1/0) function t:l=nc to get the file
descriptor, and then have the child process [T for the cali b waztpid, Since it's
possible for a given process to call popen wiwre than once, we dynamically allocate the
clilldpid array (the first time popen s called), with ropm for &< many cluldren as
there are file descriptors.

Calling pipe and £cork and then duplicating the appropriate descriptors for each
process issimilar o what we did earlier in this chaptern

POSIN Tequires that popen close any stieams that ore still open in the child from
previous calls to popen. To do this, we go through the chiidpid array in the child,
closing any descriptors that are still open.

What happens if the caller of ;:~1ose has established a signal hondler for
SIGCHLD? The call to waitpid from Lclose would return an error of EINTR, Since
the calles is allowed to cateh this signal (o1 any other signal that might interrupt the call
to waitpid) wesimply coll wainpid agaln if it iginterrupted by a caughl sgnal

© IETE 49

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

Note that if the application calls waitpid and obtains the exit status of the child
created by popen, we will call waitpid when the application calls pclose, find that
the child no longer exists, and return —1 with errno set to ECHILD. This is the behavior
required by POSIX.1 in this situation.

Some early versions of pclose returned an error of EINTR if a signal interrupted the wait,
Also, some early versions of pelose blocked or ignored the signals sToInT, 510QUIT, and
SIGHUF during the wait. This iz not allowed by POSIX L. 0

Note that popen should never be called by a set-user-1D or set-group-ID program.
When it executes the command, popen does the equivalent of

execl {*"/bin/sh*, "sh", "-c", command, WULL);

which executes the shell and command with the environment inherited by the caller A
malicious user can manipulate the environment so that the shell executes commands
other than those intended, with the elevated permissions granted by the set-ID file
mode.

One thing that popen is especially well suited for is executing simple filters to
transform the input or output of the running command. Such is the case when a
command wants to build its own pipeline.

Example

Consider an application that writes a prompt to standard output and reads a line from
standard input. With popen, we can interpose a program between the application and
its input to transform the input. Figure 15.13 shows the arrangement of processes.

Figure 1513 Transforming inpul using popen

The transformation could be pathname expansion, for example, or providing a history
mechanism (remembering previously entered commands).

. Figure 15.14 shows a simple filter to demonstrate this operation. The filter copies
standard input to standard output, converting any uppercase character to lowercase.
The reason we're careful to ££lush standard output after writing a newline i
discussed in the next section when we talk about coprocesses.

© IETE 50

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS

DEC 2015

finclude "apue.h”
i finclude <ctype.h>

| Int
r wain(void)

{

£ ap

T while ({c = getchar(]) 1a B0F) |
iT (igupperic)h

i g = talowaric) ;
if (putcharicl == EBOF)
an arr-ayal(®cutput error"):
1 ;._:_ EC s] '\|,|'|']‘
fflushistdout) ;
1

exiti(dl ;

Flgure15.14 Filter to convertuppercasecharaciers tolowgrmse

We compile this filter into the executable file myucle, which we then invoke from
the program in Figure 15,15 using popen.

——e

tinclude “apue.h®
finclude <sys/wait.h:

b int
main {void)
|
Il * char line [MAXLINE] ;

FILE *fpin;

if {(Epin =I1;Iu:-pen"tryuu1-:.'. *r")) wma HULL)
err_sys("popen error ' ;
fox {1 70 |-
fputs{*prompt> ", stdout];
ffluah{ K i 1;
if [fgersiline, MAXLINE, fpin) == NULL) /* read from pipe +/
break:
if (fputw{line, stdout) == EOF)
err_sgya("fputa error to pipel);

j"f' ipclose (Epin) == -1)
‘err_sys("pclose error");

putchar('\n");

exit {0}

b = S—

Figure 1515 Invoke uppercase /lowercase filker to read commands

We need to call ££1ush after writing the prompt, because the standard o ;
normally line buffered, and the prompt does not contain a newline. n/ ;

b. Write short notes on: (4%2)
i. shared memory
ii. client-server properties
Answer:

© IETE 51

ACT1/ATT71/AC124/AT124

UNIX SYSTEMS PROGRAMS

DEC 2015

,%15.! Shared Memory

:..l:;-""

Shared memory allows two or more processes to share a given region of memory. This
is the fastest form of IPC, because the data does not need to be copied between the client
and the server. The only trick in using shared memory is synchronizing access to a
given region among multiple processes. If the server is placing data into a shared
memory region, the client shouldn't try to access the data until the server is done.
Often, semaphores are used to 5}'nchmnize shared memory access. {But as we saw at
the end of the previous section, record locking can also be used.)

The Single UNIX Specification includes an alternate set of interfaces to access shared memaory
in the shared memaory objects option of its real-time extensions. We do not cover the real-time
exignsions in this bext.
The kernel maintains a structure with at least the following members for each
shared memory segment:

© IETE

52

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

struct shmid ds |

struct ipc perm shm perm; /% sem Secticn 15.6.2 %/

size ¢ shm segsz; /* size of segment in bytes *[
pid ¢ shm_lpid; f* pid of last ahmop() */

pid £ shm_cpid; f* pid of creator =/

ghmatt b shm natteh:; /% number of current attachas *f
time t shm_atime; f* last-attach time */

time t shm_dtime; /% last-detach time */

time t shm_ctime; /* last-change time */

Y

(Each implementation adds other structure members as needed to support shan
memaory segments,) .

The type shmatt t is defined to be an unsigned integer at least as large 253
unsigned short, Figure 1530 lists the system limits (Section 15.6.3) that affect shar
memory.

| Typical values
Drescription FreeBSD Linox |MacOSX
| 521 4.2 103
The maximum size in bytes of a shared memory scgment | 33,554,432 | 33554432 | 4194304 |83
| The minimum si2¢ in bytes of a shared memory segment 1 1 1
| The maximum number of shared memory segments, 192 4,096 k1]
systemwide
The maximum number of shared memaory segments, per 128 4,096 &
process t

Figure 1530 Systemn limits that affect shared memory

The first function called is usually shmget, to obtain a shared memory identifier,
#include <sys/shm.h=

¥

int shmget{key_ t key, size _t size, int flag)

Returns: shared memory [D if OK, -1 on errar

In Section 15.6.1, we described the rules for converting the key into an identifier and
whether a new segment is created or an existing segment is referenced. When a new
segment is created, the following members of the shmid_ds structure are initialized,

* The ipc_perm structure is initialized as described in Section 15.6.2. The mode
member of this structure is set to the corresponding permission bits of flap
These permissions are specified with the values from Figure 15.24.

* shm lpid, shm nattach, shm atime, and shm dtime are all set to ()

* shm_ctime is set to the current time.

* shm_segsz is set to the size requested.

© IETE 53

ACT71/ATT71/AC124/AT124

UNIX SYSTEMS PROGRAMS

DEC 2015

The sir parameter is the size of the shared memory segment in bytes.
Implementations will usually round up the size to a multiple of the system's page size,
but if an application specifies size as a value other than an integral multiple o the
system’s page size, the remainder ol the last page will be unavailable for use. If a new
segment is being created (typically in b server), we musi specify its size, If we are
referencingan existing segment [a clienit), wecan specify «izr as (1. When a new segment
is created, the contents of the segmoent arc initialized with reros.

The ehmet 1 function is the catchall tor various shared memory pperations.

I finclude =sys/shm.h=

e s 1

int ghmetl (int shmid, int ewd, Struct shnid ds *huf);

Felormns YitOK, -1 omerror l

The cmd argument specifies one of the following five commands to be performed,
on the segment specified by shmid.

IR _8TAT

[
ol
-
v 1]
m
[

IPC_RMID

Fetch the shmid_rds structure for this segment, storing It in the
structure pointed to by buf

Set the following three fields from the structure pointed to by buf in
the shmid_ds skructure associated with this shared memaory segment:
ghm_perm.uid, shm perm.gid, and shm_perm, mode. This
command can be -:,wautuc‘. only by a process whose effective user ID
equals shm_perm.cuid or shm perm.uid or by a process with
superuser privilege...

Remove the shared memory segment set from the system. Since an
altachment count is maintained tor shared memory Segments (the
shm_nattch field in the shmid _ds structura), the segment is not
removed until the last Process tr.srng the segmcnt ferminates or
detaches it. Fegardless d whether the segment is still in use, the
segment's identifier 15 immediately removed so that shmat can no
longer attach the segment. This command can be executed only by a
process whose effective user ID equals shom_perm cuid or
=hm_perm_uid or by a process with superuser privileges.

Two additional commands are provided by Linux and Solanis, but are not part of the
Single UNIX. Specificatinn.

SHM_LOCK

Lock the shared memory segment in memory. This command can
be executed oniy by ihe superuser.

SHM_UNLOCK [Llnlock the shared memory segment. This command can be

executed only by the superuser.

Onee a shared memory seigment has been created, a process attaches it to its address
space by calling shmat.

© IETE

54

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

m = B

#include <sya/shm.h>

void *shwat (int shwid, const void *addr, int flag) ;

Returns: peinter to shared memory segment if OK, -1 on error 3

The address in the calling process at which the segment is attached depends on the
argument and whether the SHM_END bit is specified in flag. '

= [faddr is 0, the segment is attached at the first available address selected by the
kernel. This is the recommended technique.

o If addr is nonzero and SHM_RND is not specified, the segment is attached at the.
address given by addr.

address given by (addr — (addr modulus SHMLBA). The SHM_RND and
stands for “round.” SHMLBA stands for “low boundary address multiple” andis
always a power of 2. What the arithmetic does is round the address down to the
next muitlple of SHMLBA.

highly unlikely today), we should not specify the address where the segment is o be
attached. Instead, we should specify an addr of 0 and let the system choose the address:
If the SHM RDCNLY bit is specified in flag, the segment is attached read-o y.
Otherwise, the segment is attached read-write. .
The value returned by shmat is the address at which the segment is attached, er=1
if an error occurred. If shmat succeeds, the kernel will increment the shm_natteh
counter in the shmid_ds structure associated with the shared memory segment.
When we're done with a shared memory segment, we call shmdt to detach it. N

system. The identifier remains in existence until some process (often a server)
specifically removes it by calling shmet 1 with a command of IPC_RMID.

#ihelode <sys/shm.hs
int shmdt {vold +addr) ;
Returns: 0 if OF, =1 on error

The addr argument is the value that was returned by a previous call to shmat, If
successful, shmdt will decrement the shm_nattch counter in the associated shmid ds
structure.

Example

Where a kernel places shared memory segments that are attached with an address uﬂl
ic highly system dependent. Figure 1531 shows a program that prints some
information on where one particular system places various types of data.

© IETE 55

ACT71/ATT71/AC124/AT124

UNIX SYSTEMS PROGRAMS

DEC 2015

#include "apue.h®
#include <aya/shm.h>

fdefine ARFAY-SIZE 40400
#define MALLOC_SIZE 100000
#define SHM SIZE 100000

f#define SHM MODE 0600 f* user read/write */
char array [ARRAY SIZE]l; [* uninitialized data = bas */

int
main (void)
{
int shmid;
char *ptr, *shmptr;

printf("array[] Fom %lx to ¥1X\n" (unsigned long)&array[0].
funsigned long)karray[ABRRY_STEE]);
printf(“atack around %*1x\n" 6 (unsigned long) &shmid}’;

if (lptr = malloo(MALLOC SIZE)) == NULL)
err sys|'malloc error");
printf ("malloced from %lx to ¥lx\n", (unsigned long)ptr,
(unsigned long)ptr+MALLOC SIZE) :

if |({shmid = shmget (IPC_PRIVATE, BHM_SIZE SHM_MODE)) < 0
err sys('shmget error"ji; 2
if [(shmptr = shmac{shmid, 0. 0]} == (void ™) -1}
err sys("shmat error"); o B
printf("shavred memory attached from ¥lx to ¥lx\n", - .
(unsigned long)shmptr; (unsigned long)shmptr+3AM SIZE) -

if (shmctl(shmid, IPC RMID, 0) < 0}
err_sys{"shmetl erroc!);

exit{0):

Figure 1531 Print where various types of data are stored

Running this program on an Intel-based Linux system gives us the following output:

% ./m.out

array([] from B04a080 to 8053ccl

stack arwnd bEfffSed

malloced Erom B0530c8 to BOECIES r
shared memory attached from 40163000 to 4017acad

Figure 15.32 shows a picture of this, similar to what we said-was a typical memory
layout in Figure 76. Note that the shared memory segment is placed well below the
stack. : m

© IETE

56

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

and environment variahles

high address | "Enmand-linea rguments
| &
stack L-—— GubLEfEDad

Ax401Tagal)
shared memo shared memory of 100,000 bytes
] - & fa— OxA01E2000 =

- X AB0ECIEE
neap pmallos o 100,090 bytes
x0B053cch

2k Dxff053ecl”
uninitiallzed data | “ o ¥urray [1 of 40,000 bytes
(bss) fe— 0x0804a080)
initialized data
taxt

low ndr.iressl

Figure 15.32 Memory layout on an Intel-based Linus system

Recall that the mmap function (Section 14.9) can be used to map portions of a file
into the address space of a process. This is conceptually similar to attaching a shared
memory segment using the shmat X8I IPC function. The main difference is that te
memory segment mapped with mmap is backed by a file, whereas no file is associated
with an X5I shared memory segment.

Example—Memory Mapping of /dev/zero

|
Shared memory can be used between'unrelated processes. But if 'the processes are 1
related, some implementations provide a different technigque. |

The fellowing technique works on FreeB5D 521, Linux 2422 and Solaris 9. Mac OS5 X 103
currently doesn’t supporn the mapping of character devices into the address space of a process.

The device /dev/zero is an infinite source of 0 bytes when read. This device also
accepts any data that is written to it, ignoring the data. Our interest in this device for
IPC arises from its special properties when it is memory mapped.

* An unnamed memory region is created whose size is the second argument
mmap, rounded up to the nearest page size on the system.

* The memory region is initialized to 0.

* Multiple processes can share this region if a common ancestor specifies the
MAP_SHARED flag to mmap.

The program in Figure 15,33 is an example that uses thisspecial device.

© IETE 57

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS

DEC 2015

finclude *apue.h®
#include <fentl. hs
#include <sys/mman.hs

$define NLOOPS 1800 .
ftdefine SIZE sizeef{longi {* size of shared memary srea ™/

static int
update:flong-*=ptrl

return((*ptr}++); /* return value before increment =*/

Int

mailnlvoid)

1 -
int f£d, i, counter;
pid ¢ pid;
voild *area;

if ((fd = cpeni"/dev/zero", O ROWR}) < 0}
earr gyo("open arrort);
if ((area = mmap{0, SIZE, PROT _READ | PRCT WRITE, MAP SHARED,
fd, 0)) == MAP_FAILED|
eEr_sysl*mmap error?®];
cloge (£d) ; /* can cloae /dev/zers now that it's mapped */

TELL_WAIT() : et DL phey, SHE A

If (ipld s L. : &
: rr_e—"l:'DEk”. }Il-efrg;"_'i = 3 S
} elze if (pld > o) (T /% par=nk *f
For (i w07 4 < NLOOPS; 4 += 2) ¥ ..
if (({counter = update({long =)area)) T= i)
. .~ err_guit{"parent: expected$d, got %¥d", i, countar);
TELL_CHILD(pid);
WAIT CHILD();
} else | /% child &/
for (1 = 1; i ¢ BWLOOES + 1; 4 += 2) |

WALT - PARENTI} ;

if {[counter = updata((long "}';11'0:1}} = 1]
err_gquititchild: ewxpected 4d; got -¥d*, 1, counter);

TELL_PARENT (getppid())

}

exit(D}:

Figure 15.33 [I'C between parent and child using memory mapped 1/0 of fdev/zers

© IETE 58

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

The program opens the /dev/zero device and calls mmap, specifying a size of 2
long integer. Note that once the region is mapped, we can close the device. The
process then creates a child. Since MAP_SHARED was specified in the call to mmap,
wriles to the memory-mapped region by one process are seen by the other process. (If
we had specified MAP_PRIVATE instead, this example wouldn't work.)

The parent and the child then alternate running, incrementing a long integer in the
shared memory-mapped region, using the synchronization functions from Section 8.9,
The memory-mapped region is initialized to 0 by mmap. The parent increments it fo 1,
then the child increments it to 2, then the parent increments it to 3, and so on. Note that
we have to use parenthescs when we increment the value of the long integer in the
update function, since we are incrementing the vaiue and not the pointer.]

The advanlage of using /dev/zero in the manner that we've shown is that an
actual file need not exist before we call wmap to create the mapped region. Mapping
jdev/zero aummati:ali}r creates a mappq.’d reginn of the spedfied size. The
disadvantage of this technique is that it works only between related processes. With
related processes, however, it is probably simpler and more efficient to use threads
(Chapters 11 and 12). Note that regardless ot which technique is used, we still need to
synchronize access to the shared data. n

Example —Anonymous Memory Mapping

Many implementations provide anonymous memory mapping, a facility similar to the
/dev/zero feature. To use this facility, we spedfy the MAP ANON flag to mmap and |
specify the file descriptor as ~1. The resulling region is anonymous (since it's not
assucialed with a pathname through a file descriptor) and creates a memory region that
can be shared with descendant processes.

The anonymous memory-mapping facility is supported by all four platforms discussed in this
text. Note, however, that Linux defines the MAP _amcuymMoUs flag for this facility, but defines
P MAF ANGH Mag to be the same value for improved application portability.

To modify the program in Figure 15.33 to use this facility, we make three changes:
{a) remove the open of /dev/zero, (b) remove the close of £d, and (c) change the call
to mmap to the following:

if ((area = mmap(l. SIZE, PROT READ | BROT WRITE,
MAP_ANON | MAP_SHARED, -1, 0}) == MAP_FAILED)

In this call, we specify the MAP_ANON flag and set the file descriptor to —1. The rest of
the program from Figure 15.33 is unchanged, o

The last two examples illustrate sharing memory among multiple related processes;
If shared memory is required between unrelated processes, there are two alternatives.
Applications can use the XSI shared memory functions, or they can use mmap to map
the same file into their address spaces using the MAP_SHRARED flag.

© IETE 59

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

15.10 Client—Server Properties

€7 Let’s detail some of the properties of clients and servers that are affected by the various
| types of IPC used between them. The simplest type of relationship is to have the client
| tork and exec the desired server. Two half-duplex pipes can be created before the
| fork to allow data to be transferred in both directions. Figure 15.16 is an example of
this. The server that is executed can be a set-user-1D program, giving it special
privileges. Also, the server can determine the real identity of the client by looking at its
real user ID. (Recall from Section .10 that the real user ID and real group 1D don't
change across an exec.)

With this arrangement, we can build an open server. (We show an implementation of
this client—server in Section 17.5.) It opens files for the client instead of the client calling
the open function. This way, additional permission checking can be added, above and
beyond the normal UNIX system user/group /other permissions. We assume that the
server is a set-user-ID) program, giving it additional permissions (root permission,
perhaps). The server uses the real user ID of the client to determine whether to give it
access to the requested file. This way, we can build a server that allows certain users
permissions that they don't normally have.

In this example, since the server is a child of the parent, all the server can do is pass
back the contents of the file to the parent. Although this works fine for regular files, it
can't be used for special device files, for example. We would like to be able to have the
server open the requested file and pass back the file descriptor. Whereas a parent can
pass a child an open descriptor, a child cannot pass a descriptor back to the parent
{unless special programming techniques are used, which we cover in Chapter 17).

We showed the next type of server in Figure 15.23. The server is a daemon process
that is contacted using some form of IPC by all clients. We can’l use pipes for this type
of client-server. A form of named IPC is required, such as FIFOs or message queues.
With FIFOs, we saw that an individual per client FIFO is also required if the server is to
send data back to the client. If the client—server application sends data only from the
client to the server, a single well-known FIFO suffices. (The System -V line printer
spooler used this form of client-server arrangement. The client was the 1p(l)
command, and the server was the 1psched daemon process. A single FIFO was used,
since the flow of data was only from the client to the server. Nothing was sent back to
the client.)

Multiple possibilities exist with message queues.

—_—

1. A single queue can be used between the server and all the clients, using the type
field of each message to indicate the message recipient. For example, the clients
can send their requests with a type field of 1. Included in the request must be
the client’s process 1. The server then sends the response with the type field
set to the client's process ID. The server receives only the messages with a type
field of 1 (the fourth argument for msgrcv), and the clients receive only the
messages with a type field equal to their process [1s.

2. Alternatively, an individual message queue can be used for each client. Before
sending the first request to a server, each client creates its own message queue

© IETE 60

ACT71/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

with a kev of 1P PRIVATE The server also has its own queuw, with a key o
identifier krnosery to all clients. The lient sends #s first request to the server’
well-known quend, and this request must contain che message queue D of the
client’s queve. The server sends its first response to the client's quewe, and il
future reguests and responses are cxchanged on this queue.

One problem with this sechnique (s that each client-specific queue usually has
.;}n]:,,f a :"'"P:li' message on it: o request for the server or J response for a climi
This secms wasteful of a limited systemwide resource (a message queue), anda
FIFO can be used instead. Another problem is that the server has to read
messages trom multiple queues. Neither select nor poll works wity
message queues. '

Either of these two fechniques wsing message queucs can be implerented using shared
memaory segments and a synchronization method (asemaphore or record locking).

The problem swith this type of clivnt-server relationship (the client and the server
being unrelated processes) b for the server to identify the client accurately. Unless be
serveris performing a nonprivileged operarion, it is essential that the sepver know whi
the ¢lient is. This & required, for example, If the server is a set-uses-ID program
Although all these forms ot [I'C go through the kernel, theve is no facility provided by
them to have the kernel identify thesender.,

With message (queues, if asingle queL & uzcd bebweoen the clienl and e server(sa
that only a singlemessage is on the queue ata time, for example), thensg lspidof the
queue contains the process 1D of the ather process. But when wriling the server, we
want the effective user LD of the client, nut its process [D. There ts no portable way to
obtain {he vifective user [D, given the process [0, (Naturally, the kernel inaintaing both
valuesin the process table entry, bl other than rummaging around through the kernel's |
memeary, we cantobtain one, given the other)

We'll use the following technique in Section '17.3 to allow the server o identify the |
client. The sape technique can be used with FIFOs, message quedes, semaphores, or
shared memory, Par the following description, assumc that FIFOs arc?being used, as in
Figure 15.23. The client must create its own FIFO and set the file access pernissions of
the FIF.} 50 that only user-read and user-wrify arc on. We assume that the server has
superuser privileges {or else it probably wouldn't care about the client’s frue identity),
so the server can still rgad and write ko this FIFC) When the server receives the client's
first request on the server’s woell-known FIFCO) (which must contain the identity of the
chent-specitic FIFQ), the server calls either stat or £stat on the client-specific FIFO.
The server assumes thnt the offective user [D of the client is the owner of Hhe FIFO (the
st_uid field of the stat structure). The server verifies that only the uscer-read and
user-write permissions are pnabled. As another check, the server should alsolook at the
three times asspciated with the FIFO (the st_atine, st_mtime and st_ctime gelds
of the stat structure) to verify that they are recent (no older than 15 or 3 seconuls, for
exampiel. [t a malicious client can create a FIFO with someone cise as the owner and
set the file’s permission bits to user-read and user-write only, then the system has other
fundamental security problems.

© IETE 61

ACT1/ATT71/AC124/AT124 UNIX SYSTEMS PROGRAMS | DEC 2015

To use this technique with XSI 1PC, recall that the ipc perm structure associated
with each message queue, semaphore, and shared memory segment identifies the
creator of the IPC structure: (the cuid and cgid fields). As with the example using
FIFOs, the server should require the client to create the [PC structure and have the cllent
set the access permissions to user-read and user-write only. The times associated with
the IPC structure should also be verified by the server o be recent (since these [PC
structures hang around until explicitly deleted).

We'll see in Section 17.2.2 that a far better way of doing this authentication is for the
kernel to provide the effective user D and effective group 1D of the client. This is done
by the STREAMS subsystern when file descriptors are passed between processes.

=

TEXT BOOK

I. Advanced Programming in the UNIX Environment, W. Richards Stevens, Pearson
Education, 2004

© IETE 62

	Process creation in UNIX
	Directory Structure:
	Multiple Command Pipelines: Architecture

	DESCRIPTION
	RETURN VALUE
	Output

