
AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 1

 Q.2 a. Explain salient features of UNIX operating system. (4)
Answer:
Unix (officially UNIX) is a registered trademark of The Open Group that refers to a family of
computer operating systems and tools conforming to The Open Group Base Specification, Issue
7 (also known as POSIX.1-2008 or IEEE Std 1003.1 - 2008). To use the Unix trademark, an
operating system vendor must pay a licensing fee and annual trademark royalties to The Open
Group. Officially licensed Unix operating systems (and their vendors) include OS X (Apple),
Solaris (Oracle), AIX (IBM), IRIX (SGI), and HP-UX (Hewlett-Packard).

Note: Operating systems that behave like Unix systems and provide similar utilities, but do not
conform to Unix specification or are not licensed by The Open Group, are commonly known as
Unix-like systems. These include a wide variety of Linux distributions (e.g., Red Hat Enterprise
Linux, Ubuntu, and CentOS) and several descendents of the Berkeley Software Distribution
operating system (e.g., FreeBSD, OpenBSD, and NetBSD).

Propietary Unix operating systems (and Unix-like variants) run on a wide variety of digital
architectures, and are commonly used on web servers, mainframes, and supercomputers. In
recent years, smartphones, tablets, and personal computers running versions or variants of Unix
have become increasingly popular.

The original Unix operating system was developed at AT&T's Bell Labs research center in 1969.
In the 1970s and 1980s, AT&T licensed Unix to third-party vendors, leading to the development
of several Unix variants, including Berkeley Unix, HP-UX, AIX, and Microsoft's Xenix. In
1993, AT&T sold the rights to the Unix operating system to Novell, Inc., which a few years later
sold the Unix trademark to the consortium that eventually became The Open Group.

Unix was developed using a high-level programming language (C) instead of platform-specific
assembly language, enabling its portability across multiple computer platforms. Unix also was
developed as a self-contained software system, comprising the operating system, development
environment, utilities, documentation, and modifiable source code. These key factors led to
widespread use and further development in commercial settings, and helped Unix and its variants
become an important teaching and learning tool used in academic settings.

 b. Compare internal and external commands of UNIX with suitable examples.
 Also explain the file attributes displayed by ls –l command. (8)
Answer:
UNIX commands are classified into two types

• Internal Commands - Ex: cd, source, fg
• External Commands - Ex: ls, cat

Let us look at these in detail

Internal Command:
 Internal commands are something which is built into the shell. For the shell built in
commands, the execution speed is really high. It is because no process needs to be
spawned for executing it. For example, when using the "cd" command, no process is
created. The current directory simply gets changed on executing it.

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 2

External Command:
 External commands are not built into the shell. These are executables present in a
separate file. When an external command has to be executed, a new process has to be
spawned and the command gets executed. For example, when you execute the "cat"
command, which usually is at /usr/bin, the executable /usr/bin/cat gets executed.

How to get the list of Internal commands?
 You can get only if you are in bash shell. Bash shell has a command called "help" which
will list out all the built-in shell commands.

$ help

 alias [-p] [name[=value] ...] bg [job_spec ...]

 bind [-lpvsPVS] [-m keymap] [-f fi break [n]

 builtin [shell-builtin [arg ...]] caller [EXPR]

 case WORD in [PATTERN [| PATTERN]. cd [-L|-P] [dir]

 command [-pVv] command [arg ...] compgen [-abcdefgjksuv] [-
o option

.....

How to find out whether a command is internal or external?
 type command:

$ type cd

cd is a shell builtin

$ type cat

cat is /bin/cat

 For the internal commands, the type command will clearly say its shell built-in, however
for the external commands, it gives the path of the command from where it is executed.

Internal vs External?
 The question whether should we use an internal command or an external command OR
which is better always does not make sense. Because in most of the situations you will end

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 3

up using the command which does your job which could be either internal or external.

 The big difference in internal vs external command is performance. Internal command are
much much faster compared to external for the simple reason that no process needs to be
spawned for an internal command since it is all built-into the shell. So, as the size of a script
gets bigger, using external commands a lot does adds to its performance.

 Not always we get a choice to choose an internal over an external command. However, a
careful look at our scripting practices, we might find quite a few places where we can avoid
external commands.

Example:
Say to add 2 numbers say x & y:

Not good:

z=`expr $x+$y`

Good:

let z=x+y

 let is a shell built-in command, whereas expr is an external command. Using expr will be
slower. This might be very negligible when you are using it at an one-off instance. Using it in
a place say on every record of a file containing million records does give a different
dimension to it.

 c. Explain the following commands: (2×2)
 i. creat function
 ii. lseek function
Answer:

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 4

 Q.3 a. Explain the procedure of process creation in UNIX with the help of system
calls. (4)

Answer:

Process creation in UNIX

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 5

The seven-state logical process model we considered in a previous lecture can
accommodate the UNIX process model with some modifications, actually becoming a
ten state model.

First, as we previously observed, UNIX executes most kernel services within a
process's context, by implementing a mechanism which separates between the two
possible modes of execution of a process. Hence our previously unique ``Running''
state must actually be split in a ``User Running'' state and a ``Kernel Running'' state.
Moreover a process preemption mechanism is usually implemented in the UNIX
scheduler to enforce priority. This allows a process returning from a system call
(hence after having run in kernel mode) to be immediately blocked and put in the
ready processes queue instead of returning to user mode running, leaving the CPU to
another process. So it's worth considering a ``Preempted'' state as a special case of
``Blocked''. Moreover, among exited processes there's a distinction between those
which have a parent process that waits for their completion (possibly to clean after
them), and those which upon termination have an active parent that might decide to
wait for them sometime in the future (and then be immediately notified of its
children's termination) . These last processes are called ``Zombie'', while the others
are ``Exited''. The difference is that the system needs to maintain an entry in the
process table for a zombie, since its parent might reference it in the future, while the
entry for an exited (and waited for) process can be discarded without further fiddling.
So the much talked about ``Zombie'' processes of UNIX are nothing but entries in a
system table, the system having already disposed of all the rest of their image. This
process model is depicted in fig. 5.

http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes/footnode.html#224
http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes/node16.html#figunixprocstates

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 6

Figure 5: UNIX process state model

All processes in UNIX are created using the fork() system call. System calls in
UNIX can be best thought of as C functions provided with the standard C library.
Even if their particular implementation is depends on the particular UNIX flavor (and
on hardware, for many of them), a C API is always provided, and is consistent
among the different unices, at least in the fundamental traits.

UNIX implements through the fork() and exec() system calls an elegant two-step
mechanism for process creation and execution. fork() is used to create the image of a
process using the one of an existing one, and exec is used to execute a program by
overwriting that image with the program's one. This separation allows to perform
some interesting housekeeping actions in between, as we'll see in the following
lectures.

A call to fork() of the form:

#include <sys/types.h>

pid_t childpid;
...
childpid = fork(); /* child's pid in the parent, 0 in the child */
...

creates (if it succeeds) a new process, which a child of the caller's, and is an exact
copy of of the (parent) caller itself. By exact copy we mean that it's image is a
physical bitwise copy of the parent's (in principle, they do not share the image in
memory: though there can be exceptions to this rule, we can always thing of the two

http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes/footnode.html#226
http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes/footnode.html#160

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 7

images as being stored in two separate and protected address spaces in memory, hence
a manipulation of the parent's variables won't affect the child's copies, and vice versa).
The only visible differences are in the PCB, and the most relevant (for now) of them
are the following:

• The two processes obviously have two different process id.s. (pid). In a C
program process id.s are conveniently represented by variables of pid_t type,
the type being defined in the sys/types.h header.

• In UNIX the PCB of a process contains the id of the process's parent, hence the
child's PCB will contain as parent id (ppid) the pid of the process that
calledfork(), while the caller will have as ppid the pid of the process that
spawned it.

• The child process has its own copy of the parent's file descriptors. These
descriptors reference the same under-lying objects, so that files are shared
between the child and the parent. This makes sense, since other processes might
access those files as well, and having them already open in the child is a time-
saver.

The fork() call returns in both the parent and the child, and both resume their
execution from the statement immediately following the call. One usually wants that
parent and child behave differently, and the way to distinguish between them in the
program's source code is to test the value returned by fork(). This value is 0 in the
child, and the child's pid in the parent. Since fork() returns -1 in case the child
spawning fails, a catch-all C code fragment to separate behaviours may look like the
following:

#include <sys/types.h>
#include <errno.h>
#include <stdio.h>
...
pid_t childpid;
...
childpid=fork();
switch(childpid)
{
 case -1:
 fprintf(stderr,"ERROR: %s\n", sys_errlist[errno]);
 exit(1);
 break;
 case 0:
 /* Child's code goes here */
 break;
 default:
 /* Parent's code goes here */
 break;
}

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 8

The array of strings char *sys_errlist[] and the global integer variable int
errno are defined in the errno.h header. The former contains a list of system error
messages, and the latter is set to index the appropriate message whenever an error
occurs. For each system call several possible error conditions are defined. Each of
them is associated to an integer constant - defined via a #define directive in one
system header file - whose value is exactly the one that errno takes when an error
occurs. A sample definition (from the sys/errno.h header) is:

...
#define ENOMEM 12
...

which defines the error that might occur when a process creation fails because there's
not enough memory available .

Note that a child (i.e. a process whatsoever, since they are all children of some other
process, with the exception of processes 0, swapper and 1, init) cannot use the value
returned by fork() to know its pid, since this is always 0 in the child. A system call
named getpid() is provided for this purpose, and another one, named getppid() is
used to ask the system about the parent's id. Both functions take no arguments and
return the requested value in pid_t type, or -1 in case of failure.

In the above program fragment, a system call to exit() is made in case of failure,
which causes the program to abort (you might want to deal with the errors in a
smoother way, depending on your application, and perform some application-
dependent error recovery action). We'll see later that the exit() call returns the lower
8 bits of its argument (1, in the above example) to a waiting parent process, which can
use them to determine the child's exit status and behave accordingly. The usual
convention is to exit with 0 on correct termination, and with a meaningful (for the
parent) error code on abort.

It is often the case that a parent process must coordinate its actions with those of its
children, maybe exchanging with them various kind of messages. UNIX defines
several sophisticated inter-process communication (IPC) mechanisms, the simplest of
which is a parent's ability to test the termination status of its children. A
synchronization mechanism is provided via the wait() system call, that allows a
parent to sleep until one of its children exits, and then get its exit status. This call
actually comes in three flavors, one simply called wait() and common to all
version of UNIX (that i know of), one called waitpid(), which is a POSIX extension,
and one called wait3(), and it's a BSD extension.

 b. With the help of suitable diagram, explain UNIX file system and also explain
the various types of files supported in UNIX. (8)

Answer:

http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes/footnode.html#227
http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes/footnode.html#228

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 9

A file system is a logical collection of files on a partition or disk. A partition is a container for information
and can span an entire hard drive if desired.

Your hard drive can have various partitions which usually contains only one file system, such as one file
system housing the / file system or another containing the /home file system.

One file system per partition allows for the logical maintenance and management of differing file systems.

Everything in Unix is considered to be a file, including physical devices such as DVD-ROMs, USB
devices, floppy drives, and so forth.

Directory Structure:
Unix uses a hierarchical file system structure, much like an upside-down tree, with root (/) at the base of
the file system and all other directories spreading from there.

A UNIX filesystem is a collection of files and directories that has the following properties:

• It has a root directory (/) that contains other files and directories.

• Each file or directory is uniquely identified by its name, the directory in which it resides, and a
unique identifier, typically called an inode.

• By convention, the root directory has an inode number of 2 and the lost+found directory has an
inode number of 3. Inode numbers 0 and 1 are not used. File inode numbers can be seen by specifying
the -i option to ls command.

• It is self contained. There are no dependencies between one filesystem and any other.

The directories have specific purposes and generally hold the same types of information for easily
locating files. Following are the directories that exist on the major versions of Unix:

Directory Description

/ This is the root directory which should contain only the directories needed at the top level
of the file structure.

/bin This is where the executable files are located. They are available to all user.

/dev These are device drivers.

/etc Supervisor directory commands, configuration files, disk configuration files, valid user lists,
groups, ethernet, hosts, where to send critical messages.

/lib Contains shared library files and sometimes other kernel-related files.

/boot Contains files for booting the system.

/home Contains the home directory for users and other accounts.

/mnt Used to mount other temporary file systems, such as cdrom and floppy for the CD-ROM
drive and floppy diskette drive, respectively

/proc Contains all processes marked as a file by process number or other information that is
dynamic to the system.

/tmp Holds temporary files used between system boots

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 10

/usr Used for miscellaneous purposes, or can be used by many users. Includes administrative
commands, shared files, library files, and others

/var Typically contains variable-length files such as log and print files and any other type of file
that may contain a variable amount of data

/sbin Contains binary (executable) files, usually for system administration. For
examplefdisk and ifconfig utlities.

/kernel Contains kernel files

 c. Explain the commands Umask and chown. Give syntax and examples. (4)
Answer:

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 11

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 12

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 13

Q.4 a. What do you mean by standard input, standard output and standard error? (8)
Answer:

 b. Write short note on:
 (i) Password file (ii) Shadow passwords (8)
Answer:

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 14

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 15

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 16

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 17

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 18

 Q.5 a. Discuss the concept of pipes. Illustrate the syntax and working of DUP and
open system calls. (8)

Answer:

• A Unix pipe provides a one-way flow of data.

• For example, if a Unix users issues the command
• who | sort | lpr

then the Unix shell would create three processes with two pipes between them:

• A pipe can be explicitly created in Unix using the pipe system call. Two file
descriptors are returned--fildes[0] and fildes[1], and they are both open for
reading and writing. A read from fildes[0] accesses the data written to fildes[1]

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 19

on a first-in-first-out (FIFO) basis and a read from fildes[1] accesses the data
written to fildes[0] also on a FIFO basis.

• When a pipe is used in a Unix command line, the first process is assumed to be
writing to stdout and the second is assumed to be reading from stdin. So, it is
common practice to assign the pipe write device descriptor to stdout in the first
process and assign the pipe read device descriptor to stdin in the second
process. This is elaborated below in the discussion of multiple command
pipelines.

Multiple Command Pipelines: Architecture

Creating a pipeline between two processes is fairly simple, but building a multiple
command pipeline is more complicated. The relationship between all of the processes
in question is different than what one would expect when creating a simple pipeline
between two processes. Normally a pipeline between two processes results in a fork()
where child and parent are able to communicate.

In an extension of this model to n pipes, it is natural to assume a chain of processes in
which each is the child of the previous one, until the n'th child is forked. But this
model does not work because the parent shell must wait for the last command in the
pipeline to complete, not the first, as would be the case with a chained pipeline.

A multiple process pipeline can be represented graphically as:

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 20

Dup:
#include <unistd.h>

int dup(int oldfd);

int dup2(int oldfd, int newfd);

DESCRIPTION

dup() and dup2() create a copy of the file descriptor oldfd.

After a successful return from dup() or dup2(),the old and new file descriptors may be used
interchangeably. They refer to the same open file description (see open(2)) and thus share file
offset and file status flags; for example, if the file offset is modified by using lseek(2) on one of
the descriptors, the offset is also changed for the other.

The two descriptors do not share file descriptor flags (the close-on-exec flag). The close-on-exec
flag (FD_CLOEXEC; see fcntl(2)) for the duplicate descriptor is off.

dup() uses the lowest-numbered unused descriptor for the new descriptor.

dup2() makes newfd be the copy of oldfd, closing newfd first if necessary.

RETURN VALUE
dup() and dup2() return the new descriptor, or -1 if an error occurred (in which case, errno is set
appropriately).

 b. What are standard input, output and errors? Explain in context of Unix.

Give examples. (6)
Answer:
Standard input, standard output, and standard error files
When a command begins running, it usually expects that the following files are already open:
standard input, standard output, and standard error (sometimes called error output or diagnostic
output).

A number, called a file descriptor, is associated with each of these files, as follows:

File descriptor 0 Standard input
File descriptor 1 Standard output
File descriptor 2 Standard error (diagnostic) output
A child process normally inherits these files from its parent. All three files are initially assigned
to the workstation (0 to the keyboard, 1 and 2 to the display). The shell permits them to be
redirected elsewhere before control is passed to a command.

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 21

When you enter a command, if no file name is given, your keyboard is the standard input,
sometimes denoted as stdin. When a command finishes, the results are displayed on your screen.

Your screen is the standard output, sometimes denoted as stdout. By default, commands take
input from the standard input and send the results to standard output.

Error messages are directed to standard error, sometimes denoted as stderr. By default, this is
your screen.

These default actions of input and output can be varied. You can use a file as input and write
results of a command to a file. This is called input/output redirection.

The output from a command, which normally goes to the display device, can be redirected to a
file instead. This is known as output redirection. This is useful when you have a lot of output that
is difficult to read on the screen or when you want to put files together to create a larger file.

Though not used as much as output redirection, the input for a command, which normally comes
from the keyboard, can also be redirected from a file. This is known as input redirection.
Redirection of input lets you prepare a file in advance and then have the command read the file.

 c. Differentiate between a wildcard and a regular expression. (2)
Answer:

 In the Formal definition the symbols of regular expressions operators are
. : which is concatenation like a.b.c would match a text having abc . Some times to
indicate concatenation simply two symbols are used back to back.
* : match 0 more more times the last symbol, (abc)* would match a null string, abc,
abcabc, abcabcabc, but not abcaabc. Known as the Kleen's star.
+ : would match either the left hand side or the right hand side . (abc + def) would
match abc or def. Also the union operator or the | operator is used.
These are applied on a set of symbols sigma, which includes the symbols in your
language within other special sumbols are the epsilon which denotes the empty string,
and the null means no symbols at all. For details see 3
These are the formal definitions.

When you use applications accepting the POSIX regular expression syntax the meaning of
the different operators are like this:

 Q.6 a. Write a AWK program to find the square root of all the numbers from 1-10.
 (8)

Answer:
In this
example, the value of `sqrt(ARGUMENT)' is the square root of ARGUMENT.
The following program reads numbers, one number per line, and prints the
square root of each one:

 $ awk '{ print "The square root of", $1, "is", sqrt($1) }'
 1
 -| The square root of 1 is 1
 3

http://rads.stackoverflow.com/amzn/click/053494728X

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 22

 -| The square root of 3 is 1.73205
 5
 -| The square root of 5 is 2.23607
 Ctrl-d

 b. Discuss the following:
 (i) setjmp and longjmp functions
 (ii) getrlimt and setrlimit functions (8)
Answer:

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 23

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 24

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 25

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 26

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 27

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 28

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 29

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 30

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 31

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 32

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 33

 Q.7 a. Differentiate between the following: (4x2)
 (i) kill and raise functions
 (ii) alarm and pause functions
Answer:

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 34

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 35

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 36

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 37

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 38

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 39

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 40

 b. Create a script file called file properties that reads a file name entered and

output its properties. (8)
Answer:
 echo “enter filename”

read file

c=1

if [-e $file] #checks the existence of the file

then

for i in `ls –l $file | tr –s “ “`

‘tr –s “ “’ treats 2 or more spaces as a single space

do

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 41

 case “$c” in #case condition starts

1) echo “file permission=” $i ;;

2) echo “link =” $i;;

3) echo “file owner =” $i;;

4) echo “file group=”$i ;;

5) echo “file size=” $i ;;

6) echo “file created month=” $i ;;

7) echo “file created date=” $i ;;

8) echo “last modified time=” $i ;;

9) echo “file name=” $i ;;

esac #end of case condition

 c=`expr $c + 1`

 done

 else

 echo “file does not exist”

 fi

Output
 $sh lab4a.sh
 enter filename
 lab8a.sh
 file permission=-rw-r- -r- -
 link=1
 file owner=hegde
 file group=hegde
 file size =339
 file created month=april
 file created date=7
 last modified time=05:19
 file name=lab8a.sh

 Q.8 a. Your printer has stopped working, and you want to be sure whether the
printing daemon is working. How will you ensure that? (4)

Answer:

Printing can be enabled in lpc using its start command and disabled using
its stop command. Jobs held in a print queue when a printer is stopped will remain
there until printing is restarted. The stop command functions by setting a lock file in
the printer spool directory and killing the print daemon for that queue, but it allows
the currently printing job to complete. The abort command works like stop, but halts

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 42

any printing job immediately, too. (Since the job did not complete, lprretains it and
starts over again when the queue is restarted.)

The down command functions as though both a disable and a stop command were
issued, and the up command does the reverse, issuing enable and start commands.

You could also limit the display to one printer:

$ lpc status crow
crow:
 queuing is enabled
 printing is enabled
 1 entry in spool area
 crow is ready and printing

The status-reporting feature is useful for anyone, and lpc allows all users to use it.
The real work for lpc usually involves solving a printing crisis. Sometimes a print
daemon dies, and printing jobs back up. Sometimes a printer runs out of ink or paper,
or even fails. Jobs in the print spools have to be suspended or moved to another spool
where they can be printed. Someone may simply have an urgent printing task that
needs to be moved to the top of the queue.

The lpc command is a classic Unix command: tight-lipped and forbidding. When you
simply enter the lpc command, all you get back is a prompt:

lpc>

The command is interactive and waiting for your instructions. You can get help by
entering help or a question mark at thelpc prompt. lpc responds and gives you a new
prompt. For example, entering a question mark displays:
lpc
lpc> ?
Commands may be abbreviated. Commands are:
abort enable disable help restart status topq ?
clean exit down quit start stop up
lpc>

You can get additional help by asking for help about a specific command. For
example, to learn more about restarting a stalled print queue, type:

lpc> help restart
restart kill (if possible) and restart a spooling daemon
lpc>

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 43

The lpc help message does not offer online help about the secondary arguments you
can specify in some places. The manual page will offer you some guidance. Most of
the commands accept all or a print spool name as a secondary argument.

The lpc topq command recognizes a print spool name as the first argument and
printer job numbers or user IDs as following arguments. The arguments are used to
reorder the print queue. For example, to move job 237 to the top of the ada print
queue, followed by all jobs owned by bckeller in the queue, enter:

lpc> topq ada 237 bckeller

The lpd daemon will start job 237 as soon as the current job is finished and will put
any files in the queue owned by bckeller before the rest of the print spool. If you were
very impatient, you could use the abort and clean commands to kill and purge the
currently printing job, then use topq to put the job you want at the top of the queue,
before usingrestart to create a new lpd and restart the queue.

When you use the stop command to stop a print spool (or all print spools) you can
broadcast a message to all system users at the same time. For example:

lpc> stop ada "Printer Ada taken down to replace toner cartridge."

 b. Write a shell script to display the period for which a given user has been
working in the system. (8)

Answer:

 /* In order to get the valid user names use the “who” command */

t1=`who | grep "$1" | tr -s " " | cut -d " " -f 5 | cut -d ":"
-f 1 `

t2=`who | grep "$1" | tr -s " " | cut -d " " -f 5 | cut -d ":" -
f 2 `

t1=`expr $t1 * 60 `

min1=`expr $t1 + $t2`

d1=`date +%H`

d2=`date +%M`

d1=`expr $d1 * 60`

min2=`expr $d1 + $d2`

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 44

sub=`expr $min2 - $min1`

p=`expr $min2 - $min1`

p=`expr $p / 60`

p1=`expr $min2 - $min1`

p1=`expr $p1 % 60`

echo " The user $1 has been working since : $pr Hrs $pr1
minutes "

Output
$sh 10a.sh mca30

 The user mca30 has been working since : 2 Hrs 30 minutes

 c. Explain the command gzip with their syntax also. (4)
Answer:
gzip reduces the size of the named files using Lempel-Ziv coding (LZ77). Whenever possible,
each file is replaced by one with the extension .gz, while keeping the same ownership modes,
access, and modification times. (The default extension is -gz for VMS, z for MSDOS, OS/2
FAT, Windows NT FAT and Atari.) If no files are specified, or if a file name is "-", the standard
input is compressed to the standard output. gzip will only attempt to compress regular files. In
particular, it will ignore symbolic links.

If the compressed file name is too long for its file system, gzip truncates it. gzip attempts to
truncate only the parts of the file name longer than 3 characters. (A part is delimited by dots.) If
the name consists of small parts only, the longest parts are truncated. For example, if file names
are limited to 14 characters, gzip.msdos.exe is compressed to gzi.msd.exe.gz. Names are not
truncated on systems which do not have a limit on file name length.
By default, gzip keeps the original file name and timestamp in the compressed file. These are
used when decompressing the file with the -N option. This is useful when the compressed file
name was truncated or when the time stamp was not preserved after a file transfer.

 Q.9 a. Differentiate between popen and pclose functions. (8)
Answer:

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 45

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 46

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 47

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 48

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 49

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 50

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 51

 b. Write short notes on: (4×2)
 i. shared memory
 ii. client-server properties
Answer:

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 52

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 53

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 54

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 55

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 56

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 57

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 58

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 59

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 60

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 61

AC71/AT71/AC124/AT124 UNIX SYSTEMS PROGRAMS DEC 2015

© IETE 62

TEXT BOOK

I. Advanced Programming in the UNIX Environment, W. Richards Stevens, Pearson
Education, 2004

	Process creation in UNIX
	Directory Structure:
	Multiple Command Pipelines: Architecture

	DESCRIPTION
	RETURN VALUE
	Output

