CT32 COMPUTER NETWORKS | DEC 2015

Q.2 a. Using the principle of mathematical induction, prove that (10 ®"V+1) is
divisible by 11 for all n € N (8)
Answer:
Let P(n): (10 ®Y+1) is divisible by 11

For n = 1, the given expression becomes (10 “**P+1) = 11, which is divisible by 11.
So, the given statement is true for n=1, i.e. P(1) is true.

Let P(K) be true. Then

P(K): (10 ®P+1) is divisible by 11

=> (10 @Y+1) = 11m, for some natural number m.

Now, {(10 @ DD41) 3 = (10 ®+1) = {107 . 10 @Y +1}

=100 x {10 ®V+1} - 99

= (100x 11m)-99

=11 x (100m - 9), which is divisible by 11

=> P(k+1): (10 @®*DD11) is divisible by 11

=> P(k+1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k+1) is true, whenever P(K) is true.

Hence by the principle of mathematical induction, P(n) is true for all n € N.

b. Discuss the description of Finite Automata. Why we study Automata Theory in
computer science? (8)
Answer:
Finite Automata
A finite automaton is an abstract model of a digital computer. A finite automaton has a
mechanism to read input, which is a string over a given alphabet. This input is actually written
on an “input file”, which can be read by the automaton but cannot change it.

Input File

| L[] Y

Control Unit T Storage

l B

Qutput

Fig. Automaton

Input file is divided into cells, each of which can hold one symbol. The automaton has a
temporary “storage” device, which has unlimited number of cells, the contents of which can be
altered by the automaton. Automaton has a control unit, which is said to be in one of a finite
number of “internal states”.

© IETE 1

CT32 COMPUTER NETWORKS | DEC 2015

The automaton can change state in a defined way.
Types of Finite Automaton

(a) Deterministic Finite Automata

(b) Non-deterministic Finite Automata

A deterministic automata is one in which each move (transition from one state to another) is
unequally determined by the current configuration. If the internal state, input and contents of the
storage are known, it is possible to predict the future behaviour of the automaton. This is said to
be deterministic finite automata otherwise it is nondeterministic finite automata.

Definition of Deterministic Finite Automaton

A Deterministic Finite Automata (DFA) is a collection of 5-tuples as:

M= (0.%.3.q,.F)

where

0 = Finite state of “internal states”

z = Finite set of symbols called “Input alphabet™
0:0xX— Q@ = Transition Function

g, €0 = Initial state

FcoQ = Set of Final states

The input mechanism can move only from left to right and reads exactly one symbol on each
step.

The transition from one internal state to another is governed by the transition function 6.

If 5(q0, @) = ql then if the DFA is in state g0 and the current input symbol is a, the DFA will go
into state q1.

Definition of Nondeterministic Finite Automaton
A Nondeterministic Finite Automata (NFA) is defined by a collection of 5-tuples:

M= (0.2.8.q,.F)
where Q.%.0.gy.F are defined as follows:

(0 = Finite set of internal states

=

2 = Finite set of symbols called “Input alphabet™
5 = Ox(TUL))—27

q, € Qis the Initial states

F c Qis a set of Final states

NFA differs from DFA in that. the range of & in NFA is in the powerset 29,
A string is accepted by an NFA if there is some sequence of possible moves that will put the
machine in the final state at the end of the string.

Need of Study and Applications of Finite Automata

String Processing

Consider finding all occurrences of a short string (pattern string) within a long string (text
string). This can be done by processing the text through a DFA: the DFA for all strings that end
with the pattern string. Each time accept state is reached; the current position in the text is
output.

© IETE 2

CT32 COMPUTER NETWORKS | DEC 2015

Finite-State Machines
A finite-state machine is an FA together with actions on the arcs.

Statecharts
Statecharts model tasks as a set of states and actions. They extend FA diagrams.

Lexical Analysis
In compiling a program, the first step is lexical analysis. This isolates keywords, identifiers etc.,

while eliminating irrelevant symbols. A token is a category, for example “identifier”, “relation
operator” or specific keyword.

Q.3 a. Solve the following: (3+2)
(i) Construct a DFA that behaves equivalent to the NDFA given by M such that

M= ({q0, q1, 92, q3} , {a, b}, 5, q0 , {q3}) where & is given by

STATE Input a Input b
Initial state —q0 q0, q1 q0
ql q2 ql
q2 93 93
Final State *q3 -- q2

(if) Find a DFA machine that accepts an even number of either 0’s or 1’s or
both 0’s and 1’s over input symbol) = {0, 1}.
Answer: (i)
Let O = {go g1, 9> qx}- Then the deterministic automaton M, equivalent to

M is given by
M, = 29 {a, b}, &. [gol. F)

where F consists of:
gsl. [go. qal, [a1. gsls laz. gl lgo. q1- @3). [0, 42, q3) L4y 42 e

and
lg0. 41- G2 G3]

and where & is defined by the state table given by Table

TABLE State Table of M,
StatefE a. h b
[0l (9o, g1l (0]

G0, §4] 90, @4, q2) (90, g4]
(90, 1. g3l Q0. 91. G2, Gal [Go. G1. Q3]
[Go. g1, Ga) [qo. g1, g2] [g0. @y, g2l

(G0 @1, G2 Gil (Fo. g1, =, G5l 9o, @10 G2 3]

(if) The transition system (8) of the DFA machine is shown in the following figure:

© IETE 3

CT32 COMPUTER NETWORKS | DEC 2015

Hence the DFA machine is defined as ({ql, g2, q3, g4}, {0, 1}, 9, ql, {ql}).

b. Find a DFA machine for the language L = {Ow0 | w € {0, 1}*}. 4
Answer:

Solution: The language containg first and last letter as O and intermediate letters may be of any order
of 0’s and 1’s and of any length including € i.e. the set of language looks as {00, 000, 010, 0000, 0010,
0100,0110......}. To design a DFA machine we use the following steps

Step 1: Let us consider an initial state say q

Step 2: Since the first input symbol is O then on initial state q, (or present state gy) and input symbol
0 consider the next state as q,

State 3: On state q, the input symbol may be any one i.e. either 0 or 1 of any order and of any length.
If input symbol is O then the next state is q, which is a final state and if input symbol is 1 the
next state is ¢, because 1 may be of any length.

Step4: On state q, if input symbol is O then the next state will not change i.e. it Wll] remain ¢, but if
input symbol is 1 then the next state is g

Step 5: On initial state g, if input symbol is 1 the string will not be accepted by DFA.

The transition graph of the given DFA machine is shown in the following figure. This transition
graph consists of 5 tuples as (Q, D, 9, q0, F) that is defined as ({q0, q1, q2, q3}, {0, 1}, 3, q0,

{a2}).

c. Make a minimum state finite automaton that is equivalent to a DFA whose

transition table is given as: (7)
Definition State a b
Initial State -2>q0 gl g2
ql g4 q3
g2 g4 g3
Final State *g3 g5 g6
Final State *g4 q’ g6

© IETE 4

DEC 2015

CT32 COMPUTER NETWORKS
as g3 g6
q6 g6 g6
q7 q4 q6

Answer:

O = {q3 a3}, ©F = {90, 91» 92 G5, G G}

my = {{q3, g4}, {90, 91, G2, 5. G6. G1})

g3 is l-equivalent to g4. So, {gs, ti;d € m.

go 1s not l-equivalent 1o g, g». gs but gy is l-equivalent to g,

Hence {qq, g5} € m. g, is l-equivalent to g, but not l-equivalent to

gs. 96 Or g7. So, {qy. g2} € m.

gs is not l-equivalent to g4 but to g;. So, {gs5, g7} € 7,

Hence,

w

g is 2-equivalent to gs4. So, {g3. g4} € .
qo is not 2-equivalent to g4 So. {qp}. {gs} € .
g, is 2-equivalent to g,. So, {q;, g2} € 7.
qs is 2-equivalent to g4. So, {gs, g1} € m.

Hence,

m = {{a% a4} {90 96} {1, g2}, (g5 @1})

™ = {{gs. g4}, {ao}. {46} {q1. a2}, {95, a7}}
q3 is 3-equivalent to g4; g, is 3-equivalent to g, and gs is 3-equivalent to g-.

Hence,

m = {{qo}, {91, @2}, {4s. q4}. {gs. a7)s {g6}}
As m; = m,, the minimum state automaton is

M’ = (Q" {a, b}, &, [q]. {[gs qs]))

where 6" is defined by Table

TABLE Transition Table of DFA
State a b
(0] [@1. g2l (g1, g2l
g1, g2l [93. qal [qa, gd]
(95 qsl [gs: q7] (sl
[gs, g7] [gs. qul [qs]
[gsl [ge) [gs)

© IETE

CT32 COMPUTER NETWORKS | DEC 2015

Q.4 a. Find the regular expressions corresponding to the following finite automata;
consider q; as initial state in both automata (s): (8)
0

0
()

(i)

(i)
Answer: (i)
There is only one initial state. Also, ‘there are no A-moves. The equations are
Q=90 + g0 + A
9= ql + q;1 + qal
q: = q0

S0,
g = ql + g1 + (2001 = gl + qz(1 + 01)

By applying Theorem , we get
@ = ql(1 +01)*

Also,
90 + q30 + A = q0 + q,00 + A

90 + (q1(1 + 01)*)00 + A
= q0 + 1(1 + 01)* 00) + A
Once again applying Theorem | we get
G = A0 + I(1 + 01)* 00)* = (0 + 1(1 + 01)* 00)*

As q is the only final state, the re essi '
. . ; gular expression corresponding to the gi
diagram is (0 + 1(1 + 01)* 00)*. - L

(i)

q,

]

There is only one initial state, and there are no A-moves. So. we form the

equations corresponding to q;. q-, qa. q4:
q = q0 + g0 + q0 + A

q-> = ql + q-1 + qu1
qs; = q-0 '

g4 = g3l

Now,
94 = q31 = (q=0)1 = q,01
Thus, we are able®to write Q3. 9q in terms of qs. Using the q;-equation, we

get
© = @l + q:1 + q:011 = gl + q:(1 + 011)

© IETE

CT32 COMPUTER NETWORKS | DEC 2015

By applying Theorem . we obtain
q: = (q)A + 011)* = q(1(1 + 011)*)
From the g-equation, we have
q, = q0 + g-00 + g-010 + A
= q0 + q2(00 + 010) + A
= q0 + ql(1 + 011)* (00 + 010) + A
Again, by applying Theorem . we obtain
q; = A0 + 1(1 + 011)* (00 + 010))*
qs = q>01 = qi(1 + 011)* 01
= (0 + 11 + 01)*(00 + 010))*(1(1 + 011)* 01)

b. Obtain a Deterministic Finite Automaton with minimized or reduced states for
the following regular expressions (8)
() (0+21)*(00+11) (0+1)*
(i)10+(0+11)0*1

Answer: (i)

: m (041 (00 + 11)(0 + 1)* O
Nt

(@)

@ (0+1) O(omm /;2\ {0+1)

(b)

0+ 0+1
00 +11
i S ey B
_"/ */ u. g
.-_{c)
0,1
..4

© IETE

CT32 COMPUTER NETWORKS

DEC 2015

(e)
Fig. Construction of finite automaton equivalent to (0 + 1)*(00 + 11)(0 + 1)*.

Step 2 (Construction of DFA) We construct the transition table for the
NDFA defined by Table

TABLE Transition Table
State/E 0 1
— Oy - do. 3 Qo T4
q3 Qr
- [} qr
o qr
The successor table is constructed as given in Table
TABLE Transition Table for the DFA
Q Qo @

- [qo) [q0. qal g0, 9]
[qo. Gl _ [90. 9. q1] : (90, Q]
(G0, Gal [90. qal 90, Ga. qr)
[90. 92 Q] G0, G G [9o. qa. Gl
[0, qs. i) [90. qs. qi] [Fo. G)

The state diagram for the successor table is the required DFA as described by
Fig. As gy is the only final state of NDFA, [go. g3, q/] and [go. g4, Gy

are the final states of DFA.

© IETE

CT32 COMPUTER NETWORKS | DEC 2015

Finally. we try to reduce the number of states. (This is possible when two
rows are identical in the successor table.) As the rows corresponding to
L0, @3- qr] and [go. q4. q] are identical, we identify them. The state diagram

for the equivalent automaton, where the number of states is reduced, is
described by Fig.

sol (ji):

Step 1 (Construction of NDFA) The NDFA is constructed by eliminating the
operation +, concatenation and *, and the A-moves in successive steps. The
step-by-step construction is given in Figs.

P 10+ (0 + 11) 0*1
F0Y (@) @ "
10

-

(b} Elimination of +.

{c} Elimination of concatenation and *,

© IETE 9

CT32 COMPUTER NETWORKS | DEC 2015

Step 2 (Construction of DFA) For the NDFA given in Fig. . the
corresponding transition table is defined by Table ¢
TABLE Transition Table
State/E 0 1
e G 1. 1‘.?2
L qr -
gz T3
T3 L] G

The successor table is constructed

In Table the columns corresponding to [g] and @ are identical. So we
can identify [g,] and @.

TABLE Transition Table of DFA
Q Qo Q4
— [qol (gl [q:. Q2]
[ea) [q2] [
g4, qa] (1] : [g4]
: :
@ @)

© IETE 10

CT32 COMPUTER NETWORKS | DEC 2015

The DFA with the reduced number of states corresponding to Table
is defined by

Q.5 a. Solve the following: . _ (3+3)
(i) Show that the language denoted by L = { 0' 1' | i >= 1} is not a regular

language. ik L
(ii) Check whether the language representedas L ={a'b' c“| k> i +j} is
regular or not? Also justify your answer using pumping Lemma.
Answer:(i)
Step 1 Suppose L is regular. Let n be the number of states in the finite
automaton accepting L.
Step 2 ILet w = 0”"1". Then |w| = 2n > n. By pumping lemma, we write
w = xyz with |xy| < n and |y| = O.
Step 3 We want to find ¢ so that xy'z & L for getting a contradiction. The
string y can be in any of the following forms:
Case I y has O’s, i.e. y = 0% for some 4 > 1.
Case 2 y has only 1’s, i.e. ¥y = 1! for some I > i
Case 3 y has both 0’s and 1’s. i.e. y = OV for some k. F= 1.
In Case 1, we can take i = 0. As = PR, SR 0T A ks 1, ap=—
k#* n So, xz & L
In Case 2, take i = 0. As before, xz is 0717 and » #n—1I So, xz e L.
In Case 3, take i = 2. As xyz = 0" *0*1V'1"7, xy%z = 0"+ O*VO* 1177, As 7z
is not of the form 01! xyv°’z & L.
Thus in all the cases we get a contradiction. Therefore, L is not regular.

(ii)
We prove this by contradiction. Assume L = T(M) for some DFA with »n
states. Choose w = a"b"c* in L. Using the pumping lemma, we write w = xVz
with |xy| < n7 and |y| > 0. As w = g"F"c", xy = &' for some i < n. This means
that v = @' for some j, 1 < J = n. Then xy*z = gikpredn, Choosing k& large
enough so that n + jk > 2n, we'can make n + jk + n > 3n. So, x3**'z & L.

Hence L is not regular.

b. Test the equivalence of two regular languages represented by the regular
expressions
P= (a+b)*and Q = a*(b a*)* respectively. IsP=Q
Explain your answer with proper justification? 4)
Answer:

© IETE 11

CT32 COMPUTER NETWORKS | DEC 2015

Lﬂ P and Q denote (a + b)* and a*(ba*)*, respectively. Using the construction
P is given by the transition system depicted in Fig.

it a, b
e * e,
Wy P
Fig. = Transition system for (a + b)*.

The transition system for Q is depicted in Fig.

It should be noted that Figs. are obtained after eliminating
A-moves. As these two transition diagrams are the same, we cuncludi: that
P=0Q.

‘We now summarize all the results and constructions given in this section.

(i} Every r.e. is recognized by a transition system

(ii) A transition system M can be converted into a finite automaton

accepting the same set as M
(iii) Amy set accepted by finite automaton is represented by an r.e.

{iv) A set accepted by a transition system is represented by an r.e. (from
(ii) and (iii)).

Fig. Transition system for a*(ba™)".

(v) To get the r.e. representing a set accepted by a transition system, we
can apply the algebraic method using the Arden’s theorem

(vi) If P is an r.e., then to construct a finite automaton accepting the set
P, we can apply the construction
(vii) A subset L of £* is a regular set (or represented by an r.e.) iff it is
accepted by an FA (from (i), (ii) and (iii)).
(viii) A subset L of I* is a regular set iff it is recognized by a transition
system (from (i) and (iv)).
(ix) The capabilities of finite automaton and transition systems are the
same as far as acceptability 6f subsets of strings is concerned.

© IETE 12

CT32 COMPUTER NETWORKS | DEC 2015

c. Solve the following: (3+3)

(i) Consider the two regular Languages represented by the regular expressions

P and Q respectively, where P is defined as P = (b + a a* b) and Q is any regular

expression then show that

P+PQ*Q=a*b Q*
(ii) Consider a context free grammar G that consists of the productions
S>20B|1A A->0]|0S|1AA B = 1|1S|0BB

For the string 00110101, Find the

(i) the Leftmost Derivation (ii) the Rightmost Derivation (iii) Parse Tree
Answer: (i)
L.H.S. PA +P Q*Q
P(A+ Q*Q)
PQ*
(b + aa*b)Q* (by definition of P)
(Ab + aa*b)Q*
a*bQ*
R.H.S.

(ii)
(i) S= 0B = 00BB = 0018 = 00115
= 0°1208 = 0°1°015 = 0°1°0108 = 0°1°0101

(i) S = 0B = 00BB = 00B1S = 00B10B
— 0°B101S = 0°B1010B = 0°B10101 = 0°110101.

(i) The parse tree is given in Fig.

© IETE 13

CT32

Q.6 a. Solve the following: (3+2)
(i) Make a deterministic PDA by Final State that accepts the language

L = {w € {a, b}*|the number of a’s in w equal to the no. of b’s in w}.

(if) Convert the context free grammar
S=>aSb|A,A>bSa|S|e toaequivalent PDA by empty stack.

Answer: (i)

We define a pda M as follows:
M = ({q0, a1}, {a. b}, {a, b, Z}, 8. g0, Zo. (@)

where & is defined by
8(q0, a, Zy) = {(q1, Zo)}
S(q0. b, Zy) = {(qo. bZy)}
S(qo. a, b) = {(go. A)}
S(qo. b. b)Y = {(qgo. bb)}
o(q1. a, Zg) = {(q,, a‘y))
8(q. b, Zp) = {(gy, aZy))
S(q:. a. a)= {(gq,. aa))
O(qy, b, a)= {(q,, A)}

The construction can be explained as follows:
If the pda M is in the final state g1, it means it has seen more a’s than

f)':-:‘ On seeing the first a, M changes state (from go to q;) Afterwards
it stores the a's in PDS without changing state It stores
the initial 5 in PDS and also the subsequent b’s The pda
r.:i:nr.:cls a in the input string, with the first (topmost) b in PDS If all
b’s are matched with stored a’s, and M sees the bottom of PDS, M moves
::]:;slpg}squ The £’s in the input string are cancelled on seeing a

M is determirfistic since & is not defined for input A. The reader is advised
to check that g, is reached on seeing an input string w in L.

ii
% We construct a pda A as _
| A = ({q}, {a, b} {S, A, a, b}, 8, g, S, ©)
where ¢ is defined by the following rules
6(g. A, S)= {(q. aSh), (g, A)}
8(q. A, A)= {(g, bSA), (g, S), (g. M)}
o(q. a, a)= {(g, A)}
o(g, b, b)= {(gq, A)}

and A is the required pda.

© IETE 14

COMPUTER NETWORKS | DEC 2015

CT32 COMPUTER NETWORKS | DEC 2015

b. Construct a Pushdown Automata (PDA) that accepts the language L defined as:
L={a"b™a" | m, n > 1} by empty stack. Also make the corresponding CFG
productions accepting the same set or language. (8)

Answer:

The pda A accepting {a"b™a" | m. n = 1} is defined as follows:

A = {go. a1} L@ B). {a.Z}, 8. go. Zo. B)
where & is defined by i

Ry: 8(qo. a, Zo) = {(qo. aZy)}

R>: Slgg. a, a)= {(gy. aa)}

R;y: S(gg. b, a)= {(q,. a)}

Ry 8(q. b, a)= {(q,. a)}

Rs: &(q). a, a) = {(g,, A)}

Rg: 8(q., A Zp) = {(q,, A))

We start storing a’s until a b occurs (Rules R, and R-). When the current
input symbol is b. the state. changes, but no change in PDS occurs (Rule R3).
Once all the &’s in the input string are exhausted (using Rule Ry). the
remaining a's are erased (Rule Rs). Using Ry, Z, is erased. So,

(qo. a"b"a", Zy) P~ (q1. A Zg) |— (g1 A, A)
This means that a"F"a” € N(A). We can show that

: N(A) = {&"F"a" | m. n = 1}

by using Rules R ,—~K;.

Define G = (Vy, {a. b}. P. S), where V, consists of
g0, Zo» aols lar. Zo, qo)s lgo. a. aols 141, @ ol
(go. Zo- q1l- lar. Zo. a1l lgo. 4. g.1. [g1- a, a1l

The productions in P are constructed as follows:
The S-productions are

Py S — qus@ gl P S — lao Zo 4]
Mgy a. Zy = {(qo. aZp)} mduces
Ps: Tgo. Zo. qol = algo. a. qollgo. Zy. go)
P g0, Zo» qol = algo. a. aillgn Zo. 9ol
P<: [qo. Zo. 411 — algo, a. qolldo. Zo. a1l
Pq: lgo. Zo- g;1 — algo. a. g g, Zo- g1l

Slge a a) = {(go. aa)} yields

h
a

© IETE 15

CT32 COMPUTER NETWORKS | DEC 2015

P5: lgo. a. gol — algo. a. gollqo. @ qol
Py [go: a» qol — algo. a. q1lld1. a. gol
-Po: [go» @ qil — algo. a. qollgo, a, q1]
Pio: [go, a» q1]1 — alge, a, qillday. a. a1l

Slge b. a) = (g1, @)} gives
Pt [go. @ gol — blg. a, gol
Pis: [go. a. g11 — blg. a, aal
3(g,. b. @) = {(g1, @)} yields
Pis: [g1. a. gaol — blawn a. qol
P [g. a, a1} — bla. a. a1l
Mg, a. a) = {(g1: M)} gives :
4 Pist lq,. @ 1l = a
Mg, A Zo) = {(q1, M)} yieljds &
Plﬁ: [QI'r z{]'.r fh] — A

c. Define Inherent Ambiguity and Inherently Ambiguous Languages. If G is a
context free grammar whose production rules are given as S > SbS | a.
Check whether the given grammar G is ambiguous or inherently ambiguous.

©)
Answer:
Inherent Ambiguity and Inherently Ambiguous Languages
The languages generated by a grammar, that have both ambiguous and unambiguous grammars
but there exist languages for which no unambiguous grammar can exist. Such types of languages
are called inherently ambiguous languages and the property is known as inherent ambiguity.

To prove that G is ambiguous, we have to find a w € L(G), which is

ambiguous. Consider w-= abababa € L(G). Then we get two derivation trees
for w Thus, G 1s ambiguous.

© IETE 16

CT32 COMPUTER NETWORKS | DEC 2015

© IETE 17

CT32 COMPUTER NETWORKS | DEC 2015

Q.7 a. Consider a context free grammar G whose production rules are defined as
S>ASA | bA, A>B | S, B->c. Reduce it into Chomsky Normal Form (CNF).

(6)

Answer:
Step 1 Elimination of unit productions:
The unit productions are A — B, A — S
Wo(S) = (S}, Wi(S) = {S} v B = {S}
Wo(A) = {A), Wi(A) = {A} U {5, B} = (S, A B}
Ws(A) = {5, A, B} U @ = {S, A, B}
Wo(B) = {B}, W\(B) = {B} v # = {B}
The productions for the equivaleit grammar without unit productions are
£ > ASA|BA, B c

A — ASA|bA, A > c

So, G, = ({5, A, B}, {b, c}, P, S) where P consists of S = ASA | bA,
B—c, A— ASA|DbA|c.
Step 2 Elimination of terminals in R.H.S.:

S — ASA, B — ¢, A = ASA | c are in proper form. We have to modify
S — bA and A — bA.

= "l = . 4 L A daas A o T A

Replace S — bA by § — GA, G — band A — bA by A — G,
C;, — b.
So, G> = ({8, A, B, C}, {b, €}, P, S) where P> consists of

5S> ASA| G
A—> ASA|c| CA
B—>c, C,—> b
Step 3 Restricting the number of variables on R.H.S.:
S — ASA is replaced by § — AD, D — SA
A —> ASA is replaced by A — AE. E — SA
So the equivalent grammar in CNF is
G; = ({5, A, B, C, D, E}, {b, c}, P3 5)
where P; consists of
S — CyA |AD
A — c| GA|AE.
B— ¢, C, > b, D— SA E— S5A

© IETE 18

CT32 COMPUTER NETWORKS | DEC 2015

b. Reduce the given CFG defined as S=>aAbB, A>aA | a, B2>bB | b into
Chomsky Normal form. (6)
Answer:

As there are no unit productions or null productions, we need not carry out
step 1. We proceed to step 2. '
Step 2 Let G, = (VY {a.). P, S), where P, and V’y are constructed as
follows:
(i) A = a, B — b are added to P,.
(i) § — aAbB, A - aA., B — bB yield § - C,AC,B, A - C,A,
B—=CB, C, = a C, = b

V= 8. A8 Gy Gyl
Step 3 P consists of § = CACB, A - C,A, B - (B, C, = q,
Cp—2b. A58, B8
§ — C,ACyB is replaced by § — C,Cy, C; = AG;, C; — CiB
The remaining productions in P are added to P.. Let
Go= ({8, &: B, C; €y G Gt a B)y Py 8k

where P, consists of § —» C,C), C, = AC,,. G, — (B, A — C,A, B - (B,
C,—>a C,—>bA—aq and B - D
G 15 In CNF and equivalent to the given grammar.

c. Check whether the language defined as L = {a”| p is a prime} is a context free
language or not. Justify your answer by using the help of Pumping Lemma.

(4)

Answer:
We use the following property of L: If w € L, then |w| is a prime.
Step 1 Suppose L = L(G) is context-free. Let n be the natural number
obtained by using the pumping lemma.
Step 2 Let p be a prime number greater than n. Then z = a” € L. We write
I = WVWX).
Step 3 By pumping lemma, w’wx’y = uwy € L. So |uwy| is a prime

number, say g. Let |vx| = r. Then, |uwfwx%y| = g + qr. As g + gr is not a
prime, wviwx% ¢ L. This is a contradiction. Therefore, L is not context-free.

Q.8 a. Design Turing Machines that recognizes the following languages: (5+5)
()L={0"1"|n>1} and
(i) Set L of all strings over {0, 1} ending with 010
Answer:

© IETE 19

CT32 COMPUTER NETWORKS | DEC 2015

We require the following moves: i

(a) If the leftmost syrnbol in the given input string w is 0, replace it by x
and move right till we encounter a leftmost 1 in w. Change it to y and
move backwards.

(b) Repeat (a) with the leftmost 0. If we move back and forth and no 0 or
1 remains, move to a final state.

(¢) For strings not in the form 0"17, the resulting state has to be nonfinal.

Keeping these ideas in our mind, we construct a TM. M as follows:.

M= (0, E T, 8 qgo b, F) "
Q = {q0. 91> 92: 93 G
F = {qy}
£ =1{0, 1}
=40, 1, x 3 b} :
sransition diagram is given in Fig. M accepts {0"1"|n = 1}. The moves

@011 and 010 are given below just to familiarize the moves of M to the

92)) (0.0.L)

vy R

v R ([9 (b, b, R)

Fig. Transition diagram
G00011 |— xg;011 |— x0g,11 |— xq,0y1
= q2x0y1 |— xgo0y1 |— xxg,y1 |— xxyq, 1
b= xxq2yy |— xg2xyy |— xxqoyy |— xxyqay
= xpgs = xeyyqsb = xybaab
Hence 0011 is accepted by M. .
G010 |— xg,10 |— g>xy0 |— xgoy0 |— xyq30

As 8(qs, 0) is not defined, M halts. So 010 is not accepted by M.
Sol (ii):

© IETE 20

CT32 COMPUTER NETWORKS | DEC 2015

L 1s certainly a regular set and hence a deterministic automaton is sufficient to
recognize L. Figure gives a DFA accepting L.

Fig. DFA for given problem

Converting this DFA to a TM is simple. In a DFA M. the move is always to
the right. So the TM's move will always be to the right. Also M reads the input
symbol and changes state. So the TM M, does the same: it reads an input
symbol, does not change the symbol and changes state. At the end of the
computation, the TM sees the first blank b and changes to its final state. The
initial ID of M, is gow. By defining &(qq, b) = (gy, b, R), M, reaches the initial
state of M. M, can be described by Fig.

(0,0, R)

(1,1, R) (0.0, R)

b. Define a Turing machine. Construct a Turing Machine that accepts the
language given by the expression (0 1* + 1 0%) (6)
Answer:

Definition of Turing Machine
A Turing Machine M is a collection of 7-tuples as:

(0.E.T.8.q¢.%.F)

where (@ 1is a set of states
2 1s a finite set of symbols. “input alphabet™.
I'" is a finite set of symbols. ““tape alphabet™.
O is the partial transition function

e T is a symbol called “blank’
g, = O is the initial state
F — O is a set of final states
As the Turing machine will have to be able to find its input, and to know when it has processed

all of that input, we require:

© IETE 21

CT32 COMPUTER NETWORKS | DEC 2015

(@) The tape is initially “blank” (every symbol is #) except possibly for a finite, contiguous
sequence of symbols.

(b) If there are initially nonblank symbols on the tape, the tape head is initially positioned on one
of them.

This emphasises the fact that the “input” viz., the non-blank symbols on the tape does not contain
#.

We have to construct a TM that remembers the first symbol and checks that it
does not appear afterwards in the input string. So we require two states,‘qtg, q1-
The tape symbols are 0, 1 and b. So the TM, having the ‘storage facility in
state’, is

M = ({go. a1} x {0, 1, b}. {0, 1}, (0. 1, B}. &. [go. Dl. {la b1b

We describe 8 by its implementation description. - ‘

1. In the initial state, M is in g, and has & in 1ts datz.i portion. On seeing
the first symbol of the input sting w, M moves right, enters the state
g, and the first symbol, say a, it has seen. _

2. M is now in [gq, a]. (i) If its next symbol is b, M enFers lq1, b],_an
accepting state. (ii) If the next symbol is a, M halts without reaching
the final state (i.e. & is not defined). (ii1) If the next symbol is @
(@ =0ifa=1land @ =1lifa= 0), M moves right without changing
state. '

3. Step 2 is repeated until M reaches [g1. P] or halts (8 is not defined for
an input symbol in w).

Q.9 a. State the Post correspondence problem (PCP). Find at least three solutions to
the PCP defined by the following sets: (8)
A={1,10, 10111} and B = {111, 0, 10}

Answer:

Post correspondence problem (PCP):

An instance of PCP consists of two lines of strings over some alphabet X; the two lists must be
equal length. We generally refer to the A and B lists, and write A = W, W, W, and B = X,
Xypeee X for some integer k. For each i, the pair (wi, xi) is said to be a corresponding pair.

We say this instance of PCP has a solution, if there is a sequence of one or more integers il,iz,...,
im that, when interpreted as indexes for strings in the A and B lists, yield the same string.

That is, W W W S XXX
We say the sequence i1’ i2,,im is a solution to this instance of PCP, if so, the Post
correspondence problem is: “Given an instance of PCP, tell whether this has a solution.”

Given : A = (1, 10, 10111)

B = (111, 0, 10)
From the above we conclude that
Al=1, A2 =10, A3 =10111
Bl =111, B2 =0, B3=10

Then AzA1A1A, =B3B1B1B;

© IETE 22

CT32 COMPUTER NETWORKS | DEC 2015

Hence the PCP with the given list has a solution. Repeating the sequence 3, 1, 1, 2 we can get
more solutions.

As a example:

AsA1A1AA3A1ALA, =B3B1B1B,B3B;B1B, =101111110101111110

Similarly we can get an another solution as having the sequence 3,1, 1,2,3,1,1,2,3,1, 1, 2.

So the three solutions to the PCP defined by the given sets:

(i) 3,1,1,2
(ii) 3,1,1,2,3,1,1,2
(iii) 3,1,1,2,3,1,1,2,3,1, 1,2

b. Differentiate between Recursive Languages and Recursively Enumerable
Languages. Show that if L1 and L2 are Recursively Enumerable Languages
than L1 U L2 is also Recursively Enumerable as well as if L1 and L2 are
Recursive Languages than L1 U L2 is also recursive. (8)

Answer:

© IETE 23

CT32 COMPUTER NETWORKS | DEC 2015

Recursive and Recursively Enumerable language defined according to the behavior of Turing Machine.
« As we know that any Turing Machine performes following three outcomes at the time of executions.

(i) A Turing Machine may Halt (or terminate) and accept the input string.
(i) A Turing Machine may Halt (or terminate) and reject the input string
(iiii) A Turing Machine never terminate i.e. Execute infinite times.
Based on these three condition, we can define the Recursive and Recursively Enumerable languages.

RECURSIVELY ENUMERABLE LANGUAGES

A language over the alphabet Y, is called recursively enumerable if there exists a TM say T that can
accept every word in L and either rejects (i.e crashes) or loops forever for every word in the language
L’ which is complement of L which can be represented as follows:

Accept (T) =L :

Reject (T) + Loop (T) = L/
Example : Consider the TM given below:

(&:b,R), (#,#,R)

It divides all inputs into three parts.
Accept (T) = all words with aa
Reject (T) = strings without ending aa
Loop (T) = strings without ending aa
It mean that the language (a+b)* aa (a+b)* is recursively enumerable.

© IETE 24

CT32 COMPUTER NETWORKS | DEC 2015

RECURSIVE LANGUAGE

A language over the alphabet 3, is called recursive if there exists a TM say T that accepts every word
in L and rejects every word in L’ the complement of L which can be represented as follows:

Accept (T) =L
Reject (T) + Loop (T) =L’
Loop (T) = ¢
Example : Consider the following TM
(a, 8 R),
(b, b, R)

R

It accepts the language of all words over ¥ = (a,b} that starts with a and rejects all words that do not
start with a. Therefore such a language is recursive.

Note: 1. Every recursive language is recursively enumerable because the TM for recursive languages
also satisfy the condition of r.e. Language but the reverse is not always true.

2. We can define recursive and recursively enumerable languages in term of PMs as well as
TMs because the languages accepted by them are the same.

Let L, and L- be two recursive languages and M, M, be the corresponding
TMs that halt. We design a TM M as a two-tape TM as follows:

. W is an input string to M.

M copies w on its second tape.

. M simulates M, on the first tape. If w is accepted by M,. then M
accepts w.

4. M simulates M- on the second tape. If w is accepted by M,, then M

accepts w.

Thd [d e

M always halts for any input w.

Thus L, v L, = T(M) and hence L, \W L, is recursive.

If L, and L, are recursively enumerable. then the same conclusion gives
a proof for L, U L, to be recursively enumerable. As M, and M, need not
halt, M need not hali.

© IETE 25

