Q.2a. Consider the following propositions concerned with a certain triangle ABC.
p : $\quad \mathrm{ABC}$ is isosceles
$\mathrm{q}: \quad \mathrm{ABC}$ is equilateral
r : ABC is equiangular
Write down the following propositions in words:
(i) $\mathrm{p} \wedge(\sim \mathrm{q})$
(ii) $(\sim p) \vee q$
(iii) $p \rightarrow q$
(iv) $q \rightarrow p$
(v) $(\sim r) \rightarrow(\sim q)$
(vi) $p \leftrightarrow(\sim q)$
(vii) $\mathrm{r} \rightarrow \mathrm{q}$
(viii) $(q \wedge r) \rightarrow p$

Answer: \qquad
Q2(1) $A B C$ is isosceles and is not equilateral
12) $A B 1$ is not isosceles or $A B 1$ is equilateral
(3) If $A B C$ is isosceles, then it is equilatisal
(A) If $A B C$ is equilateral, thenitis isosceles
(5) If $A B C$ is not equiangular then it is not equilateral
(6) If $A B C$ is isosceles then it is not equilateral and if $A B C$ is not equilateral then it is isoceles.
17) If $A B C$ is equiangular then it is equilateral
18) If $A B($ is equilateral and it is also equiangular then it is isosceles.

b. Is the following arguments valid?

If two sides of a triangle are equal, then opposite angles are equal
Two sides of a triangle are not equal
\therefore The opposite angles are not equal
Answer:

In symbolic form the argument is

$$
\begin{aligned}
& p \rightarrow q \\
& \sim p \\
& \therefore \sim q
\end{aligned}
$$

The truth table is

In phis case the third and fourth rows are critical rows. But in The thirst row, the conclusion is false. Hence the argument is a fallacy.
Q. 3 a. If $m=2, n=5$ and

$$
\mathrm{H}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Determine the group code $\mathrm{e}_{\mathrm{H}}: \mathrm{B}^{2} \rightarrow \mathrm{~B}^{5}$
Answer:

J
We have $B^{2}=\{00,01,10,11\}$ then
where

$$
\begin{aligned}
& e(00)=00 x_{1} x_{2} x_{3} \\
& x_{1}=0.1+0.0=0 \\
& x_{2}=0.1+0.1=0 \\
& x_{3}=0.0+0.1=0 \\
& \therefore e e(00)=00000
\end{aligned}
$$

now e $(01)=01 x_{1} x_{2} x_{3}$

$$
\begin{aligned}
& x_{1}=0.1+1.0=0 \\
& x_{2}=0.1+1.1=1 \\
& x_{3}=0.0+1.1=1 \\
& \because e(01)=01011
\end{aligned}
$$

Next

$$
e(10)=10 x_{1} x_{2} x_{3}
$$

$$
x_{1}=1.1+0.0=1
$$

$$
x_{2}=1.1+1.0=1
$$

$$
x_{3}=1.0+0.1=0
$$

$$
\because e(10)=10110
$$

Similarly

$$
e(11)=11101
$$

b. Define group code. Show that $(2,5)$ encoding function $\mathrm{e}: \mathrm{B}^{2} \rightarrow \mathrm{~B}^{5}$ defined by $e(00)=0000, e(10)=10101, e(01)=01110, e(11)=11011$ is a group code.
Answer:

An (m, n) encooling function $e: B^{m} \rightarrow B^{n}$ is called a group code if range of e is a sub-group of B^{2} is (Ra nc), ()) is a group.

(9)	0000	01110	10101	11011
0000	0000	01110	10101	11011
01110	01110	0000	11011	10101
10101	10101	11011	0000	01110
11011	11011	10101	01110	0000

Since closure property satisfied. It is a group code.
Q. 4 a. In a group ($G, 0$), prove that

$$
\left(\mathrm{a}_{0} \mathrm{~b}\right)^{-1}=\mathrm{b}^{-1}{ }_{0} \mathrm{a}^{-1} \quad \forall \mathrm{a}, \mathrm{~b} \in \mathrm{G}
$$

Answer:

Let $a, b \in G$, Then $a^{-1}, b^{-1}, a_{0} b, b^{-1}, a^{-1} \in G$

$$
\begin{aligned}
\therefore\left(b_{0}^{-1} a^{-1}\right)_{0}\left(a_{0} b\right) & =\left[b_{0}^{-1}\left(a_{0}^{-1} a\right)\right]_{0} b \\
& =\left(b_{0}^{-1} e_{G}\right)_{0} b \\
& =b_{0}^{-1} b=e_{G}
\end{aligned}
$$

Also $\left(a_{0} b\right)_{0}\left(b_{0}^{1} a^{-1}\right)=\left[a_{0}\left(6, b^{-1}\right)\right]_{0} a^{-1}$

$$
\begin{aligned}
& \quad(0 \text { is associative }) \\
= & \left(a_{0} e_{4}\right)_{0} a^{-1}=a_{0} a^{-1} \\
= & =e_{G} \\
\therefore\left(b_{0}^{-1} a^{-1}\right)_{0}\left(a_{0} b\right)= & \left(a_{06}\right)_{0}\left(5 l_{0}^{-1}\right)=e_{G} \\
\therefore \quad\left(a_{06}\right)^{-1}= & b_{0}^{-1} a^{-1}
\end{aligned}
$$

b. What do you mean by addition modulo m ? Show that the set $G=\{0,1,2, \ldots, m-1\}$ of first m non-negative integers is an Abelian group under the composition addition modulo m.
Answer:
Adolition modulo m : The addition modulo m of any two integers a and b is denoted of $a+m b$ and olefined by $a+x b=r,(0 \leq r<m)$ where r is the least non-negative remainder when $a+b$ is divisible by m
(i) Let $a, b \in G$ and $a+m b=r \quad 0 \leq r<m-1$

$$
\therefore r \in G \text { ie } a+m b \in G, a, b \in G
$$

$\therefore t_{m}$ is closed.
(ii) Let $a, b, e \in G$

$$
\begin{aligned}
(a+m b)+m c & =(a+b)+m c \\
& {[\because a+m b=a+b(\bmod x)] }
\end{aligned}
$$

= least non-negative remainour when $a+b+c$ is divided by m

$$
=a+m(b+m c)
$$

$+_{m}$ is associative
(iii) $O \in G, \quad 0+m a=a+m 0=a \quad \forall a \in G$ 0 is the identity element
(iv)

$$
\text { Let } \begin{aligned}
r \neq 0 \in G \quad(m-r)+m & =0 \\
& =r+m(m-r)
\end{aligned}
$$

$\therefore(m-r)$ is the inverse of r $0+_{m} 0=0$, oinverse is 0
(v) Let $a, b t a$

$$
\begin{aligned}
a+m b= & \text { least non-negative integer } \\
& \text { when } a+b \text { is divisible len } m \\
= & b+m a
\end{aligned}
$$

$\therefore\left(G, t_{m}\right)$ is a finite Abelian Group.
Q. 5 a. What do you mean by recurrence relation? Solve the following recurrence relation

$$
\begin{equation*}
a_{n}-8 a_{n-1}+21 a_{n-2}-18 a_{n-3}=0 \tag{8}
\end{equation*}
$$

Answer:
Recurrence Relation: A recurrence relation for the sequence $\left\{S_{n}\right\}$ an equation that relates S_{n} in terms of one or more of previous terms of the sequence.

The given recurrence relation is

$$
a_{n}-8 a_{n-1}+21 a_{n-2}-18 a_{n-3}=0
$$

let $a_{n}=r^{n}$ be a solution
of -pu given $=$ reeurrexee
relation, Then the characteristic equation is

$$
r^{3}-8 r^{2}+21 r-18=0
$$

$$
r=2,3,3
$$

The solution of rue recurrence relation is

$$
a_{n}=\left(b_{1}+b_{2} n\right) 3^{n}+b_{3} 2^{n}
$$

Where $b_{1} b_{2}, b_{3}$ are constant.
b. Solve the recurrence relation $f_{n}=f_{n-1}+f_{n-2}, n \geq 2$ with initial conditions $\mathrm{f}_{0}=1, \mathrm{f}_{1}=1$.
Answer:

Let $a_{n}=r^{n}$ be a solution of he given recurrence relation.
Then the eharaetoristic equation is $r^{2}-r-1=0$

$$
\therefore r_{1}=\frac{1+\sqrt{5}}{2}, \quad r_{2}=\frac{1-\sqrt{5}}{2}
$$

\therefore The general solution is

$$
f_{n}=b_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+b_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Again $a_{0}=1 \Rightarrow b_{1}+b_{2}=1$

$$
\begin{gather*}
a_{1}=1 \Rightarrow b_{1}\left(\frac{1+\sqrt{5}}{2}\right)+b_{2}\left(\frac{1-\sqrt{5}}{2}\right)=1 \\
\therefore b_{1}=\frac{\sqrt{5}+1}{2 \sqrt{5}}, b_{2}=\frac{\sqrt{5}-1}{2 \sqrt{5}} \\
\therefore f_{n}=\left(\frac{\sqrt{5}+1}{2 \sqrt{5}}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{2}+\left(\frac{\sqrt{5}-1}{2 \sqrt{5}}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{2} \tag{8}
\end{gather*}
$$

Q. 6 a. Show that $A \cap(B-C)=(A \cap B)-(A \cap C)$ notations are usual.

Answer:

$$
\begin{aligned}
& \text { R.H.S }=(A \cap B)-(A \cap C) \\
& =(A \cap B) \cap(A \cap C)^{\prime}\left(\because P-Q=P \cap Q^{\prime}\right) \\
& =(A \cap B) \cap\left(A^{\prime} \cup C^{\prime}\right) \\
& \text { (Using DeMorgan } \\
& \text {-avi) } \\
& =\left(A \cap B \cap A^{\prime}\right) \cup\left(A \cap B \cap C^{\prime}\right) \text { (sig, } \\
& =\left(A \cap A^{\prime} \cap B\right) \cup\left(A \cap B \cap C^{\prime}\right) \\
& \text { (Using commutative lav) } \\
& =(\varphi \cap B) \cup\left(A \cap B \cap \mathcal{C}^{\prime}\right)_{\text {nvesse law })} \\
& =\varphi \cup\left(A \cap B \cap C^{\prime}\right) \text { (} \cup \text { sing (demitity (aw) } \\
& =A \cap B \cap C^{\prime} \text { (Using identity law) } \\
& =A \cap\left(B \cap C^{\prime}\right) \text { ting } \\
& =A \cap(B-C)=L \cdot H \cdot S
\end{aligned}
$$

b. In a city three daily newspapers, X, Y, Z are published. 65% of the people of the city read $X, 54 \%$ read $Y, 45 \%$ read $Z, 38 \%$ read X and $Y, 32 \%$ read Y and $Z, 28 \%$ read X and $Z, 12 \%$ do not read any of the three papers. If 1000000 persons live in the city, find the number of the persons who read all the three newspapers.
Answer:

Here $n(x)=65, n(y)=54, n(z)=45$

$$
\begin{gathered}
n(x \cap y)=38 \quad n(y \cap z)=32, n(x \cap z)=28 \\
n(x \cup y \cup z)^{\prime}=12 \quad n(x \cap y \cap z)=? \\
n(x \cup y \cup z)=1000000-n(x \cup y \cup z)^{\prime} \\
=88 \%
\end{gathered}
$$

The number of persons who read all the three newspapers:

$$
\begin{aligned}
n(x \cup y \cup z)= & n(x)+n(y)+n(z)-n(x \cap y) \\
& -n(y \cap z)-n(x \cap z)+n(x \cap y \cap z) \\
\therefore 88= & 65+54+45-38-32-28+n(x \cap y \cap z) \\
\therefore n(x \cap y \cap z)= & 22 \% \\
= & \frac{22}{100} \times 1000000 \\
= & 220000
\end{aligned}
$$

Q. 7 a. Using rules of inference, show that $s \vee r$ is tautologically implied by $p \vee q$,

$$
\begin{equation*}
\mathrm{p} \rightarrow \mathrm{r}, \mathrm{q} \rightarrow \mathrm{~s} \tag{8}
\end{equation*}
$$

Answer:

Answer:
b. Direct proof

$$
\begin{aligned}
& \text { 1. } p \rightarrow q \\
& \text { 2. } q \rightarrow r \\
& \text { 3. } p \rightarrow r \\
& \text { 4. } p \vee r \\
& \text { 5. } T p \vee r \\
& \text { 6. }(p \vee r) \wedge(\neg p \vee r) \\
& \text { 7. }(p \vee 7 p) \vee r \\
& \text { 8. } f \vee r \\
& \text { 9. } r
\end{aligned}
$$

Indirect proof:

$$
\begin{aligned}
& \text { 1. Jp } \\
& \text { 2. pr } \\
& \text { 3. p } \\
& \text { 4. p } \rightarrow q
\end{aligned}
$$

5. q
6. $q \rightarrow r$
7. r 8. F
Q. 8 a. If $a=\{1,2,3,4,5,6,7\}$ and a relation R defined as $R=\{(x, y),\|x-y\|=2\}$. Is R is an equivalence relation?
Answer:

$$
\begin{array}{r}
R=\{(1,3),(2,4),(3,5)(4,6),(5,7),(6,4)(5,3) \\
(4,2),(3,1),(7,5)\}
\end{array}
$$

R is not reflexive $\because(x, x) \notin R$
R is symmetric $(x, y) \in R$ and $(y, x) \in R$
R is not transitive $(x, y),(y, z) \in R$
tut $(x, z) \notin R$
$\therefore R$ is not equivalence relation.
b. If (L, \leq) be a Lattice and $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{L}$ prove that if $\mathrm{a} \leq \mathrm{c}, \mathrm{b} \leq \mathrm{c}$,
(i) $\mathrm{a} \vee \mathrm{b}=\mathrm{a} \oplus \mathrm{b} \leq \mathrm{c}$
(ii) $a \wedge b=a * b \leq c$

Answer:
(i) Given $a \leq c, b \leq c$
c is the upper bound of a and b
w.K.t $a v b$ is the least upper bound of $a f b$

$$
\begin{align*}
a \vee b \leq a & =c \quad 4 \tag{4}\\
& \therefore a \vee b \leq e
\end{align*}
$$

$$
a v_{b} \leq b=c
$$

mennctatina!
b (ii) Let $x=a \not a b=a \wedge b$
$\Rightarrow a \wedge b$ is gl b of af b

$\Rightarrow a \wedge b$ is the lower bound of a \& b
$\Rightarrow a \wedge b \leq a, \quad a \wedge b \leq b$
$\Rightarrow \quad a \leq c$
$\therefore \quad a \wedge b \leq c$
Q. 9
a. Check whether the function $f(x)=x^{2}-11$ from \mathbf{R} to \mathbf{R} is one-one onto or both. Justify.
Answer:

Given that $f(x)=x^{2}-11 \quad \forall x \in R$
For one ore $f(x)=f(y)$

$$
\begin{array}{r}
\Rightarrow \quad x=y \\
\therefore \quad x^{2}-11=y^{2}-11 \\
\therefore x^{2}=y^{2} \Rightarrow x= \pm y \\
f \text { is not one-oxe }
\end{array}
$$

For onto $\forall y \in R \quad \exists \quad f(x)=y$

$$
\begin{aligned}
& \therefore x^{2}-11=y, \quad x^{2}=y+11 \\
& \therefore \quad \therefore \text { is not onto. } \quad x=\sqrt{y+11} \notin R
\end{aligned}
$$

b. If $f, g: R \rightarrow R$ where $f(x)=a x+b, g(x)=1-x+x^{2}$ and $\left(g_{0} f\right)(x)=9 x^{2}-9 x+3$, then find the values of " a " and " b ".
Answer:

$$
\text { b Given } \begin{align*}
(g \circ f) f(x) & =9 x^{2}-9 x+3 \tag{8}\\
g[f(x)] & =9 x^{2}-9 x+3 \\
g(a x+b) & =9 x^{2}-9 x+3 \\
1-(a x+b)+(a x+b)^{2} & =9 x^{2}-9 x+9
\end{align*}
$$

Equating coefficient of $x^{2}, \quad a^{2}=9 \Rightarrow a= \pm 3$
11

$$
1
$$

$$
x \quad-a+2 a b=-9
$$

1 " constant term $1-b+b^{2}=3$

$$
\begin{array}{ll}
& b=\frac{1 \pm 3}{2}=2,-1 \\
\therefore a=3,-3 & b=2,-1
\end{array}
$$

