
AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 1

 Q.2 a. What is System Engineering? Explain in detail. (12)
Answer:
Systems engineering is the activity of specifying, designing, implementing, validating, deploying
and maintaining socio – technical systems.

Concerned with the services provided by the system, constraints on its
construction and operation and the ways in which it is used.
Systems Engineering Process: Usually follows a ‘waterfall’ model because of the need
for parallel development of different parts of the system

System Requirement
definition: specifies what

the system should do and its
essential and desirable

system properties. Concentrates on deriving three types of requirements:
1. Abstract functional requirements.
2. System properties
3. Characteristics that the system must not exhibit.
System Design: Activities involved in this process are:
1. Partition requirements
2. Identify sub – systems
3. Assign requirements to sub system
4. Specify sub – system functionality
5. Define Sub – system interfaces
System Modeling: system requirements and design activity, systems may be modeled as a
set of components and relationships between these components.
An architectural model presents an abstract view of the sub-systems making up a system
May include major information flows between sub-systems
Usually presented as a block diagram
May identify different types of functional component in the model
Sub – system Development: The identified sub – systems during system design are
implemented . Involves starting another system engineering process for individual sub –
systems. Sub – Systems are developed from scratch or bought off the shelf and integrated
into the system. Usually sub – systems are developed in parallel. When problems
encountered a system modification request is made.
System Integration: Independently developed sub –systems are put together to form a
complete system. For the following reasons the sub – systems are integrate one at a time.
1. Impossible to schedule the development of all the sub –systems are not possible.
2. Reduces the cost of error location.
System Evolution:
System Decommissioning

 b. Explain Rational Unified Process (RUP). (4)

System
integration

Sub-system
development

Sy stem
design

Requirements
definition

System
installation

System
evolution

System
decommissioning

AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 2

Answer:
A modern process model derived from the work on the UML and associated
process.
Normally described from 3 perspectives
A dynamic perspective that shows phases over time;
A static perspective that shows process activities;
A practive perspective that suggests good practice.

Inception:

Establish the business case for the system.
Elaboration: Develop an understanding of the problem domain and the system architecture.
Construction: System design, programming and testing.
Transition: Deploy the system in its operating environment.
Good Practices: Develop software iteratively

 Manage requirements
 Use component-based architectures
 Visually model software
 Verify software quality

 Control changes to software

 Q.3 a. Discuss in detail Functional and Nonfunctional Requirements. (12)
Answer:
Functional Requirements:

Describe functionality or system services.
Depend on the type of software, expected users and the type of system where the
software is used.
Functional user requirements may be high-level statements of what the system should do
but functional system requirements should describe the system services in detail.
Examples of Functional Requirements:
A library system that provides a single interface to a number of databases of articles in
different libraries.
Users can search for, download and print these articles for personal study
The user shall be able to search either all of the initial set of databases or select a subset
from it.
The system shall provide appropriate viewers for the user to read documents in the
document store.
Every order shall be allocated a unique identifier (ORDER_ID) which the user shall be
able to copy to the account’s permanent storage area
In principle, requirements should be both complete and consistent.
Complete: They should include descriptions of all facilities required.
Consistent: There should be no conflicts or contradictions in the descriptions of the
system facilities.
In practice, it is impossible to produce a complete and consistent requirements document.

Nonfunctional Requirements: These define system properties and constraints e.g. reliability,

Phase iteration

Inception Elaboration Construction Transition

AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 3

 response time and storage requirements. Constraints are I/O device capability, system
 representations, etc.

Process requirements may also be specified mandating a particular CASE system,
programming language or development method.
Non-functional requirements may be more critical than functional requirements. If these
are not met, the system is useless.

Classifications:
Product requirements: Requirements which specify that the delivered product must
behave in a particular way e.g. execution speed, reliability, etc.
Organisational requirements: Requirements which are a consequence of organisational
policies and procedures e.g. process standards used, implementation requirements, etc.
External requirements: Requirements which arise from factors which are external to the
system and its development process e.g. interoperability requirements, legislative
requirements, etc.

Non-
functional

requirements may be very difficult to state precisely and imprecise requirements may be difficult
to verify.
Goal: A general intention of the user such as ease of use.
Verifiable non-functional requirement: A statement using some measure that can be objectively
tested.

Performance
requir ements

Space
requir ements

Usability
requir ements

Efficiency
requir ements

Reliability
requir ements

Portability
requir ements

Inter oper ability
requir ements

Ethical
requir ements

Leg islative
requir ements

Implementa tion
requir ements

Standar ds
requir ements

Deli very
requir ements

Safety
requir ements

Pri vacy
requir ements

Product
requir ements

Organisational
requir ements

External
requir ements

Non-functional
requir ements

AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 4

Goals are helpful to developers as they convey the intentions of the system users.

Property Measure

Speed Processed transactions/secondUser/ Event response time, Screen refresh
time

Size M BytesNumber of ROM chips

Ease of use Training time, Number of help frames

Reliability Mean time to failure Probability of unavailability, Rate of failure
occurrence, Availability

Robustness Time to restart after failure, Percentage of events causing failure,
Probability of data corruption on failure

Portability Percentage of target dependent statements Number of target systems

Requirements Interaction: Conflicts between different non-functional requirements are common
in complex systems.
Spacecraft system:

• To minimise weight, the number of separate chips in the system should be
minimised.

• To minimise power consumption, lower power chips should be used.
• However, using low power chips may mean that more chips have to be used.

Which is the most critical requirement?

 b. Discuss about Requirement Elicitation and Analysis phase. (4)
Answer:
Sometimes called requirements elicitation or requirements discovery.
Involves technical staff working with customers to find out about the application domain, the
services that the system should provide and the system’s operational constraints.
May involve end-users, managers, engineers involved in maintenance, domain experts, trade
unions, etc. These are called stakeholders.
Problems in Requirement Analysis Phase:

Stakeholders don’t know what they really want.
Stakeholders express requirements in their
own terms.
Different stakeholders may have conflicting
requirements.
Organisational and political factors may
influence the system requirements.
The requirements change during the analysis
process. New stakeholders may emerge and
the business environment change.
Requirements discovery: Interacting with
stakeholders to discover their requirements.
Domain

Requirements
classif ication and

organisation

Requirements
prioritization and

negotiation

Requirements
documentation

Requirements
discovery

AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 5

requirements are also discovered at this stage.
Requirements classification and organisation: Groups related requirements and organises them
into coherent clusters.
Prioritisation and negotiation: Prioritising requirements and resolving requirements conflicts.
Requirements documentation: Requirements are documented and input into the next round of the
spiral.

 Q.4 a. Explain in detail about Extreme Programming and explain how testing is
done in Extreme Programming (10)

Answer:
Perhaps the best-known and most widely used agile method.
Extreme Programming (XP) takes an ‘extreme’ approach to iterative development.
New versions may be built several times per day;
Increments are delivered to customers every 2 weeks;
All tests must be run for every build and the build is only accepted if tests run successfully

Principle or Practice Description

Incremental planning

Requirements are recorded on Story Cards and the Stories to be
included in a release are determined by the time available and their
relative priority. The developers break these Stories into development
‘Tasks’.

Small Releases
The minimal useful set of functionality that provides business value is
developed first. Releases of the system are frequent and incrementally
add functionality to the first release.

Simple Design Enough design is carried out to meet the current requirements and no
more.

Test first
development

An automated unit test framework is used to write tests for a new piece
of functionality before that functionality itself is implemented.

Refactoring
All developers are expected to refactor the code continuously as soon
as possible code improvements are found. This keeps the code simple
and maintainable.

Pair Programming Developers work in pairs, checking each other’s work and providing
the support to always do a good job.

Collective Ownership
The pairs of developers work on all areas of the system, so that no
islands of expertise develop and all the developers own all the code.
Anyone can change anything.

Break down
stories to tasks

Select user
stories for this

release
Plan release

Release
software

Evaluate
system

Develop/integ rate/
test software

AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 6

Principle or Practice Description

Continuous
Integration

As soon as work on a task is complete it is integrated into the whole
system. After any such integration, all the unit tests in the system must
pass.

Sustainable pace Large amounts of over-time are not considered acceptable as the net
effect is often to reduce code quality and medium term productivity

On-site Customer

A representative of the end-user of the system (the Customer) should
be available full time for the use of the XP team. In an extreme
programming process, the customer is a member of the development
team and is responsible for bringing system requirements to the team
for implementation.

Testing in XP:
• Test-first development.
• Incremental test development from scenarios.
• User involvement in test development and validation.
• Automated test harnesses are used to run all component tests each time that a new release is

built.
Testing card
• Writing tests before code clarifies the requirements to be implemented.
• Tests are written as programs rather than data so that they can be executed automatically. The

test includes a check that it has executed correctly.
• All previous and new tests are automatically run when new functionality is added. Thus

checking that the new functionality has not introduced errors

Pair programming:
• In XP, programmers work in pairs,

sitting together to develop code.
• This helps develop common

ownership of code and spreads
knowledge across the team.

• It serves as an informal review
process as each line of code is
looked at by more than 1 person.

• It encourages refactoring as the
whole team can benefit from this.

• Measurements suggest that development productivity with pair programming is similar to
that of two people working independently.

 b. Discuss Sub-System Interface Specification. (6)
Answer:
Sub System Interface Specification:

Task 1: Implement principal workf low

Task 2: Implement article catalog and selection

Task 3: Implement payment collection

Payment may be made in 3 different ways. The user
selects which way they wish to pay. If the user
has a library subscription, then they can input the
subscriber key which should be checked by the
system. Alternatively, they can input an organisational
account number. If this is valid, a debit of the cost
of the article is posted to this account. Finally, they
may input a 16 digit credit card number and expiry
date. This should be checked for validity and, if
valid a debit is posted to that credit card account.

AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 7

• Large systems are decomposed into subsystems with well-defined interfaces between these
subsystems.

• Specification of subsystem interfaces allows independent development of the different
subsystems.

• Interfaces may be defined as abstract data types or object classes.
• The algebraic approach to formal specification is particularly well-suited to interface

specification as it is focused on the defined operations in an object.

Structure of Algebraic

Specification:
o Introduction – Defines the sort (the type name) and declares other specifications that

are used.
o Description – Informally describes the operations on the type.
o Signature – Defines the syntax of the operations in the interface and their parameters.

• Axioms
o Defines the operation semantics by defining axioms which characterise behaviour

The process of developing specification for sub – system interface includes the following
activities:

• Specification structuring;
• Specification naming;
• Operation selection;
• Informal operation specification;
• Syntax definition;
• Axiom definition.

Interface
obj ects

Sub-system
A

Sub-system
B

AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 8

 Q.5 a. Discuss Object Oriented style of modular decomposition (4)
Answer:

• Another structural level where sub-systems are decomposed into modules.
• Two modular decomposition models covered
o An object model where the system is decomposed into interacting object;
o A pipeline or data-flow model where the system is decomposed into functional

modules which transform inputs to outputs.
Object oriented decomposition:

• If possible, decisions about concurrency should be delayed until modules are
implemented.

• Structure the system into a set of loosely coupled objects with well-defined interfaces.
• Object-oriented decomposition is concerned with identifying object classes, their

attributes and operations.
• When implemented, objects are created from these classes and some control model

used to coordinate object operations.

 b. Explain Distributed Systems Architecture in detail. (12)
Answer:
Distributed system Characteristics:
 Resource sharing - Sharing of hardware and software resources.
 Openness - Use of equipment and software from different vendors.
 Concurrency - Concurrent processing to enhance performance.
 Scalability - Increased throughput by adding new resources.
 Fault tolerance - The ability to continue in operation after a fault has occurred.

Distributed Systems Architectures:
• Client-server architectures

Distributed services which are called on by clients. Servers that provide services are
treated differently from clients that use services.

• Distributed object architectures
No distinction between clients and servers. Any object on the system may provide and
use services from other objects

Multi-Processor Archictecture:
• Simplest distributed system model.

issue ()
sendReminder ()
acceptPayment ()
sendReceipt ()

invoice#
date
amount
customer

invoice#
date
amount
customer#

invoice#
date
amount
customer#

customer#
name
address
credit period

Customer

Payment

Invoice

Receipt

AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 9

• System composed of multiple processes which may (but need not) execute on different
processors.

• Architectural model of many large real-time systems.
• Distribution of process to processor may be pre-ordered or may be under the control of a

dispatcher.

Client Server Architecture:

• The application is modelled as a set of services that are provided by servers and a set of
clients that use these services.

• Clients know of servers but servers need not know of clients.
• Clients and servers are logical processes
• The mapping of processors to processes is not necessarily 1 : 1.

Layered Application Architecture:

o Presentation layer – Concerned with presenting the results of a computation to
system users and with collecting user inputs.

o Application processing layer – Concerned with providing application specific
functionality e.g., in a banking system, banking functions such as open account,
close account, etc.

o Data management layer – Concerned with managing the system databases.
Computers in C/S system:

Traff ic lights

Light
control
process

Traff ic light control
processor

Traff ic f low
processor

Operator consoles
Traffic flow sensors and

cameras

Sensor
processor

Sensor
control
process

Display
process

s1

s2 s3

s4c1

c2 c3 c4

c5

c6
c7 c8

c9

c10

c11

c12

Client process

Server process

Network

SC1SC2

CC1 CC2 CC3

CC5 CC6CC4

Server
computer

Client
computer

s1, s2 s3, s4

c5, c6, c7

c1 c2 c3, c4

c8, c9 c10, c11, c12

AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 10

Layered Architecture:

• Presentation layer
• Concerned with presenting the results of a computation

to system users and with collecting user inputs.
• Application processing layer

• Concerned with providing application specific
functionality e.g., in a banking system, banking
functions such as open account, close account, etc.

• Data management layer
• Concerned with managing the system databases.

Thin and Fat clients:
• Thin-client model

 In a thin-client model, all of the application processing and data management is
carried out on the server. The client is simply responsible for running the presentation
software.

• Fat-client model
 In this model, the server is only responsible for data management. The software on

the client implements the application logic and the interactions with the system user.

Three Tier Archictecture:

• In a three-tier architecture, each of the application architecture layers may execute on a
separate processor.

• Allows for better performance than a thin-client approach and is simpler to manage than a
fat-client approach.

• A more scalable architecture - as demands increase, extra servers can be added.

 Q.6 a. What is Object Oriented Design Process? Explain the first three stages of the
process. (12)

Answer:
• Structured design processes involve developing a number of different system models.

Presentation layer

Application processing
layer

Data management
layer

Thin-client
model

Fat-client
model Client

Client

Server

Data management
Application processing

Presentation

Server

Data management

Presentation
Application processing

Client

Server

Data
management

Presentation
Server

Application
processing

AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 11

• They require a lot of effort for development and maintenance of these models and, for
small systems, this may not be cost-effective.

• However, for large systems developed by different groups design models are an essential
communication mechanism.

Various stages
• Define the context and modes of use of the system;
• Design the system architecture;
• Identify the principal system objects;
• Develop design models;
• Specify object interfaces.

Defining System context and modes of the system:

• Develop an understanding of the relationships between the software being designed and
its external environment

• System context
• A static model that describes other systems in the environment. Use a subsystem

model to show other systems. Following slide shows the systems around the
weather station system.

• Model of system use
• A dynamic model that describes how the system interacts with its environment.

Use use-cases to show interactions
Use Case Models:
• Use-case models are used to represent each interaction with the system.
• A use-case model shows the system features as ellipses and the interacting entity as a stick

figure
Architectural Design:
• Once interactions between the system and its environment have been understood, you use

this information for designing the system architecture.

• A layered architecture is appropriate for the weather station
• Interface layer for handling communications;
• Data collection layer for managing instruments;
• Instruments layer for collecting data.

• There should normally be no more than 7 entities in an architectural model

Star tup

Shutdown

Repor t

Calibrate

Test

AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 12

Object Identification:
• Identifying objects (or object classes) is the most difficult part of object oriented design.
• There is no 'magic formula' for object identification. It relies on the skill, experience

and domain knowledge of system designers.
• Object identification is an iterative process. You are unlikely to get it right first time.

Approaches to identification:
• Use a grammatical approach based on a natural language description of the system (used

in Hood OOD method).
• Base the identification on tangible things in the application domain.
• Use a behavioural approach and identify objects based on what participates in what

behaviour.
• Use a scenario-based analysis. The objects, attributes and methods in each scenario are

identified.

 b. Explain Generator based Reuse. (4)
Answer:

• Program generators involve the reuse of
standard patterns and algorithms.

• These are embedded in the generator and
parameterised by user commands. A program is then automatically generated.

• Generator-based reuse is possible when domain abstractions and their mapping to
executable code can be identified.

• A domain specific language is used to compose and control these abstractions.
Types of Program Generators

• Application generators for business data processing;
• Parser and lexical analyser generators for language processing;
• Code generators in CASE tools.

• Generator-based reuse is very cost-effective but its applicability is limited to a relatively
small number of application domains.

AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 13

It is easier for end-users to develop programs using generators compared to other component-
based approaches to reuse.

 Q.7 a. Explain the User Interface design process. (12)
Answer:
An iterative process where users interact with the designers and interface prototypes to decide
upon the features, organization and the look and feel of the system user interface.
The 3 core activities in this process are:

• User analysis. Understand what the users will do with the system;
• System prototyping. Develop a series of prototypes for experiment;
• Interface evaluation. Experiment with these prototypes with users.

User Analysis:
• If you don’t understand what the users want to do with a system, you have no realistic

prospect of designing an effective interface.
• User analyses have to be described in terms that users and other designers can understand.
• Scenarios where you describe typical episodes of use, are one way of describing these

analyses.
Requirements from the scenario:
• Users may not be aware of appropriate search terms so need a way of helping them choose

terms.
• Users have to be able to select collections to search.
• Users need to be able to carry out searches and request copies of relevant material.
Analysis Technique:

• Task analysis – Models the steps involved in completing a task.
• Interviewing and questionnaires –Asks the users about the work they do.
• Ethnography – Observes the user at work.

Program gener ator Generated pr ogramApplication
description

Application domain
kno wledge Database

AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 14

Interviewing:
• Design semi-structured interviews based on open-ended questions.
• Users can then provide information that they think is essential; not just information that you

have thought of collecting.
• Group interviews or focus groups allow users to discuss with each other what they do.
Ethnography:
• Involves an external observer watching users at work and questioning them in an unscripted

way about their work.
• Valuable because many user tasks are intuitive and they find these very difficult to describe

and explain.
• Also helps understand the role of social and organizational influences on work

User Interface Prototyping:

• The aim of prototyping is to allow users to gain direct experience with the interface.
• Without such direct experience, it is impossible to judge the usability of an interface.
• Prototyping may be a two-stage process:

o Early in the process, paper prototypes may be used;
o The design is then refined and increasingly sophisticated automated prototypes

are then developed.
Paper Prototyping Techniques:

• Work through scenarios using sketches of the interface.
• Use a storyboard to present a series of interactions with the system.
• Paper prototyping is an effective way of getting user reactions to a design proposal

Prototyping Techniques:
• Script-driven prototyping

o Develop a set of scripts and screens using a tool such as Macromedia Director. When
the user interacts with these, the screen changes to the next display.

• Visual programming
o Use a language designed for rapid development such as Visual Basic.

• Internet-based prototyping
o Use a web browser and associated scripts.

Retrieve pictures
from remote

libraries

Discover
possible
sources

Establish
search
terms

Search for
pictures

Request
photocopies

of found items

1 2 3 4.

Select
library

Log in to
catalogue

Search for
pictures

Modify
search terms

Record
relevant

items

3.1 3.2 3.3 3.4 3.5

Enter search
terms

Initiate
search

Review
results

3.3.1 3.3.2 3.3.3

do 1, 2,
3 until pictures found, 4

do 3.1, 3.2,
3.3 until pictures found,
3.4 if necessary , 3.5

do 3.3.1, 3.3.2, 3.3.3

AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 15

User Interface Evaluation:
• Some evaluation of a user interface design

should be carried out to assess its suitability.
• Full scale evaluation is very expensive and

impractical for most systems.
• Ideally, an interface should be evaluated against a usability specification. However, it is

rare for such specifications to be produced.
Simple Evaluation Techniques:
• Questionnaires for user feedback.
• Video recording of system use and subsequent tape evaluation.
• Instrumentation of code to collect information about facility use and user errors.
The provision of code in the software to collect on-line user feedback.

 b. What are fault tolerance actions? Explain them briefly (4)
Answer:

o Fault detection - The system must detect that a fault (an incorrect system state) has
occurred.

o Damage assessment -The parts of the system state affected by the fault must be
detected.

o Fault recovery -The system must restore its state to a known safe state.
o Fault repair -The system may be modified to prevent recurrence of the

fault. As many software faults are transitory, this is often
unnecessary.

 Q.8 a. Explain the planning involved in verification and validation. (5)
Answer:

• Careful planning is required to get the most out of testing and inspection processes.
• Planning should start early in the development process.
• The plan should identify the balance between static verification and testing.
• Test planning is about defining standards for the testing process rather than describing

product tests.

 b. Explain System Testing. (3)
Answer:

• Involves integrating components to create a system or sub-system.
• May involve testing an increment to be delivered to the customer.
• Two phases:

System
specif ication

System
design

Detailed
design

Module and
unit code
and test

Sub-system
integ ration
test plan

System
integration
test plan

Acceptance
test plan

Service Acceptance
test

System
integ ration test

Sub-system
integ ration test

Requir ements
specif ication

AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 16

o Integration testing - the test team have access to the system source code. The
system is tested as components are integrated.

o Release testing - the test team test the complete system to be delivered as a
black-box

 c. Explain COCOMO model briefly (8)
Answer:

• An empirical model based on project experience.
• Well-documented, ‘independent’ model which is not tied to a specific software

vendor.
• Long history from initial version published in 1981 (COCOMO-81) through various

instantiations to COCOMO 2.
• COCOMO 2 takes into account different approaches to software development, reuse,

etc.
Project

complexity
Formula Description

Simple PM = 2.4 (KDSI)1.05 × M Well-understood applications
developed by small teams.

Moderate PM = 3.0 (KDSI)1.12 × M More complex projects where
team members may have limited
experience of related systems.

Embedded PM = 3.6 (KDSI)1.20 × M Complex projects where the
software is part of a strongly
coupled complex of hardware,
software, regulations and
operational procedures.

COCOMO 2 incorporates a range of sub-models that produce increasingly detailed software
estimates.

The sub-models in COCOMO 2 are:
Application composition model. Used when software is composed from existing
parts.
Early design model. Used when requirements are available but design has not yet
started.
Reuse model. Used to compute the effort of integrating reusable components.
Post-architecture model. Used once the system architecture has been designed and
more information about the system is available.

 Q.9 a. Discuss ISO 9000 Standards for Quality Management. (8)
Answer:

• An international set of standards for quality management.
• Applicable to a range of organisations from manufacturing to service industries.
• ISO 9001 applicable to organisations which design, develop and maintain products.
• ISO 9001 is a generic model of the quality process that must be instantiated for each

organisation using the standard

AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 17

Documentation Standards:
o Document identification standards - How documents are uniquely identified.

o Document structure standards - Standard structure for project documents.
o Document presentation standards - Define fonts and styles, use of logos, etc.

• Document update standards
• Define how changes from previous versions are reflected in a document
Documentation Interchange Standards:
• Interchange standards allow electronic documents to be exchanged, mailed, etc.
• Documents are produced using different systems and on different computers. Even when

standard tools are used, standards are needed to define conventions for their use e.g. use of
style sheets and macros.

• Need for archiving. The lifetime of word processing systems may be much less than the
lifetime of the software being documented. An archiving standard may be defined to ensure
that the document can be accessed in future.

Management responsibility Quality system

Control of non-conforming products Design control

Handling, storage, packaging and
delivery

Purchasing

Purchaser-supplied products Product identification and traceability

Process control Inspection and testing

Inspection and test equipment Inspection and test status

Contract review Corrective action

Document control Quality records

Internal quality audits Training

Servicing Statistical techniques

Proj ect 1
quality plan

Proj ect 2
quality plan

Proj ect 3
quality plan

Proj ect quality
management

Organisa tion
quality man ual

ISO 9000
quality models

Organisa tion
quality pr ocess

is used to de velop instantia ted as

instantia ted as

documents

Suppor ts

AC63/AT63/AC114/AT114 SOFTWARE ENGINEERING DEC 2015

© IETE 18

 b. What are the attributes of Process improvement attributes. (4)
Answer:

Process characteristic Description

Understandability To what extent is the process explicitly defined and how easy is it to
understand the process definition?

Visibility Do the process activities culminate in clear results so that the progress
of the process is externally visible?

Supportability To what extent can CASE tools be used to support the process
activities?

Acceptability Is the defined process acceptable to and usable by the engineers
responsible for producing the software product?

Reliability Is the process designed in such a way that process errors are avoided or
trapped before they result in product errors?

Robustness Can the process continue in spite of unexpected problems?

Maintainability Can the process evolve to reflect changing organisational requirements
or identified process improvements?

Rapidity How fast can the process of delivering a system from a given
specification be completed?

 c. Write short notes on Configuration Management Planning. (4)
Answer:

• All products of the software process may have to be managed:
o Specifications;
o Designs;
o Programs;
o Test data;
o User manuals.

• Thousands of separate documents may be generated for a large, complex software
system.

• Defines the types of documents to be managed and a document naming scheme.
• Defines who takes responsibility for the CM procedures and creation of baselines.
• Defines policies for change control and version management.
• Defines the CM records which must be maintained.
• Describes the tools which should be used to assist the CM process and any limitations on

their use.
• Defines the process of tool use.
• Defines the CM database used to record configuration information.
• May include information such as the CM of external software, process auditing, etc.

