AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

Q.2 a. Explain the database management system and discuss the advantages of
database management system and when not to use a DBMS. (8)

Answer: Advantages of Database Management System:

1. Controlling Data Redundancy:

In non-database systems (traditional computer file processing), each application program has its
own files. In this case, the duplicated copies of the same data are created at many places. In
DBMS, all the data of an organization is integrated into a single database. The data is recorded at
only one place in the database and it is not duplicated. For example, the dean's faculty file and
the faculty payroll file contain several items that are identical. When they are converted into
database, the data is integrated into a single database so that multiple copies of the same data are
reduced to-single copy.

In DBMS, the data redundancy can be controlled or reduced but is not removed completely.
Sometimes, it is necessary to create duplicate copies of the same data items in order to relate
tables with each other.

By controlling the data redundancy, you can save storage space. Similarly, it is useful or
retrieving data from database using queries.

2. Data Consistency:

By controlling the data redundancy, the data consistency is obtained. If a data item appears only
once, any update to its value has to be performed only once and the updated value (new value of
item) is immediately available to all users.

If the DBMS has reduced redundancy to a minimum level, the database system enforces
consistency. It means that when a data item appears more than once in the database and is
updated, the DBMS automatically updates each occurrence of a data item in the database.

3. Data Sharing:

In DBMS, data can be shared by authorized users of the organization. The DBA manages the
data and gives rights to users to access the data. Many users can be authorized to access the same
set of information simultaneously. The remote users can also share same data. Similarly, the data
of same database can be shared between different application programs.

4. Data Integration:

In DBMS, data in database is stored in tables. A single database contains multiple tables and
relationships can be created between tables (or associated data entities). This makes easy to
retrieve and update data.

5. Integrity Constraints:

Integrity constraints or consistency rules can be applied to database so that the correct data can
be entered into database. The constraints may be applied to data item within a single record or
they may be applied to relationships between records.

6. Data Security:

Data security is the protection of the database from unauthorized users. Only the authorized
persons are allowed to access the database. Some of the users may be allowed to access only a
part of database i.e., the data that is related to them or related to their department. Mostly, the
DBA or head of a department can access all the data in the database. Some users may be
permitted only to retrieve data, whereas others are allowed to retrieve as well as to update data.
The database access is controlled by the DBA. He creates the accounts of users and gives rights

© IETE 1

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

to access the database. Typically, users or group of users are given usernames protected by
passwords.

Disadvantages of Database Management System (DBMS):

1. Cost of Hardware & Software:

A processor with high speed of data processing and memory of large size is required to run the
DBMS software. It means that you have to upgrade the hardware used for file-based system.
Similarly, DBMS software is also Very costly.

2. Cost of Data Conversion:

When a computer file-based system is replaced with a database system, the data stored into data
file must be converted to database files. It is difficult and time consuming method to convert data
of data files into database. You have to hire DBA (or database designer) and system designer
along with application programmers; Alternatively, you have to take the services of some
software houses. So a lot of money has to be paid for developing database and related software.
3. Cost of Staff Training:

Most DBMSs are often complex systems so the training for users to use the DBMS is required.
Training is required at all levels, including programming, application development, and database
administration. The organization has to pay a lot of amount on the training of staff to run the
DBMS.

4. Appointing Technical Staff:

The trained technical persons such as database administrator and application programmers etc
are required to handle the DBMS. You have to pay handsome salaries to these persons.
Therefore, the system cost increases.

5. Database Failures:

In most of the organizations, all data is integrated into a single database. If database is corrupted
due to power failure or it is corrupted on the storage media, then our valuable data may be lost or
whole system stops.

b. Discuss the centralized and client/server architectures for DBMS. (8)

Answer: In centralized database systems, the database system, application programs, and user-
interface all are executed on a single system and dummy terminals are connected to it. The
processing power of single system is utilized and dummy terminals are used only to display the
information. As the personal computers became faster, more powerful, and cheaper, the database
system started to exploit the available processing power of the system at the user’s side, which
led to the development of client/server architecture. In client/server architecture, the processing
power of the computer system at the user’s end is utilized by processing the user-interface on
that system.

A client is a computer system that sends request to the server connected to the network, and
a server is a computer system that receives the request, processes it, and returns the requested
information back to the client. Client and server are usually present at different sites. The end
users (remote database users) work on client computer system and database system runs on the
server. Servers can be of several types, for example, file servers, printer servers, web servers,
database servers, etc. The client machines have user interfaces that help users to utilize the
servers. It also provides users the local processing power to run local applications on the client
side.

© IETE 2

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

There are two approaches to implement client/server architecture. In the first approach, the user
interface and application programs are placed on the client side and the database system on the
server side. This architecture is called two-tier architecture. The application programs that
reside at the client side invoke the DBMS at the server side. The application program interface
standards like Open Database Connectivity (ODBC) and Java Database Connectivity (JDBC) are
used for interaction between client and server.

The second approach, that is, three-tier architectureis primarily used for web-based
applications. It adds intermediate layer known as application server (or web server) between
the client and the database server. The client communicates with the application server, which in
turn communicates with the database server. The application server stores the business rules
(procedures and constraints) used for accessing data from database server. It checks the client’s
credentials before forwarding a request to database server. Hence, it improves database security.

When a client requests for information, the application server accepts the request, processes it,
and sends corresponding database commands to database server. The database server sends the
result back to application server which is converted into GUI format and presented to the client.

Q.3 a. Draw an Entity-Relation (E-R) diagram for a company database. Assume
desired entities, attributes and relations for the company database by
yourself and mention all at the starting. (6)

Answer:
Figure 5.2

e -
- - e

. - _
o T, —l
g
=

e AL e S
T, o . g
e O T RS e
e — i
P
¢ edmma
S = e
-..1-._.,_‘_ [T &
'\-‘:-:_";u\gru.q_nu AT
- e - o - -
il - b " i
S E s] . et p— e
L e o e T
g = e —_ —
e e . e, - g:TN-n 3
o - = -~ i

@ The O=rps wu uy wamsay, fems . DLEED, TlirwmmssH : (SIS oy | e 1 Ealfem

b. What is the difference between weak and strong entity set? Explain with
example. 4)

Answer: An entity set that does not possess sufficient attributes to form a primary key is
called a weak entity set. One that does have a primary key is called a strong entity set.
For example,

© IETE 3

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

The entity set transaction has attributes transaction-number, date and amount.

Different transactions on different accounts could share the same number.
These are not sufficient to form a primary key (uniquely identify a transaction).
Thus transaction is a weak entity set.

For a weak entity set to be meaningful, it must be part of a one-to-many relationship set. This
relationship set should have no descriptive attributes.

The idea of strong and weak entity sets is related to the existence dependencies seen earlier.

Member of a strong entity set is a dominant entity. Member of a weak entity set is a
subordinate entity. A weak entity set does not have a primary key, but we need a means of
distinguishing among the entities. The discriminator of a weak entity set is a set of attributes
that allows this distinction to be made.

The primary key of a weak entity set is formed by taking the primary key of the strong entity
set on which its existence depends (see Mapping Constraints) plus its discriminator.

c. Define and explain the different types of relationships exist in the DBMS. (6)

Answer: Relationship and types of Relationships:

A relationship describes an association among entities. For example, a relationship exists
between customers and agents that can be described as follows: an agent can serve many
customers, and each customer may be served by one agent. Data models use three types of
relationships: one-to-many, many-to-many, and one-to-one. Database designers usually use the
shorthand notations 1:M or 1..*, M:N or *..*, and 1:1 or 1..1, respectively. (Although the M:N
notation is a standard label for the many-to-many relationship, the label M:M may also be used.)
The following examples illustrate the distinctions among the three.

One-to-many (1:M or 1..*) relationship:

A painter paints many different paintings, but each one of them is painted by only one painter.
Thus, the painter (the “one”) is related to the paintings (the “many”). Therefore, database
designers label the relationship “PAINTER paints PAINTING” as 1:M. (Note that entity names
are often capitalized as a convention, so they are easily identified.) Similarly, a customer (the
“one”) may generate many invoices, but each invoice (the “many”) is generated by only a single
customer. The “CUSTOMER generates INVOICE” relationship would also be labeled 1:M.

Many-to-many (M:N or *..*) relationship:

An employee may learn many job skills, and each job skill may be learned by many employees.
Database designers label the relationship “EMPLOYEE learns SKILL” as M:N. Similarly, a
student can take many classes and each class can be taken by many students, thus yielding the
M:N relationship label for the relationship expressed by “STUDENT takes CLASS.”

One-to-one (1:1 or 1..1) relationship:

A retail company’s management structure may require that each of its stores be managed by a
single employee. In turn, each store manager, who is an employee, manages only a single store.
Therefore, the relationship “EMPLOYEE manages STORE” is labeled 1:1.

© IETE 4

AT61/AC112/AT112

DATABASE MANAGEMENT SYSTEMS

a. Consider the relations:

Q.4

(6)

PROJECT (proj#,proj_name,chief_architect)

EMPLOYEE(emp#,emp_name)
ASSIGNED(proj#,emp#)

Use relational algebra to express the following queries:

(i) Get details of employees working on project COMP33.

(if) Get details of project on which employee with name ‘RAM’ is working.
(iii) find project name whose chief architect name is RAJ.

ANSWET 1) 7T emp, name(Gproj_name="compaz”(PROJECTx EMPLOYEE x ASSIGNED)

11) T proj_name' proj#(Gemp_name: “RAM"(PRO\]ECTX EMPLOYEE X ASSIGNED)

i) © proj_name(ﬁchief_architect=’"RAJ"(PRO\]ECT)

b. Differentiate between inner join and outer join.

Answer:
tables.

(4)

An inner join will only select records where the joined keys are in both specified

A left outer join will select all records from the first table, and any records in the second table

that match the joined keys.

A right outer join will select all records from the second table, and any records in the first table

that match the joined keys.

c. What is the basic differences between relational algebra and relational

calculus?
Answer:

(6)

IR o F - [b i A WEST T e T |
ol SR REL NAL CALCULUS =~

s e e s PSS

It is a procadural method of solving the queries.

Wae spacity the sequence of operations to parform
a paricular request.

It s prescriptive or rigid in nature |Le. i describes
steps 1o perorm a ghiven task.

The evaliuation of the gquery depends upon the
ordar of operations.

it specifies cperations performed on existing
relations to obtain naw ratations.

It is more closaly asscciatad with a programming
language.

The solution to the database access problam
using a relational a is obtained by stating
what is required and wha! are the steps to obtain
that Information,

It is used as a vehicie for impiementation of
Relational Calculus.

Relational algebra operators are used as a
yardstick for measuring the expressive power ol
any given language.

The querles are domain indepandent.

It iIs a non-procedural method of solving the
quarieas.

Waea spacily the only what is required without
botharing about the sequence of operatians to
periomm that requast.

It Is descriplive or stralghtforward in nature le.
descrice desired reault.

It does not depand on tha order of operations.

Operations are directly parformed on the relations
in form of fermulkas.

It is more closely associated with a natural
language.

The solution 1o the database access problem using
a relational calculus is obtained simply by stating
what Is required and letting the systam find the
ANSWEr.

Relational Calculus queries are converted into
equivalent relational algebra format by using
Codd’'s Reduction Algorithm and then It is
implemented with the healp of relational algebra
operators.

A language is sald 1o be complata It it is at least as
powarful as the calculus that is, f any relation
definable by some expression of tha calkulus is
also dafinabla by some exprassion of the language
in quastion.

The queries are domain dependent.

© IETE

DEC 2015

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

Q.5 a. Discuss the various normal forms upto BCNF for normalizing a relation with
suitable examples. (8)

Answer:
First Normal Form:

First normal form (INF or Minimal Form) is a normal form used in database normalization. A
relational database table that adheres to 1NF is one that meets a certain minimum set of criteria.
These criteria are basically concerned with ensuring that the table is a faithful representation of a
relation and that it is free of repeating groups. The concept of a "repeating group” is, however,
understood in different ways by different theorists. As a consequence, there is no universal
agreement as to which features would disqualify a table from being in 1NF.

Examples of tables (or views) that would not meet this definition of 1NF are:

* A table that lacks a unique key. Such a table would be able to accommodate duplicate rows, in
violation of condition

* A view whose definition mandates that results be returned in a particular order, so that the row-
ordering is an intrinsic and meaningful aspect of the view. This violates condition 1. The tuples
in true relations are not ordered with respect to each other.

» A table with at least one null able attributes. A null able attribute would be in violation of
condition 4, which requires every field to contain exactly one value from its column's domain. It
should be noted, however, that this aspect of condition 4 is controversial. It marks an important
departure from Codd's later vision of the relational model, which made explicit provision for
nulls.

Strictly speaking, NF1 addresses two issues:

1. A row of data cannot contain repeating groups of similar data (atomicity); and
2. Each row of data must have a unique identifier.

Second Normal Form:

Second normal form (2NF) is a normal form used in database normalization. 2NF was originally
defined by E.F. Codd[1] in 1971. A table that is in first normal form (INF) must meet additional
criteria if it is to qualify for second normal form. Specifically: a 1NF table is in 2NF if and only
if, given any candidate key and any attribute that is not a constituent of a candidate key, the non-
key attribute depends upon the whole of the candidate key rather than just a part of it.

In slightly more formal terms: a 1NF table is in 2NF if and only if none of its non-prime
attributes are functionally dependent on a part (proper subset) of a candidate key. (A non-prime
attribute is one that does not belong to any candidate key.) Note that when a 1NF table has no
composite candidate keys (candidate keys consisting of more than one attribute), the table is
automatically in 2NF.

Third Normal Form:

The third normal form (3NF) is a normal form used in database normalization. 3NF was
originally defined by E.F. Codd[1] in 1971. Codd's definition states that a table is in 3NF if and
only if both of the following conditions hold:

© IETE 6

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

The relation R (table) is in second normal form (2NF)

Every non-prime attribute of R is non-transitively dependent (i.e. directly dependent) on every
key of R. A non-prime attribute of R is an attribute that does not belong to any candidate key of
R.[2] A transitive dependency is a functional dependency in which X — Z (X determines Z)
indirectly, by virtue of X — Y and Y — Z (where it is not the case that Y — X).[3]

A 3NF definition that is equivalent to Codd's, but expressed differently, was given by Carlo
Zaniolo in 1982. This definition states that a table is in 3NF if and only if, for each of its
functional dependencies X — A, at least one of the following conditions holds:

X contains A (that is, X — A is trivial functional dependency), or
X is a superkey, or
A is a prime attribute (i.e., A is contained within a candidate key)

Zaniolo's definition gives a clear sense of the difference between 3NF and the more stringent
Boyce-Codd normal form (BCNF). BCNF simply eliminates the third alternative (A is a prime
attribute™).

Normalization beyond 3NF, Most 3NF tables are free of update, insertion, and deletion
anomalies. Certain types of 3NF tables, rarely met with in practice, are affected by such
anomalies; these are tables which either fall short of Boyce-Codd normal form (BCNF) or, if
they meet BCNF, fall short of the higher normal forms 4NF or 5NF.

b. Define the followings: 4
i) Multivalued dependencies
i) Join Dependencies

Answer:

i) Multivalued dependencies

Multivalued dependencies occur when the presence of one or more rows in a table implies
the presence of one or more other rows in that same table.

Examples:

For example, imagine a car company that manufactures many models of car, but always
makes both red and blue colors of each model. If you have a table that contains the model
name, color and year of each car the company manufactures, there is a multivalued
dependency in that table. If there is a row for a certain model name and year in blue, there
must also be a similar row corresponding to the red version of that same car.

ii) Join Dependency

A join dependency (JD) can be said to exist if the join of Ry and R, over Cis equal to
relation R. Where, R; and R, are the decompositions R1(A, B, C), and R, (C,D) of a given
relations R (A, B, C, D). Alternatively, R; and R, is a lossless decomposition of R. In other
words, *(A, B, C, D), (C, D) will be a join dependency of R if the join of the join’s attributes is
equal to relation R. Here, *(R1, Rz, R3,) indicates that relations Ry, Rz, R3 and so on are a
join dependency (JD) of R.

© IETE 7

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

c. Given R(A,B,C,D,E) with the set of FDs, 4)
F{AB—CD, ABC — E, C — A}
(1) Find any two candidate keys of R
(i) What is the normal form of R? Justify your answer.

Answer:

(i) To find two candidate keys of R, we have to find the closure of the set of attributes under
consideration and if all the attributes of R are in the closure then that set is a candidate key.
Now from the set of FD’s we can make out that B is not occurring on the RHS of any FD,
therefore, it must be a part of the candidate keys being considered otherwise it will not be in
the closure of any attribute set. So let us consider the following sets AB and BC.

Now (AB)+= ABCDE, CD are included in closure because of the FD AB — CD, and E is
included in closure because of the FD ABC — E.

Now (BC)+= BCAED, A is included in closure because of the FD C — A, and then E is
included in closure because of the FD ABC — E and lastly D is included in closure because of
the FD AB — CD.

(ii) The prime attributes are A, B and C and non-prime attributes are D and E.

A relation scheme is in 2NF, if all the non-prime attributes are fully functionally dependent on
the relation key(s). From the set of FDs we can see that the non-prime attributes (D,E) are
fully functionally dependent on the prime attributes, therefore, the relation is in 2NF.

A relation scheme is in 3NF, if for all the non-trivial FDs in F+ of the form X — A, either

X is a superkey or A is prime. From the set of FDs we see that for all the FDs, this is satisfied,
therefore, the relation is in 3NF.

A relation scheme is in BCNF, if for all the non-trivial FDs in F+ of the form X— A, X is a
superkey. From the set of FDs we can see that for the FD C — A, this is not satisfied as LHS
is not a superkey, therefore, the relation is not in BCNF. Hence, the given relation scheme is
in 3NF.

Q.6 a. Discuss various indexing attributes based on indexing. (6)

Answer: Indexing is defined based on its indexing attributes. Indexing can be one of the
following types:

Primary Index: If index is built on ordering 'key-field' of file it is called Primary Index.
Generally it is the primary key of the relation.

Secondary Index: If index is built on non-ordering field of file it is called Secondary Index.
Clustering Index: If index is built on ordering non-key field of file it is called Clustering Index.

Ordering field is the field on which the records of file are ordered. It can be different from
primary or candidate key of a file.

b. What do you understand by RAID? Explain RAID Level5. (5)

Answer: RAID stands for redundant array of independent disks. The name indicates that the disk
drives are independent, and are multiple in number. How the data is distributed between these
drives depends on the RAID level used.

The main advantage of RAID, is the fact that, to the operating system the array of disks can be
presented as a single disk.

© IETE 8

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

RAID is fault tolerant because in most of the RAID level's data is redundant in multiple disks, so
even if one disk fails, or even two sometimes, the data will be safe and the operating system will
not be even aware of the failure. DATA loss is prevented due to the fact that data can be
recovered from the disk that is not failed.

RAID level 5 uses striping, so data is spread across number of disks used in the array, and also
provides redundancy with the help of parity.

RAID 5 is a best cost effective solution for both performance and redundancy. Striped method of
storing data always improves performance, and parity used in this level of raid is distributed
parity.

Minimum number of disks required for RAID 5 is 3, and maximum can go upto 32(depending on
the RAID controller used.)

One important fact to note is that, reading rate in RAID 5 is much better than writing. This is
because reading can be done, by a combined rate of all disks used.

As a reference you can have a look at the distributed parity diagram shown in the Parity in Raid
section of this article.

c. Define two-phase locking protocol. (5)

Answer: In databases and transaction processing, two-phase locking (2PL) is a concurrency
control method that guarantees serializability.!' It is also the name of the resulting set
of database transaction schedules (histories). The protocol utilizes locks, applied by a transaction
to data, which may block (interpreted as signals to stop) other transactions from accessing the
same data during the transaction's life.

By the 2PL protocol locks are applied and removed in two phases:
1. Expanding phase: locks are acquired and no locks are released.
2. Shrinking phase: locks are released and no locks are acquired.

Q.7 a. Describe the nested-loop join and block-nested loop join. Compare them.(8)

Answer: [1] Nested Loop Join
Number of tuples in R * Number of Blocks in S + Number of Blocks in R.
Here choosing relation with small number of tuples as outer relation R
400 * 80 + 20
therefore ans :[c] 32020

[2]Block Nested Loop Join

Number of Blocks in R * Number of Blocks in S + Number of Blocks in R
Here choosing relation with small number of Blocks as outer relation R
20 * 80 + 20 = 1620

difference : 32020 — 1620

therefore ans:[b] 30400

b. Draw a state diagram and discuss the typical states that a transaction goes
through during execution. (3)

Answer:

© IETE 9

http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Transaction_processing
http://en.wikipedia.org/wiki/Concurrency_control
http://en.wikipedia.org/wiki/Concurrency_control
http://en.wikipedia.org/wiki/Serializability
http://en.wikipedia.org/wiki/Two-phase_locking#cite_note-Bern1987-1
http://en.wikipedia.org/wiki/Two-phase_locking#cite_note-Bern1987-1
http://en.wikipedia.org/wiki/Database_transaction
http://en.wikipedia.org/wiki/Schedule_(computer_science)
http://en.wikipedia.org/wiki/Lock_(computer_science)

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS

DEC 2015

A transaction is an atomic unit of work that is either completed in its entirety or not
done at all, For recovery purposes, the system needs to keep track of when the trans-
ction starts, terminates, and commits or aborts (see Section 17.2.3). Therefore, the
ecovery manager keeps track of the following operations:

® BEGIN_TRANSACTION. This marks the beginning of transaction execution.

® READ OR WRITE. These specify read or write operations on the database
items that are executed as part of a transaction.

- m END_TRANSACTION. This specifies that READ and WRITE transaction
operations have ended and marks the end of transaction execution.

However, at this point it may be necessary to check whether the changes
introduced by the transaction can be permanently applied to the database
(committed) or whether the transaction has to be aborted because it violates
serializability (see Section 17.5) or for some other reason.

® COMMIT_TRANSACTION. This signals a successful end of the transaction so
‘that any changes (updates) executed by the transaction can be safely
committed to the database and will not be undone. :

® ROLLBACK {or ABORT). This signals that the transaction has ended unsuc-
~ cessfully, so that any changes or effects that the transaction may have applied
to the database must be undone.

. Figure 17.4 shows a state transition diagram that describes how a transaction moves
_ through its execution states. A transaction goes into an active state immediately
| Jfter it starts execution, where it can issue READ and WRITE operations. When the
transaction ends, it moves to the partially committed state. At this point, some

recovery protocols need to ensure that a system failure will not result in an inability
' to record the changes of the transaction permanently (usually by recording changes
' in the system log, discussed in the next section).” Once this check is successful, the
| transaction is said to have reached its commit point and enters the committed state.
| Commit points are discussed in more detail in Section 17.2.3. Once a transaction is
| committed, it has concluded its execution successfully and all its changes must be

" recorded permanently in the database.

TEETERE

i

i

However, a transaction can go to the failed state if one of the checks fails or if
~ the transaction is aborted during its active state. The transaction may then have to
be rolled back to undo the effect of its WRITE operations on the database. The ter-
minated state corresponds to the transaction leaving the system. The transaction
information that is maintained in system tables while the transaction has been

5, Optimistic concurrency control (see-Seétion 18.4) also requires that certain checks are made at this
point to ensure that the transaction did not interfere with other executing transactions.

S S R
Blargen L Evucd
i i i s DS] oa i = AT
IraARRCinn s, 8 - s e
s - Pa:|.;|1:,'m—nl.|led —I-- G-:l:ll-lllllll--l
Flgurs 174 ¥ - -
S Ly P i el Akt A b
T ol bl ngg B
SINES. HOr TTET S Lty e ¥ = i .
e u o = Faabed = Termenadesd
MITITLNE IS TETTFy il when the transaction tTermimates. Failed or abarted tran
may be resnrroed later—either aatomatically or afler beimg resubimicied by o

EESaET —as Terars] news pro P 1 HHS

© IETE 10

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

c. Explain the ACID properties of a transaction. (5)

Answer: Database ACID (Atomicity, Consistency, Isolation, Durability)
Properties

There are a set of properties that guarantee that database transactions are processed reliably,
referred to as ACID (Atomicity, Consistency, Isolation, Durability).

Atomicity

Atomicity refers to the ability of the database to guarantee that either all of the tasks of a
transaction are performed or none of them are. Database modifications must follow an all or
nothing rule. Each transaction is said to be atomic if when one part of the transaction fails, the
entire transaction fails.

Consistency

The consistency property ensures that the database remains in a consistent state before the start
of the transaction and after the transaction is over (whether successful or not). For example, in a
storefront there is an inconsistent view of what is truly available for purchase if inventory is
allowed to fall below 0, making it impossible to provide more than an intent to complete a
transaction at checkout time. An example in a double-entry accounting system illustrates the
concept of a true transaction. Every debit requires an associated credit. Both of these happen or
neither happen.

A distributed data system is either strongly consistent or has some form of weak consistency.
Once again, using the storefront example, a database needs to provide consistency and isolation,
so that when one customer is reducing an item in stock and in parallel is increasing the basket by
one, this is isolated from another customer who will have to wait while the data store catches up.
At the other end of the spectrum is BASE (Basically Available Soft-state Eventual consistency).

Weak consistency is sometimes referred to as eventual consistency, the database eventually
reaches a consistent state. Weak consistency systems are usually ones where data is replicated,;
the latest version is sitting somewhere in the cluster, older versions are still out there. Eventually
all nodes will see the latest version.

Isolation

Isolation refers to the requirement that other operations cannot access or see the data in an
intermediate state during a transaction. This constraint is required to maintain the performance as
well as the consistency between transactions in a database. Thus, each transaction is unaware of
another transactions executing concurrently in the system.

Durability

Durability refers to the guarantee that once the user has been notified of success, the transaction
will persist, and not be undone. This means it will survive system failure, and that the database
system has checked the integrity constraints and won't need to abort the transaction. Many
databases implement durability by writing all transactions into a transaction log that can be
played back to recreate the system state right before a failure. A transaction can only be deemed
committed after it is safely in the log.

Durability does not imply a permanent state of the database. Another transaction may overwrite
any changes made by the current transaction without hindering durability.

© IETE 11

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

Q.8 (For Current Scheme student i.e. AC61/AT61)
a. Compare wait-die deadlock prevention scheme with wait-wound scheme.(8)

Answer: Wait-die scheme: It is a non-preemptive technique for deadlock prevention. When
transaction T; requests a data item currently held by T;, T; is allowed to wait only if it has a
timestamp smaller than that of T; (That is T; is older than T;), otherwise T; is rolled back (dies)

For example:

Suppose that transaction Ty, Tos, T24 have time-stamps 5, 10 and 15 respectively. If T,,requests
a data item held by T3 then T, will wait. If T4 requests a data item held by T3, then Ty, will
be rolled back.

Wound-wait scheme: It is a preemptive technique for deadlock prevention. It is a counterpart to
the wait-die scheme. When Transaction T; requests a data item currently held by T;, Tiis
allowed to wait only if it has a timestamp larger than that of T;, otherwise T; is rolled back (Tj is
wounded by T;)

For example:

Suppose that Transactions Ta, Tas T24 have time-stamps 5, 10 and 15 respectively . If
T,orequests a data item held by T3, then data item will be preempted from T,z and T3 will be
rolled back. If T4 requests a data item held by T3, then T4 will wait.

b. Explain the differences between a file-oriented system and a database
oriented system. (8)

Answer: Computer-based data processing systems were initially used for scientific and
engineering calculations. With increased complexity of business requirements, gradually they
were introduced into the business applications. The manual method of filing systems of an
organisation, such as to hold all internal and external correspondence relating to a project or
activity, client, task, product, customer or employee, was maintaining different manual
folders. These files or folders were labelled and stored in one or more cabinets or almirahs
under lock and key for safety and security reasons. As and when required, the concerned
person in the organisation used to search for a specific folder or file serially starting from the
first entry. Alternatively, files were indexed to help locate the file or folder more quickly.
Ideally, the contents of each file folder were logically related. For example, a file folder in a
supplier’s office might contain customer data; one file folder for each customer. All data in
that folder described only that customer’s transaction. Similarly, a personnel manager might
organise personnel data of employees by category of employment (for example, technical,
secretarial, sales, administrative, and so on). Therefore, a file folder leveled ‘technical” would
contain data pertaining to only those people whose duties were properly classified as
technical.

The manual system worked well as data repository as long as the data collection were relatively
small and the organisation’s managers had few reporting requirements. However, as the
organisation grew and as the reporting requirements became more complex, it became difficult in
keeping track of data in the manual file system. Also, report generation from a manual file
system could be slow and cumbersome. Thus, this manual filing system was replaced with a
computer-based filing system. File-oriented systems were an early attempt to computerize the

© IETE 12

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

manual filing system that we are familiar with. Because these systems performed normal record-
keeping functions, they were called data processing (DP) systems. Rather than establish a
centralised store for organisation’s operational data, a decentralised approach was taken, where
each department, with the assistance of DP department staff, stored and controlled its own data.

Q.8 (For New Scheme student i.e. AC112/AT112)
a. Explain generalization and specialization with suitable examples. (6)

Answer:

Spe.cialization is the process of defining a set of subclasses of an entity type; this
entity type is called the superclass of the specialization. The set of subclasses that
forms a specialization is defined on the basis of some distinguishing characteristic
of the entities in the superclass. For example, the set of subclasses {SECRETARY,
ENGINEER, TECHNICIAN} is a specialization of the superclass EMPLOYEE that
distinguishes among employee entities based on the job type of each employee
entity. We may have several specializations of the same entity type based on
different distinguishing characteristics. For example, another specialization of the
EMPLOYEE entity type may yield the set of subclasses [SALARIED_EMPLC}YEE,
HOURLY_EMPLOYEE}; this specialization distinguishes among employees based on
the merhod of pay.

]?igure 4.1 shows how we represent a specialization diagrammatically in an EER
diagram. The subclasses that define a specialization are attached by lines to a circle
that represents the specialization, which is connected to the superclass. The subset
syntbol on each line connecting a subclass to the circle indicates the direction of the

erclass/subclass relationship.S Attributes that apply only to entities of a particu-
' ubclass—such as TypingSpeed of SECRETARY—are attached to the rei:ta.ngle
fpiesenting that subclass. These are called specific attributes (or loFal att‘rlhutes)
Withe subclass. Similarly, a subclass can participate in specific relationship types,
adias the HOURLY EMPLOYEE subclass participating in the BELOI:%GS_TO
ttonship in Figure 4.1. We will explain the d symbol in the circles of Figure 4.1
d dditional EER diagram notation shortly.
stances that belong to subclasses of the {SECRETARY,

BIGINEER, TECHNICIAN} specialization, Again, notice that an entity that be_lopgs to
Qstbclass represents the same real-world entity as th+e entity coqnected to it in-the
L EIPLOYEE superclass, even though the same entity 18 shown twice; for example, ¢,
Hsshown in both EMPLOYEE and SECRETARY in Figure 4.2. As the figure suggests,
"f."uperciassi subclass relationship such as EM PLOYEE/SECRETARY somewhat

figire 4.2 shows a few entity in

© IETE 13

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

Figure 4.2
SECARY . ez " Instances of a

i

- specialization,

EMPLOYEE

resembles a 1:1 relationship at the instance level (see Figure 3.12). The main
ence is that in a 1:1 relationship two distinct entities are related, whereas in a supers
class/subclass relationship the entity in the subclass is the same real-world entity# 3
the entity in the superclass but is playing a specialized role—for example, il
EMPLOYEE specialized in the role of SECRETARY, or an EMPLOYEE specialized if
the role of TECHNICIAN.

There are two main reasons for including class/subclass relationships and specializit
tions in a data model. The first is that certain attributes may apply to some but nd
all entities of the superclass. A subclass is defined in order to group the entities it
which these attributes apply. The members of the subclass may still share the majort
ity of their attributes with the other members of the superclass. For example, iit
Figure 4.1 the SECRETARY subclass has the specific attribute Typing_speed, wherest
the ENGINEER subclass has the specific attribute Eng_type, but SECRETARY anl’
ENGINEER share their other inherited attributes from the EMPLOYEE entity type.

The second reason for using subclasses is that some relationship types may bet
participated in only by entities that are members of the subclass. For example, it
only HOURLY_EMPLOYEES can belong to a trade union, we can represent that fags
by creating the subclass HOURLY_EMPLOYEE of EMPLOYEE and relating the®
subclass to an entity type TRADE_UNION via the BELONGS_TO relationship type,a
illustrated in Figure 4.1. ' : '

In summary, the specialization process allows us to do the following:
® Define a set of subclasses of an entity type

Establish additional specific attributes with each subclass

#® Establish additional specific relationship types between each subclass and.:
other entity types or other subclasses :

© IETE 14

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

4.2.2 Generalization

We can thi . :
arhong Se:féfa?iz Sive:se P?‘O(:ZSS of abstraction in which we suppress the differences
. . ¥ types, identify their comm '
into a . 1 on features, and ge i _
exan‘.lpsllen%:f;sl-lg E:rc;lasS of which the original entity types are SPecialgsﬁil:l‘::: ¥ thlf'm
they have sev ! elr the entity types CAR and TRUCK shown in Figure 4.3(a) Ees. .
VEHICLE, as Sira common attributes, they can be generalized into the enti et
generaliz:ed Su(;:;lclllal Fl%;llzri_ei 23(5). Both CAR and TRUCK are now SubCIaSSé;YOgE{:!
SS LE. We use the term gene i i
: - ral -
process of defining a generalized entity type from t heggiven 61:3:;2:;;25 refer to the

Notice that the generalizati
zation process can be viewed as bei i
the ge : g eing he i

?[fei:}}:liszl;i‘j:lahzafﬁon process. Hence, in Figure 4.3 we can %iel::i%iril?auﬁ;ﬂglnverse
pecialsal :nsfm?jfaE};I(:‘,_LE, Father than viewing VEHICLE as a generali.:zation cl)(t} Si;
‘:;ECRETAR\; e p: ;Yé i1.‘;:1 Figure 4.1 we can view EMPLOYEE as a generalization of
SEORET gen,e TECHNIC afé 11;;1 l_Er\lJ’GII\fEER. A diagrammatic notation to distingui;)h

I geners cilalization is used in some desi i
Jetwesn gen zat DE e design method

pointing to the gener ql1zed superclass represents a geieralizatio{élo‘iifs}ig

(a)

No_of_passengers

il

, . i e
Vehicle_id -
License_plate_no

(b)

No_of_axles:

Figure 4.3

Generalization. (2) Two entity types, CAR and TRUCK.
(b) Generalizing CAR and TRUCK into the superclass VEHICLE.

arrows pointing to the specialized subclasses represent a specialization. We will not
use this notation because the decision as to which process is more appropriate ina
particular situation is often subjective. Appendix A gives some of the suggested

alternative diagrammatic notations for schema diagrams and class diagrams.

So far we have introduced the concepts of subclasses and superclass/subclass
relationships, as well as the specialization and generalization processes. In general, a
superclass or subclass represents collection of entities of the same type and hence
also describes an entity type; that is why superclasses and subclasses are shown in
rectangles in EER diagrams, like entity types. Next, we discuss the properties of

specializations and generalizations in more detail. //’// :

© IETE
15

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

b. List the advantages of distributed database management system. 5)

Answer:
“95.1.2 Advantages of Distributed Databases

Distributed database management has been proposed for various reasons ranging
from organizational decentralization and economical processing to greater autonomy.

We highlight some of these advantages here.

1. Management of distributed data with different levels of transparency.
Ideally, a DBMS should be distribution transparent in the sense of
hiding the details of where each file (table, relation) is physically stored

Figure 25.1 ;
Some different database system architectures. (a) Shared nothing architecture. (b) A hetworked

architecture with a centrali i ' '
archflecture central ized database at orje.of_ the sites. (¢) A truly distributed database

@ '
Computer System 1 Computer System 2

- Communications

Network

Communications
Network

© IETE 16

AT61/AC112/AT112

DATABASE MANAGEMENT SYSTEMS

DEC 2015

within the system. Consider the company database in Figure 5.5 that we have
been discussing throughout the book. The EMPLOYEE, PROJECT, and
WORKS_ON tables may be fragmented horizontally (that is, into sets of
rows, as we shall discuss in Section 25.2) and stored with possible replication
as shown in Figure 25.2. The following types of transparencies are possible:

Distribution or network transparency. This refers to freedom for the
user from the operational details of the network, It may be divided into
location transparency and naming transparency. Location transparency
refers to the fact that the command used to perform a task is indepen-
dent of the location of data and the location of the system where the
command was issued. Naming transparency implies that once a name is
specified, the named objects can be accessed unambiguously without
additional specification.

Replication transparency. As we show in Figure 25.2, copies of data may

be stored at multiple sites for better availability, performance, and relia-

bility. Replication transparency makes the user unaware of the existence -

of copies. ; _ _ il
Fragmentation transparency. Two types of fragmentation are possible.

Horizontal fragmentation distributes a relation into sets of tuples (rows).

Data distribution and replication among distribut

EMPLOYEES Al

Figure 25.2
ed databases.

EMPLOYEES San Francisco PROJECTS Al .
and Los Angeles WORKS_ON Al EMPLOYEES New York

PROJECTS San Francisco r T PROJECTS Al
WORKS_ON San Francisco WORKS_ON New York
employees

employees

EMPLOYEES Los Angeles
PROJECTS

WORKS_ON Los Angeles
' employees

© IETE

Los Angeles and
San Francisco

Communications
Network

T NewYork |

EMPLOYEES Atlanta
PROJECTS Atlanta

WORKS_ON Atlanta

employees

17

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

Vertical fragmentation distributes a relation into subrelations where
each subrelation is defined by a subset of the columns of the original
relation. A global query by the user must be transformed into several
fragment queries. Fragmentation transparency makes the user unaware of
the existence of fragments.

® Other transparencies include design transparency and execution trans-
parency—referring to freedom from knowing how the distributed data-
base is designed and where a transaction executes,

2. Increased reliability and availability. These are two of the most common
potential advantages cited for distributed databases, Reliability is broadly
defined as the probability that a system is running (not down) at a certain
time point, whereas availability is the probability that the system is contin-
uously available during a time interval. When the data and DBMS software
are distributed over several sites, one site may fail while other sites continue
to operate. Only the data and software that exist at the failed site cannot be
accessed. This improves both reliability and availability, Further improve-
ment is achieved by judiciously replicating data and software at more than
one site. In a centralized system, failure at a single site makes the whole
system unavailable to all users. In a distributed database, some.of the data
may be unreachable, but users may still be able to access other parts of the
database, - L

3. Improved performance. A distributed DBMS fragments the database by
keeping the data closer to where it is needed most. Data localization reduces
the contention for CPU and I/O services and simultaneously reduces access
delays involved in wide area networks. When a large database is distributed
over multiple sites, smaller databases exist at each site. As a result, local
queries and transactions accessing data at a single site have better perfor- -
mance because of the smaller local databases. In addition, each site has a
smaller number of transactions executing than if all transactions are submit-
ted to a single centralized database. Moreover, interquery and intraquery
parallelism can be achieved by executing multiple queries at different sites,
or by breaking up a query into a number of subqueries that execute in
parallel. This contributes to improved performance,

4. Easier expansion. In a distributed environment, expansion of the system in
terms of adding more data, increasing database sizes, or adding more proces-

sors is much easier. Y
/"

18
© IETE

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

c. Why is data replication useful in distributed DBMS? (5)

Answer:

;ﬁeplication is useful in improving the availability of data. The most extreme case is
replication of the whole database at every site in the distributed system, thus creating
a fully replicated distributed database. This can improve availability remarkably
because the system can continue to operate as long as at least one site is up. It also
improves performance of retrieval for global queries because the results of such
queries can be obtained locally from any one site; hence, a retrieval query can be
processed at the local site where it is submitted, if that site includes a server module.
The disadvantage of full replication is that it can slow down update operations
drastically, since a single logical update must be performed on every copy of the
database to keep the copies consistent. This is especially true if many copies of
the database exist. Full replication makes the concurrency control and recovery
techniques more expensive than they would be if there was no replication, as we will
see in Section 25.5. : ' A

The other extreme from full replication involves having no replication—that is,
each fragment is stored at exactly one site. In this case, all fragments must be
disjoint, except for the repetition of primary keys among vertical (or mixed) frag-
ments. This is also called nonredundant allocation. :

Between these two extremes, we have a wide spectrum of partial replication of the
data—that is, some fragments of the database may be replicated whereas others may
not. The number of copies of each fragment can range from one up to the total
number of sites in the distributed system. A special/ case of partial replication is
occurring heavily in applications where mobile workers—such as sales forces, finan-
cial planners, and claims adjustors—carry partially replicated databases with them
on laptops and PDAs and synchronize them periodically with the server database.”
A description of the replication of fragments is sometimes called a replication
schema. !

Fach fragment—or each copy of a fragment—must be assigned to a particular site
in the distributed system. This process is called data distribution (or data alloca-
tion). The choice of sites and the degree of replication depend on the performance
and availability goals of the system and on the types and frequencies of transactions
submitted at each site. For example, if high availability is required and transactions
can be submitted at any site and if most transactions are retrieval only, a fully repli-
cated database is a good cheice. However, if certain transactions that access particu-
lar parts of the database are mostly submitted at a particular site, the corresponding
set of fragments can be allocated at that site only. Data that is accessed at multiple
sites can be replicated at those sites. If many updates are performed, it may be useful

to limit replication. Finding an optimal or even a good solution to distributed data
allocation is a complex optimization problem. /"

© IETE 19

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

Q.9 (For Current Scheme student i.e. AC61/AT61)
a. Discuss the concept of serializability. What is a conflict & View Serializable
schedule? (6)

Answer: DBMS must control concurrent execution of transactions to ensure read consistency,
i.e., to avoid dirty reads etc.

A (possibly concurrent) schedule S is serializable if it is equivalent to a serial schedule S, i.e.,
S has the same result database state as S’.

Conflict-serializability is defined by equivalence to a serial schedule (no overlapping
transactions) with the same transactions, such that both schedules have the same sets of
respective chronologically ordered pairs of conflicting operations (same precedence relations of
respective conflicting operations).

View-serializability of a schedule is defined by equivalence to a serial schedule (no overlapping
transactions) with the same transactions, such that respective transactions in the two schedules
read and write the same data values ("view" the same data values).

b. What is the Purpose of a 2 Phase Commit protocol? How does it work?(6)

Answer: A commit operation is, by definition, an all-or-nothing affair. If a series of operations
bound as a transaction cannot be completed, the rollback must restore the system (or cooperating
systems) to the pre-transaction state.

In order to ensure that a transaction can be rolled back, a software system typically logs each
operation, including the commit operation itself. A transaction/recovery manager uses the log
records to undo (and possibly redo) a partially completed transaction.

The commit process proceeds as follows:

Phase 1
. Each participating resource manager coordinates local operations and forces all log
records out:
. If successful, respond "OK"
. If unsuccessful, either allow a time-out or respond "OOPS"
Phase 2
. If all participants respond "OK":
. Coordinator instructs participating resource managers to "COMMIT"
Participants complete operation writing the log record for the commit
Otherwise:
. Coordinator instructs participating resource managers to "ROLLBACK"
. Participants complete their respective local undos
In order for the scheme to work reliably, both the coordinator and the participating resource
managers independently must be able to guarantee proper completion, including any necessary
restart/redo operations. The algorithms for guaranteeing success by handling failures at any stage
are provided in advanced database texts.

c. Define the followings: (4)
1) Multiple granularity
ii) Intention lock mode

© IETE 20

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

Answer: i) Multiple Granularity

Allow data items to be of various sizes and define a hierarchy of data granularities, where the
small granularities are nested within larger ones

m Can be represented graphically as a tree (but don't confuse with tree-locking protocol)
mWhen a transaction locks a node in the tree explicitly, it implicitly locks all the node's
descendents in the same mode.

m Granularity of locking (level in tree where locking is done):

e fine granularity (lower in tree): high concurrency, high locking overhead

e coarse granularity (higher in tree): low locking overhead, low concurrency

ii) Intention lock mode

In addition to S and X lock modes, there are three additional lock modes with multiple
granularity:

eintention-shared (IS): indicates explicit locking at a lower level of the tree but only with
shared locks.

eintention-exclusive (IX): indicates explicit locking at a lower level with exclusive or
shared locks

eshared and intention-exclusive (SIX): the subtree rooted by that node is locked

explicitly in shared mode and explicit locking is being done at a lower level with exclusive-
mode locks.

mintention locks allow a higher level node to be locked in S or X mode without having

to check all descendent nodes.

Q.9 (For New Scheme student i.e. AC112/AT112)
a. Discuss the algorithm for SELECT and JOIN operations. (8)

Answer:
15.3.1 Implementing the SELECT Operation

There are many options for executing a SELECT operation; some depend on the
file having specific access paths and may apply only to certain types of selection
conditions. We discuss some of the algorithms for implementing SELECT in this
section, We will use the following operations, specified on the relational database of
Figure 5.5, to illustrate our discussion:

OP1: Gggn 123456739 (EMPLOYEE)
OP2: Gpnumber > 5 (DEPARTMENT)
OP3: Opp, - 5 (EMPLOYEE)
OP4: Opno =5 AND Salary > 30000 AND Sex = ‘7 (EMPLOYEE)
OPS: Opgen=123456789" AND Pro =10(VWWORKS_ON)
Search Methods for Simple Selection. A number of search algorithms are

possible for selecting records from a file. These are also known as file scans, because
they scan the records of a file to search for and retrieve records that satisfy a

© IETE 21

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS

DEC 2015

selection condition.? If the search algorithm involves the use of an index, the index
search is called an index scan. The following search methods (S1 through S6) are

 examples of some of the search algorithms that can be used to implement a select
operation: ' '

@ S1—Linear search (brute force). Retrieve every record in the file, and test
whether its attribute values satisfy the selection condition.

S2—Binary search. If the selection condition involves an equality compari-

~ son on a key attribute on which the file is ordered, binary search—which is
more efficient than linear search—can be used. An example is OP1 if Ssn is
the ordering attribute for the EMPLOYEE file.?

S3—Using a primary index (or hash key). If the selection condition
~ involves an equality comparison on a key attribute with a primary index (or
hash key)—for example, Ssn = 123456789 in OP1—use the primary index
(or hash key) to retrieve the record. Note that this condition retrieves a
single record (at most). ! :
S4—Usinga primary index to retrieve multiple records. If the comparison
condition is >, >=, <, or <= on a key field with a primary index—for
example, Dnumber > 5 in OP2—use the index to find the record satisfying the

corresponding equality condition (Dnumber = 5), then retrieve all sub-

sequent records in the (ordered) file. For the condition Dnumber < 5, retrieve
all the preceding records. !

w $5—Using a clustering index to retrieve multiple records. If the selection
condition involves an equality comparison on a nonkey attribute with a
clustering index—for example, Dno = 5 in OP3—use the index to retrieve all
the records satisfying the condition.

= S6—Using a secondary (B*-tree) index on an equality comparison. This
search method can be used to retrieve a single record if the indexing field isa
key (has unique values) or to retrieve multiple records if the indexing field is
not a key. This can also be used for comparisons involving >, >=, <, o1 <=.

In Section 15.8, we discuss how to develop formulas that estimate the access cost of
these search methods in terms of number of block accesses and access time. Method
S1 applies to any file, but all the other methods depend on having the appropriate
access path on the attribute used in the selection condition, Methods 54 and 56 can
be used to retrieve records in a certain range—Tfor example, 30000 <= Salary <=
35000, Queries involving such conditions are called range queries.

Search Methods for Complex Selection. If a condition of a SELECT operation
is a conjunctive condition—that is, if it is made up of several simple conditions

4, A selection operation is sometimes called a filter, since it filters aut the records in the file that do not
satisfy the selection condition.

5. Generally, binary search is not used in-database search because ordered files are not used unless
they also have a carresponding primary index.

© IETE 27

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

connected with the AND logical connective such as OP4 above—the DBMS can use
the following additional methods to implement the operation:

S57—Conjunctive selection using an individual index. If an attribute
involved in any single simple condition in the conjunctive condition has an
access path that permits the use of one of the Methods S2 to S6, use that
condition to retrieve the records and then check whether each retrieved
record safisfies the remaining simple conditions in the conjunctive condition.,

@ S8—Conjunctive selection using a composite index. If two or more attrib-
utes are involved in equality conditions in the conjunctive condition and a
composite index (or hash structure) exists on the combined fields—for
example, if an index has been created on the composite key (Essn, Pno) of the
WORKS_ON file for OP5—we can use the index direcﬂy.

® §$9—Conjunctive selection by intersection of record pointers.® If second- '
ary indexes {or other access paths) are available on more than oné of the
fields involved in simple conditions in the conjunctive condition, and if the
indexes include record pointers (rather than block pointers), then each index
can be used to retrieve the set of record pointers that satisfy the individual
condition. The intersection of these sets of record pointers gives the record
pointers that satisfy the conjunctive condition, which are then used to
retrieve those records directly. If only some of the conditions have secondary
indexes, each retrieved record is further tested to determine whether it
 satisfies the remaining conditions.” -

Whenever a single condition specifies the selection—such as OP1 , OP2, or OP3—
we can only check whether an access path exists on the attribute involved in that
condition. If an access path exists, the method corresponding to that access path is
used; otherwise, the brute force linear search approach of method S1 can be used.
Query optimization for a SELECT operation is needed mostly for conjunctive select
conditions whenever ore than one of the attributes involved in the conditions have
an access path. The optimizer should choose the access path that retrieves the fewest
records in the most efficient way by estimating the different costs (see Section 15.8)
and choosing the method with the least estimated cost.

When the optimizer is choosing between multiple simple conditions in a conjunctive
select condition, it typically considers the selectivity of each condition. The selectiv-
ity (s) is defined as the ratio of the number of records (tuples) that satisfy the condi-
tion to the total number of records (tuples) in the file (relation), and thus is a
number between zero and 1—zero selectivity means no records satisfy the condition
and 1 means all the records satisfy the condition. Although exact selectivities of all
conditions may not be available, estimates of selectivities are often kept in the
DBMS catalog and are used by the optimizer. For example, for an equality condition

6. A record pointer uniquely identifies a record and provides the address of the record on disk: hence,
itis also called the record identifier or record id.

7. The technique can have many variations—for examplg, if the indexes are logical indexes that store
primary key values instead of record pointers,

© IETE 23

AT61/AC112/AT112

DATABASE MANAGEMENT SYSTEMS

DEC 2015

on a key attribute of relation r(R), s = 1/]r(R)|, where |r(R)| is the number of tuples in
relation r(R). For an equality condition on an attribute with ; distinct values, s can be
estimated by ([r(R)|/i)/|(R)| or 1/ assuming that the records are evenly distributed
among the distinct values.® Under this assumption, |r(R)|/i records will satisty an
equality condition on this attribute. In general, the number of records satisfying a
selection condition with selectivity s 1s estimated to be |r(R)| # 5. The smaller this
estimate is, the higher the desirability of using that condition first to retrieve records.

Compared to a conjunctive selection condition, a disjunctive condition (where
simple conditions are connected by the OR logical connective rather than by AND)
is much harder to process and optimize. For example, consider oP4”:

OP4”: Opno=5 OR Salary>30000 OR Sex="F (EMPLO¥E E)

With such a condition, littie optimization can be done, because the records satisfy-
ing the disjunctive condition are the union of the records satisfying the individual
conditions. Hence, if any ore of the conditions does not have an access path, we are
compelled to use the brute force linear search approach. Only if an access path exists
on every condition can we optimize the selection by retrieving the records satisfying
each condition—or their record ids—and then applying the union operation 1o
eliminate duplicates. :

A DBMS will have available many of the methods discussed above, and typically many

additional methods, The query optimizer must choose the appropriate one for

executing each SELECT operation in a query. This optimization uses formulas that
estimate the costs for each available access method, as we shall discuss in Section 15.8.
The optimizer chooses the access method with the lowest estimated cost.

15.3.2 Implementing the JOIN Operation

The JOIN operation is one of the most time-consuming operations in query
" processing. Many of the join operations encountered in queries are of the EQUUOIN
~ and NATURAL JOIN varieties, so we consider only these two here. For the remainder

of this chapter, the term join refers to an EQUIJOIN (or NATURAL JOIN). There are
“many possible ways 10 implement a two-way join, which is a join on two files. Joins

involving more than two files are called multiway joins. The number of possible
ways to execute multiway joins grows very rapidly. In this section we discuss tech-
niques for implementing only two-way joins. To illustrate our discussion, we refer
to the relational schema of Figure 5.5 once more—specifically, to the EMPLOYEE,

DEPARTMENT, and PROJECT relations. The algorithms we consider are for join

operations of the form s ' :

R > 455

where A and B are domain-compatible attributes of Rand S, respectively. The meth-
ods we discuss can be extended to more general forms of join. We illustrate four of

8. In more sophisticated optimizers, hisfc_ngrams representing the distribution of the records among the
different attribute values can be kept in the catalog.

© IETE
24

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS | DEC 2015

the most common techniques for performing such a join, using the following
example operations: :

OP6: EMPLOYEE bd o DEPARTMENT
OP7: DEPARTMENT b4 o oo EMPLOYEE

Methods for Implementing Joins.

J1—Nested-loop join (brute force). For each record t in R (outer loop),
retrieve every record s from S (inner loop) and test whether the two records
satisfy the join condition t[A]-= s[B].?

2 J2—S8ingle-loop join {using an access structure to retrieve the matching
records). If an index (or hash key) exists for one of the two join attributes—
say, B of S—retrieve each record ¢ in R, one at a time (single loop), and then
use the access structure to retrieve directly all matching records s from S that
satisfy s[B] = t[A]. |

J3—Sort-merge join. If the records of R and S are physically sorted
(ordered) by value of the join attributes A and B, respectively, we can imple-
ment the join in the most efficient way possible. Both files are scanned con-
currently in order of the join attributes, matching the records that have the
same values for A and B. If the files are not sorted, they may be sorted first by
using external sorting (see Section 15.2). In this method, pairs of file blocks

“are copied into memory buffers in order and the records of each file are
scanned only once each for matching with the other file—unless both A and
B are nonkey attributes, in which case the method needs to be modified
slightly. A sketch of the sort-merge join algorithm is given in Figure 15.3(a).
We use R(i) to refer to the ith record in R. A variation of the sort-merge join
can be used when secondary indexes exist on both join attributes. The
indexes provide the ability to access (scan) the records in order of the join
attributes, but the records themselves are physically scaitered all over the file
blocks, so this method may be quite inefficient, as every record access may
involve accessing a different disk block.

J4—Hash-join. The records of files R and S are both hashed to the same
hash file, using the same hashing function on the join attributes A of R and B
of S as hash keys. First, a single pass through the file with fewer records (say,
R) hashes its records to the hash file buckets; this is called the partitioning
phase, since the records of R are partitioned into the hash buckets. In the
second phase, called the probing phase, a single pass through the other file
(S} then hashes each of its records to probe the appropriate bucket, and that
record is combined with all matching records from R in that bucket. This
simplified description of hash-join assumes that the smaller of the two files
fits entirely into memory buckets after the first phase. We will discuss varia-
tions of hash-join that do not require this assumption below.

9. For disk files, it is obvious that the loops will be over disk blacks so this technique has also been
called nested-back join,

© IETE 25

AT61/AC112/AT112

DATABASE MANAGEMENT SYSTEMS

DEC 2015

(a) sort the tuples in R on attribute A; (* assume R has n tuples {records) *)

sort the tuples in S on attribute B; {* assume S has m tuples (records) *)
setie—1,j¢ 1;
while (i < n) and (j < m)
do{ if R()IA] > S{})(B]
then setj¢j+1
elseif R(/}[A] < S{j)(8]
then setjé i+ 1
else { (* R()[A} = S{/}[BI, so we output a matched tuple *)
output the combined tuple <R(i), S{j}>to T;

{* output other tuples that match R(/), if any *)

get/ ¢ j+1;

while (f < m) and (R(/)[A] = S(1)[8))

do{ output the combined tuple <R(i}, S{/)>to T,
set/ & f+1

}

{* output other tuples that match S(;), if any *)

setkéei+1;

while (k < n) and (R{k)[A] = S(;)[BI])

do{ output the combined tuple <R{k), S{j)>to T;
 osetkek+1

}

set ¢~k j& 1

}

(b) create a tuple t[<attribute list>] in T’ for each tuple tin R;

(* T’ contains the projection results before duplicate elimination *)
if <attribute list> includes a key of R
then Té= T
else { sortthe tuplesin T';
set{ié1,j¢ 2
while i S n
do{ output the tuple T'[i] to T
while T'[i] = T'[jland j<ndoj & j+ 1; (*eliminate duplicates *)
i fije=i+1
}
}

{* T contains the projection result after duplicate elimination *)

Figure 15.3

Implementing JOIN, PROJECT, UNION, INTERSECTION, and SET DIFFERENCE by
-using sort-merge, where R has n tuples and S has m tuples. (a) Implementing the
operation T¢~ R ,_S. (b) Implementing the operation T 4= Ty pyie ist(R):

© IETE

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS

DEC 2015

(c) sort the tuples in R and S using the same unique sort attributes;
set /¢ 1,/ 1,
while (i < n) and (j < m)
do{ it R{f) > S(})
then { output S(j) to T;
set /¢ j+1
}
elseif R(7) < 8(})
then { output R(i)to T;
set i j+1
} :
elseset j¢j+1 (*R(i}=8(j), so we skip one of the duplicate tuples *)

if {{ < n) then add tuples R{i) to R(n) to T
if (/< m) then add tuples S(j) to S(m) to T;

(d) sort the tuples in R and S using the same unique sort attributes,
setie—1,j¢1; ' '
while (/< n) and (j < m)
do{ ifR()>S(j)
then setjéj+1
elseif R(i) < S(})
then seti¢— i+ 1 : o
else { output R(f) to T; (* R(i)=S(j), so we output the tuple *)
setié—i+1jej+1 ' :
1
-}

(e) sort the tuples in R and S using the same unique sort attributes;
setie 1,/ 1; :
while (i < n)and (j< m)
do{ ifR(i) > S(j)
then setf¢ j+1
elseif R{j} < S(j)
then { output RN to T: (* R(/) has no matching S(/), so output R(/) *
setiéi+1 :
}
else setié=i+1,jej+1
} .
if (/ € n) then add tuples R{/) to R(n) to T:

Figure 15.3 (continued)

Implementing JOIN, PROJECT, UNION, INTERSECTION, and SET DIFFERENCE by using sort-merge,
where R has n tuples and S has m tuples. (c) Implementing the operation 7 ¢ R U S. (d) Implementing
the operation T ¢<— R " S: (e) Implementing the operation 7 ¢~ R - S.

- In practice, t'echniques J1 to J4 are implemented by accessing whole disk blocks of-_ a
- file, rather than individual records. Depending on the avai_lable.buffer space in
memory, the number of blocks read in from the file can'be adjusted. . :

© IETE

27

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS

DEC 2015

b. List the commonly accepted threats to database security. 4)

Answer:
Threats to Databases. Threats to databases result in the loss or degradation of

s0me

or all of the following commonly accepted securlty goals: integrity, availabil-

ity, and confidentiality.

% Loss of integrity. Database integrity refers to the requirement that informa-

tion be protected from improper modification. Modification of data
includes creation, insertion, modification, changing the status of data, and
deletion. Integrity is lost if unauthorized changes are made to the data by
either intentional or accidental acts. If the loss of system or data integrityis

not corrected, continued use of the contaminated system or corrupted data

could result in inaccuracy, fraud, or erroneous decisions.

Loss of availability. Database availability refers to making objects available
to a human user or a program to which they have a legitimate right.

Loss of confidentiality. Database confidentiality refers to the protection of

data from unauthorized disclosure. The impact of unauthorized disclosure |

of confidential information can range from violation of the Data Privacy Act |
to the jeopardization of national security. Unauthorized, unanticipated, or
unintentional disclosure could result in loss of public confidence, embar-

rassment, or legal action against the organization.

To protect databases against these types of threats, it is common to implement four
of control measures: access control, inference control, flow control, and
encryption. We discuss each of these in this chapter.

kinds

In a multiuser database system, the DBMS must provide techniques to enable cer-
tain users or user groups to access selected portions of a database without gaining
access to the rest of the database. This is particularly important when a large inte-
grated database is to be used by many different users within the same organization.
For example, sensitive information such as employee salaries or performance

reviews should be kept confidential from most of the database system’s users. A

DBMS typically includes a database security and authorization subsystem that is

responszble for ensuring the security of portions of a database against unauthorized
access. It is now customary to refer to two types of database security mechanisms:

m Discretionary security mechanisms. These are used to grant privileges to

users, including the capability to access specific data files, records, or fields in
a specified mode {such as read, insert, delete, or update). :

Mandatory security mechanisms. These are used to enforce multilevel
security by classifying the data and users into various security classes (or
levels) and then implementing the appropriate security policy of the organi-
zation. For example, a typical security policy is to permit users at a certain
classification level to see only the data items classified at the user’s own (or
lower) classification level. An extension of this is role-based security, which

-enforces policies and privileges based on the concept of roles.

© IETE 28

AT61/AC112/AT112 DATABASE MANAGEMENT SYSTEMS

DEC 2015

c. What is meant by the term heuristic optimization, discuss. 4

Answer:
15.7 Using Heuristics in Query Optimization

In this section we discuss optimization techniques that apply heuaristic rules to
modify the internal representation of a query—which is usually in the form of a
query tree or a query graph data structure—to improve its expected performance.
The parser of a high-level query first generates an initial internal representation,
which is then optimized according to heuristic rules. Following that, a query execu-
tion plan is generated to execute groups of operations based on the access paths
available on the files involved in the query.

One of the main heuristic rules is to apply SELECT and PROJECT operations before
applying the JOIN or other binary operations, because the size of the file resulting
from a binary operation—such as JOIN—is usually a multiplicative function of the
sizes of the input files. The SELECT and PROJECT operations reduce the size of a file
and hence should be applied before a join or other binary operation. '

In Section 15.7.1 we reiterate the query tree and query graph notations that we
introduced earlier in the context of relational algebra and calculus in Sections 6.3.5
and 6.6.5 respectively. These can be used as the basis for the data structures that are
used for internal representation of queries. A query tree is used to represent a
relational algebra or extended relational algebra expression, whereas a query graph

is used to represent a relational calculus expression. Then in Section 1 5.7.2 we sl;10w
how heuristic optimization rules are applied to convert a query tree Into an equiva-
lent query tree, which represents a different relational algebra expression that-ls
more efficient to execute but gives the same result as the original one. W:_z also dis-
cuss the equivalence of various relational algebra expressions. Finally, Section 15.7.3
discusses the generation of query execution plans. _—

TEXT BOOK

l. Fundamentals of Database Systems, Elmasri, Navathe, Somayajulu, Gupta, Pearson

Education, 2006.

© IETE 29

	Properties
	Atomicity
	Consistency
	Isolation
	Durability

