AC60/AT60 COMPUTER GRAPHICS | DEC 2015

Q.2 a. Define refresh buffer or frame buffer. Also define Aspect Ratio and
Parametric continuity. (8)

Answer:

A frame buffer is a large, contiguous piece of computer memory. At a minimum there is one
memory bit for each pixel in the rater; this amount of memory is called a bit plane. The picture is
built up in the frame buffer one bit at a time. You know that a memory bit has only two states,
therefore a single bit plane yields a black-and white display. You know that a frame buffer is a
digital device and the CRT is an analog device. Therefore, a conversion from a digital
representation to an analog signal must take place when information is read from the frame
buffer and displayed on the raster CRT graphics device. For this you can use a digital to analog
converter (DAC). Each pixel in the frame buffer must be accessed and converted before it is
visible on the raster CRT.

N-bit colour Frame buffer

Color or gray scales are incorporated into a frame buffer rater graphics device by using
additional bit planes. The intensity of each pixel on the CRT is controlled by a corresponding
pixel location in each of the N bit planes. The binary value from each of the N bit planes is
loaded into corresponding positions in a register. The resulting binary number is interpreted as
an intensity level between 0 (dark) and 2" -1 (full intensity).

This is converted into an analog voltage between 0 and the maximum voltage of the electron
gun by the DAC. A total of 2Vintensity levels are possible. Figure given below illustrates a
system with 3 bit planes for a total of 8 (2%) intensity levels. Each bit plane requires the full
complement of memory for a given raster resolution; e.g., a 3-bit plane frame buffer for a 1024
X1024 raster requires 3,145,728 (3 X 1024 X1024) memory bits.

Iq.‘.

Frame -
buffer 2N | DAC
levels

Electron
gun

An IN- bit plane grayv level firame buffer
An increase in the number of available intensity levels is achieved for a modest increase in

required memory by using a lookup table. Upon reading the bit planes in the frame buffer, the
© IETE 1

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

resulting number is used as an index into the lookup table. The look up table must contain
2V entries. Each entry in the lookup table is W bit wise. W may be greater than N. When this
occurs, 2" intensities are available; but only 2" different intensities are available at one time. To
get additional intensities, the lookup table must be changed.

Aspect ratio is a fancy term for "proportion,” or the ratio of width to height. for example 4:3 for a
computer screen. For instance, if a direction in a software manual tells you to "hold down the
Shift key while you resize a graphic in order to maintain the aspect ratio," it simply means that if
you don't hold down the Shift key you will stretch the image out of proportion.

Some combinations of computers and printers have trouble maintaining the correct aspect ratio
when the image goes from the screen to the printer, or when the image is transferred from one
system to another, so the aspect ratio can be an important specification to consider when
choosing hardware.

The aspect ratio of the screen determines the most efficient screen RESOLUTIONS and the most
desirable shape for individual PIXELS, all of which may have to change upon the introduction of
HIGH DEFINITION TELEVISION.

Image resolution is the detail an image holds. The term applies to raster digital images, film
images, and other types of images. Higher resolution means more image detail.

Image resolution can be measured in various ways. Basically, resolution quantifies how close
lines can be to each other and still be visibly resolved. Resolution units can be tied to physical
sizes (e.g. lines per mm, lines per inch), to the overall size of a picture (lines per picture height,
also known simply as lines, TV lines, or TVL), or to angular subtenant. Line pairs are often used
instead of lines; a line pair comprises a dark line and an adjacent light line. A line is either a dark
line or a light line. A resolution 10 lines per millimeter means 5 dark lines alternating with 5
light lines, or 5 line pairs per millimeter (5 LP/mm). Photographic lens and film resolution are
most often quoted in line pairs per millimeter.

b. Describe the working methodology of various input devices used for
developing graphics applications. (8)

Answer: Input Devices

Input devices generate commands to control a process, such as the definition of a picture
(indirectly by modifying a database). Input devices are logical devices. Their physical
implementation might take various forms. They have nothing to do with output devices, though
they might share some hardware or a communication link.

The command inlet to a process (either interactive or not) is an input stream (a file). Commands
are structured or not, and are accompanied by data in various forms: text, numbers, arrays, etc.
Commands are generated on a lower level by input tools.

Input tools - again an abstraction can be classified according to the type of data they deliver:-

Text tools (keyboard, voice)
Logical tools {function key)
1-D tools (control dials)

2-D tools (tracking cross, tablet)

© IETE 2

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

3-D tools (3D joystick, Lincoln wand)

Name stack (lightpen, correlation)

Time

There has been an unfortunate preoccupation with the light pen as an input device and this may
account for the relatively slow development of input devices compared with displays. The mouse
or tracking ball or other related potentiometer-activating devices have found uses related to
specific displays. The tablet in its various forms is however giving the user the natural freedom
experienced with pencil and paper. A tablet is ideal for drawing-type self expression but is not
the complete answer for all forms of interaction. The touch wire device originally developed for
rapid interaction in air traffic control systems has an obvious place in normal input work for
interacting with display menus. An extension to this is a proximity switch keyboard for the input
of alpha-numeric data. Thus input devices attached to a display will be matched to specific
functions rather than attempt to produce an all embracing single device. Having established a
more than possible base for growth there are two major input areas that require more elegant
solutions than are available at present. These are the rapid input of mass drawing data and the
input of data related to three dimensional shapes, it is speculated that the work of J. Radon that
resulted in tomography could be developed such that an object is placed upon a turn table,
multiple projections taken and converted such that a complete three dimensional representation is
loaded to computer store. The combined use of light and X-rays could provide for the collection
of internal as well as external object data.

If a representation of an object is to be obtained from an engineering drawing drawn in an
orthographic projection the problems are not trivial. They will be solved and drawing scanners
having this capability will become common place.

Because of the volume of data and speed of processing required, these types of input units will
have their own computing systems based upon microcomputers.

To summarise the ideas concerning input

The use of raster scan or related systems in reconstruction with picture processing, scene analysis
and 3-D reconstruction will become one of the most important input devices to graphic systems
in the future.

Techniques will be developed for computer recognition and refining of sloppy and incomplete
drawings and models without the user having to be more explicit or categorical than he would be
in communication with one of his colleagues.

Simple, user-friendly, adaptive command languages will be developed. They will make it
possible to adapt the guidance, the commands and the error handling to the individual user's
experience, skill and habits. Analogous to normal computer peripherals, graphical devices will
become as self-contained as possible. They will have their own (more advanced) picture
compiler. This will probably be a microprocessor, preferably programmable (local or remote) to
accept picture descriptions of different standards.

Looking at these aspects from the viewpoint of a general user, there will be required a vast effort
to produce graphics systems in which all of this related processing is transparent.

© IETE 3

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

Starting with pen and paper moving relative to each other under computer control one has the
digital incremental plotter in all its forms and accuracies. These units are becoming faster in
operation and the inherent mechanical problems of control and overshoot, acceleration against
inertias and inkflow to the pen are increasing. The pen has in some devices been replaced by
light or electron beams and the paper by some photosensitive material or the drum of a XEROX
type copier.

At first sight the natural extensions appear to be in the direction of bigger and faster and perhaps
cheaper. With the increase in the use of raster scan C.R.T. displays there will be an increasing
need for hard copy units attached to such devices. It is thus envisaged that the XEROX type
copier will be developed for this purpose in order to produce large high quality colour prints.

If this development trend results, what will become of ink jet type displays? A future is seen for
these devices in the area of commercial art. Thus sizes will be increased. Research into the
chemistry of the inks could well result in the ability to produce textured surfaces and the
possibility of creating instant old masters! These types of display units could also become mass
production devices by becoming substitutes for litho techniques for producing relatively small
quantities of high quality output picture material.

An extension to these concepts could be the display of pictures by eroding multilayered material.
Consider the use of a simple type of scraper board having a black top surface, white secondary
surface followed by red, blue and green surfaces. A particular coloured line would be produced
dependant upon the depth of a scribing tool. Much effort has been devoted to producing the
illusion of three dimensional form using two dimensional displays. Perhaps the culmination of
this effort is the work at the University of Utah, where the viewer who wears a special head-set,
is presented at each eye with an image from a small C.R.T. By detecting the viewer's position the
images are updated and the viewer can stroll around a virtual image.

Such a tool is ideal for research purposes and could play a vital role in psycho-analysis in that
effects upon the mind could be created without recourse to narcotics. It is however not the sort of
tool that would be used by a company board meeting discussing a new style of automobile.

One solution to this problem is to use a simple on-line machine tool and cut forms in plastic
foam, chalk or other suitable media. Such a device is a hard copy unit and does not provide
interaction, but it does provide a starting point for speculation. Surface production for a specific
class of surfaces could be obtained by having a matrix of say, 1m x 1m which consists of rods of
0.5 mm diameter at 1 mm centres, with the possibility that the whole could be covered by an
elastic membrane. Thus by pushing up the rods, representation of a surface can be obtained. This
device could also be used in the dynamic sense to simulate vibration of surfaces and three
dimensional wave motion. Another possibility for three dimensional display is the use of an
electro-chromatic gel in the form of a block with electrodes attached on two sides. Surfaces
would appear as surfaces of colour within the block. Interaction could be by a thin wand inserted
into the block. Withdrawal of the wand causing the gel to close up. Such a concept is within the
realms of possibility in that the Kerr cell uses electro-chromatic effects to produce a shutter for
ultra-high speed cameras.

Another exciting possibility is the development of computer generated holograms. If such
images are to be produced in virtually real time, new techniques of processor design will be

© IETE 4

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

required and parallel processing through the use of banks of microprocessors will probably be
employed.

The ability to incorporate movement and interaction into computer displays came with the first
refresh displays, and in essence these displays have altered little in their fundamentals.

Features that were implemented on a software basis are now incorporated as hardware and the
introduction of microprocessors will ensure that such moves will continue as part of the
development process. Colour is achieved with these displays using either phosphor layers of
different colours which are excited by electron beams of varying intensity or shadow masks as in
a colour television receiver. In order to give displayed output body there is a natural move
toward raster scan systems and it is envisaged that the addition of video recording to such
displays will be a natural development. The coupling of these two devices would provide a more
flexible system for producing animation.

The rapid playback and editing facilities accorded by video recording of colour raster scan
displays should produce a large impact on the area of film making. Another possibility would be
the development of faster CRT that make it possible to draw 50-100,000 vectors at a 60-HZ
refresh rate. This would give the possibility of drawing and manipulating reasonable complex
pictures or making real-time computer animation.

High speed video recording and play back to other displays could be also used to provide a
different level of multiplexing on systems having many users.

The related developments with Computer Output on Microfilm will be dependent upon
developments in film technology with the present speed of processing colour film being a
holding factor.

New applications of the physical properties of matter could be used in new displays. Examples of
this could be large area liquid crystal displays and displays constructed from a matrix of micro
light emitting diodes. Finally one should not preclude the possibility of direct interaction with the
human brain.

To summarise the ideas concerning picture display.

Display devices will probably never be really cheap. One always wants the picture to be better,
or to be produced faster.

A picture can be produced by:

projection of visible light rays through an optical system into the retina

direct stimulation of brain cells (not necessarily through electrodes).

The latter possibility seems to have enormous potential, but will probably not be feasible in the
near future. Existing devices are all of the first category. They either create a 2D or 3D object
that is illuminated by ambient light (plotter, NC-machine), or they create the light rays
themselves (CRT-screen, microfilm, hologram).

© IETE 5

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

Q.3 a. How do we represent polygon using polygon table, edge table and vertex
table? Explain with example. (8)

Answer: Polygon Tables

e We specify objects as a set of vertices and associated attributes.
This information can be stored in tables, of which there are two types: geometric tables
and attribute tables.

e The geometry can be stored as three tables: a vertex table, an edge table, and a polygon
table. Each entry in the vertex table is a list of coordinates defining that point. Each entry
in the edge table consists of a pointer to each endpoint of that edge. And the entries in the
polygon table define a polygon by providing pointers to the edges that make up the

polygon.
'U{I
' ! POLY GOMN-SURFACE

VERTEX TABLE EDGE TAELE TABLE
Vot Xq. Wy 2 E.: v,V S4: Eq Ear &y
Vot Mg Wae 2o Eo: Vi, Vs Sy: Ea E By Eg
Vi g Vo Zz Ez1 Va WV, -
Wt Mg War Ty E,: Vi VvV,
Ve Xz We- Zg Ec: V. Vg

Eg: V.V,

e We can eliminate the edge table by letting the polygon table reference the vertices
directly, but we can run into problems, such as drawing some edges twice, because we
don't realize that we have visited the same set of points before, in a different polygon. We
could go even further and eliminate the vertex table by listing all the coordinates
explicitly in the polygon table, but this wastes space because the same points appear in
the polygon table several times.

e Using all three tables also allows for certain kinds of error checking. We can confirm that
each polygon is closed, that each point in the vertex table is used in the edge table and
that each edge is used in the polygon table.

o Tables also allow us to store additional information. Each entry in the edge table could
have a pointer back to the polygons that make use of it. This would allow for quick look-
up of those edges which are shared between polygons. We could also store the slope of
each edge or the bounding box for each polygon--values which are repeatedly used in
rendering and so would be handy to have stored with the data.

© IETE 6

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

Example: Plane Equations

« Often in the graphics pipeline, we need to know the orientation of an object. It would be
useful to store the plane equation with the polygons so that this information doesn't have
to be computed each time.

e The plane equation takes the form:

Ax+By+Cz+D=0

Using any three points from a polygon, we can solve for the coefficients. Then we can
use the equation to determine whether a point is on the inside or outside of the plane
formed by this polygon:

Ax+By+Cz+D<0 ==>inside
Ax+By+Cz+D>0 ==>outside

o The coefficients A, B, and C can also be used to determine a vector normal to the plane
of the polygon. This vector, called the surface normal, is given simply by:

N = (A, B, C).

o If we specify the vertices of a polygon counterclockwise when viewing the outer side, in
a right-handed coordinate system, the surface normal N will point from inside to outside.
You can verify this from an alternate definition for N, based on three vertices:

N=(V2-V1)x(V3-V1)=(A B,C)

If we find N in this way, we still need D to complete the plane equation. The value of D
is simply the dot product of the surface normal with any point in the polygon:

N.P=-D

b. Explain the pipeline for transforming a view of a world-coordinate scene to
device coordinates. Discuss the three-dimensional composite transformation
(8)

Answer:

The purpose of the graphics pipeline is to create images and display them on your screen. The
graphics pipeline takes geometric data representing an object or scene (typically in three
dimensions) and creates a two-dimensional image from it. Your application supplies the
geometric data as a collection of vertices that form polygons, lines, and points. The resulting
image typically represents what an observer or camera would see from a particular vantage point.

As the geometric data flows through the pipeline, the GPU's vertex processor transforms the
constituent vertices into one or more different coordinate systems, each of which serves a
particular purpose. Cg vertex programs provide a way for you to program these transformations
yourself.

Vertex programs may perform other tasks, such as lighting (discussed in Chapter 5) and
animation (discussed in Chapter 6), but transforming vertex positions is a taskrequired by all
vertex programs. You cannot write a vertex program that does not output a transformed position,

© IETE 7

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

because the rasterizer needs transformed positions in order to assemble primitives and generate
fragments.

So far, the vertex program examples you've encountered limited their position processing to
simple 2D transformations. This chapter explains how to implement conventional 3D
transformations to render 3D objects.

Figure 4-1 illustrates the conventional arrangement of transforms used to process vertex
positions. The diagram annotates the transitions between each transform with the coordinate
space used for vertex positions as the positions pass from one transform to the next.

World
. ; Space 4
Object - Modeling — View
Space Transform Transform
Eye
Space

Clip

Projection PR Perspective
Transform | — Divide

Mormalized Device

Space
Viewport and Window
Depth Range - Space

Transform

Figure 4-1 Coordinate Systems and Transforms for Vertex Processing

The following sections describe each coordinate system and transform in this sequence. We
assume that you have some basic knowledge of matrices and transformations, and so we explain
each stage of the pipeline with a high-level overview.

Q.4 a. Explain Cyrus-Beck clipping algorithm for a convex polygon with an
example. (8)
Answer: Cyrus—Beck is a general algorithm and can be used with a convex polygon clipping

window.

p(t) = p0 + t(pl-p0) [* it's parametric function */
3] if > 0 ; vector says p(t) is OUTSIDE && A < 90 degree.

if <0 ; vector says p(t) is INSIDE && a > 90 degree.

© IETE 8

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

if = 0 ; vector says p(t) is on edge E .. here outer normal edge is perpendicular to the E and
p(H)-B

.. we will writing here a function code for it as given below :

/*

if(DtProd (N,P(t)-B) > 0)

{
p(t) OUTER & A <90 degree; /*P(t)is OUTSIDE ..

}
else if(DtProd (N,P(t)-B) < 0)
{
p(t) INNER & A >90 degree ; /*P(t) is INSIDE ..
}
else(DtProd (N,P(t)-B) = 0)
{

p(t) lies on to the edge E ; /* where outer normal edge N would be perpendicular to
both E and p(t)-B..

*/

b. Distinguish between various OpenGL point-attribute and OpenGL line
attribute functions. (8)

Answer: POINT PLOTTING

The function glVertex () specifies the coordinates for a point position.

We define world-coordinate positions with glVertex functions placed between

a glBegin/glEnd pair using the primitive type constant: GL_POINTS. Coordinate positions can
be specified in two or three dimensions. We can also use homogeneous-coordinate
representations (four dimensional). Default values for the z coordinate and the h parameter in
coordinate specifications are z = 0 and h = 1. We use a suffix (2, 3, or 4) on the glVertex to
indicate the coordinate dimension.

The data type to be used in specifying a particular cordinate position is also indicated with a
suffix code on the glVertex function. These suffix codes are double (d), float (f), integer (i), and
short (s). Coordinate values can be explicitly listed, or they can be given in a separate array
designation. For an array specification of a coordinate position, we append a third suffix code: v
(for "vector™).

In the following example, three points are plotted along a two-dimensional straight-line path with
a slope of 2. Coordinates are given as integers.

© IETE 9

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

glBegin (GL_POINTS);
glVertex2i (50, 100);
glVertex2i (75, 150);
glVertex2i (100, 200);
glEnd ();
Alternatively, we could have used a vector specification for coordinate positions by replacing
each of the statements between the glBegin/glEnd pair with a statement of the form

glVertex2iv (endpointCoordsl);
where parameter endpointCoordsl is a pointer to an array of coordinate values.

LINE FUNCTIONS

As with point plotting, straight line segments are specified with glVVertex functions that are
placed within glBegin/glEnd pairs. In this case however, the coordinate positions are interpreted
as line endpoint positions. Straight line segments are drawn as solid lines, unless other attribute
options are selected. There are three primitive types in OpenGL that we can use to generate line
segments:

GL_LINES Generates a series of unconnected line segments between each successive
pair of specified endpoints. Thus, we obtain one straight line segment
between the first and second coordinate points, then another line segment
between the third and fourth points, and so forth up to the final pair of
endpoint positions. If the number of specified endpoints is odd, the last
endpoint position is ignored.

GL_LINE_STRIP |Generates a "polyline™ of connected line segments between the first endpoint
and the last endpoint.

GL_LINE_LOOP Generates a series of connected line segments the same as GL_LINE_STRIP,
but then adds a final line segment from the last point back to the first point
specified.

Example:

glBegin (lineMode);
glVertex2i (50,150);
glVertex2i (150, 150);
glVertex2i (150, 50);
glVertex2i (50, 50);
glEnd ();

If parameter lineMode in this example is set to the value GL_LINES, we obtain two unconnected

line segments that are horizontal and parallel. With GL_LINE_STRIP, we have a connected

polyline with three line segments between position (50, 150) and position (50, 50). And

with GL_LINE_LOOP, we draw the four edges of a square, where each edge is 100 pixels long.

b. Develop a general form of scaling matrix about a fixed point (xf, yf). (8)

Answer: Scaling (magnification or miniaturization)
When scaling an object from the point of origin by the factor s, the point (x,y) is mapped to
(Xy") = (s:X, s+y).

© IETE 10

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

If we use different scaling factors sx and sy in x- respectively y-direction, we get
(X,y") = (sx-X, sy-y)

Scaling with respect to a point other than the origin:

1st step = translation of the scaling center into the

point of origin: T(—xf,—yf)

2nd step = scaling of the object with respect to the

point of origin: S(sx,sy)

3rd step = translation of the object back to its

original location: T-1(—xf,—yf) = T(xf,yf)

So we obtain the generalized scaling matrix with (xf,yf) as scaling center by:
S(xf,yf,sx,sy) = T(xf,yf)-S(sx,sy)- T(—xf,~yf)

Q.6 a. Define a polygonal mesh. What are the Properties of meshes? (8)
Answer:

© IETE 11

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

6.2.1 To Define a Polygonal Mesh

A polveonal mesh is a collection of polygons along with a normal vector 15
with each vertex of each polygon. We begin with an example. '

B EXAMPLE 6.2.1 The basic barn

Figure 6.5 shows a simple shape we call the basic barn. Tt has seve
faces and 2 total of 10 vertices (each of which is shared by three faces)
venience il has a square floor one unit on a side. (The bamn could
oriented appropriately before being placed in a scenc.) Because the t
sumed 10 have flat walls, there are only seven distinct normal vectors i
- the normal to each face as shown. '
FIGURE 6.5 Introducing the
bhasic bam.
Vertex || x ¥ z
0 0 0 4]) : il ey
There are various ways to store mesh information in a file or prog
1 1 |0 0 barn you could usc a list of seven polygons. and list for cach one wher
are located and the direction in which the normal for each of its verti
2 i |3 |8 total of 30 vertices and 30 normals). This would be quite redundan
however, since there are enly 10 distinct vertices and seven distinct n
3 0.511.510 A more efficient approach uses three separate lists, a verfex list. n
s 0 1 lo and face list. The vertex list reports the locations »f the distinet ve
mesh, The list of normals reports the directions of the distinet normal
5 0 0 1 occur in the model. The face list simply indexes into the vertex and normis
As we see next, the barn is thereby captured with 10 vertices, seven normal
6 1 |0 |1 a list of seven simple face deseriptors.)
The three lists work together: The vertex list contains Jocational or geat
‘! B L information, the normal Jist contains orientation information, and the i
8 051151 contains connectivity or tepological information. =
The vertex list for the barn is shown in Figure 6.6. The list of the sevend:
9 0 1 il normals is shown in Figure 6.7. The vertices have indices () through 9 and i
_— mals have indices () through 6. The vectors shown have already been ngrms
FIGURE 6.6 “ertex list for the since most shading algorithms require unit veclors, (Recall that a cosi
bhasic bam. found as the dol product between two unit vectors.) '

© IETE 12

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

FGURE 6.7 The list of distinet

MNormal || #, n, ", normal vectors volved.

0 =1 i 0

1 =(.707107 | 0.707107 | O

2 0.707107 | 0.707107 | O

3 1 0 0

4 0 =% o

5 0] 1

6 [0 =]

Figure 6.8 shows the barn’s face list: each face has a list of vertices and the
grmal vector associated with each vertex. To save space, only the indices of
er vertices and normals are used. (Since each surface i3 flat. all of the
in & face are associaled with the same normal.) The list of vertices for
begins with any vertex in the face and then proceeds around the
ex by vertex, until a complete circuit has been made. There are two
traverse a polygon: clockwise and counterclockwise, For instance, face
could be listed as (35, 6,7, 8,9 or (9,8, 7,6, 5). Either direction could
but we follow a convention that proves handy in practice:

erse the polygon counterclockwise as seen from ouside the object.

ng this order, if you traverse around the face by walking on the outside
[ace from vertex 1o vertex, the interior of the face is on your lefl. We later
&ign algorithms that exploit this ordering, Because of it, the algorithms are
bl 16 distinguish with ease Lthe front from the back of a face.

z FIGURE 6.8 Face list for the
Face Vertices | Assodated Normal baiic Bcrm.

0 (left) 0,594 |0000
1(roofleft) [3,4,98 | 1,111
2 (roof right) | 2,3.8,7 | 2,2,2,2
3 (right) 1,276 33,313
4(bottom) [0,1,65 | 4,444
5 (front) 5.6,7,8,9| 5,5.5.5.5
6 (back) 0,4,3,2,1 | 6.6.6,6,6

© IETE 13

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

| I'he bare is an example of o dats-anmtensive madel, where the position
veriex i enlemed by the desymer. In contmss, we see laker some modely B
penersied algorthmicrlbe For insmance, soimes proapective oms owico
o abesipn tbe floonplun of theis deeam bouse and ler s CAT seftwmin !
m nrchdvect Mhesh oar (he uerual 30 contours or a full-cobor rescition of the
Foor somde Paibdings swch as a lvodse or hosgital, o0 the Penlagon m WasSings
worithd be an enermous @k v (il in the 1@bles by hondl A likely substitols =
b 1 By the table dutnstored in fles Having these files it B0 100 band 16
there, it #n't to hard to come wp with the vertices for the basic barm ar hoisg

Sovne CAD and 312 graphics programs, such as AutoCAD and 3D Sisdiol
aulpmabicGilly oreake lists soch a3 thoke described in the previcoas mbles The diy
er ol the hospinl, fociory: or dinch can save all of the deta ina Gle with & y
cormmamnd and [aier make it available for rendedng in an application ..-‘..‘5""

6.2.3 Properties of Meshes

Given a mesh specified by ilx vertex, normal, and face lists, we might wonderw
kind of an object it represents. Some properties of inlerest are;

* Solidity: As mentioned earlier, a mesh represents a solid object if its facesl
gether enclose a positive and finite amount of space.

= Conmnectedness: A mesh is connected if every face shares at least onc edgew
some other face. (I 4 mesh is not connected, it is usually considered to rep
sent more than one ohject.) '

* Simplicity: A mesh is simple if the object it represents is solid and has no hos
through it; it can be deformed into a sphere without tearing. (Note that the i
simprle is being used here inquite a différent sense from that for a simplep

* Planarity: A mesh is plapar if every face is a planar polygon: the vert
cach face then lic in a single plane. Some graphics algorithms work much me
efficiently il a face is planar. Triangles are inherently planar. and some mo
software takes advantage of this by using only triangles. Quadrilaterals,
other hand, may or may not be planar. The quadrilateral in Figure 6.]0, fos |
stance, is planar if and only if a2 = 0. '

¢ Convexity: A mesh represents a convex object if the line connecting any W
poinis within the object lies wholly inside the object. Convexity was first disclas
in Section 2.3.6 in connection with polvgons. Figure 6.11 shows some ¢
and some nonconvex objects. For each nonconvex object an example
shown whose endpoints lie in the object but which is not itself contained wil
in the object.

b. Write short notes on: (8)
(i) Stereo view
(if) Toxonomy of Projections

Answer:
A3 TO PRODUCE STEREO VIEWS

/ I love 5.1. Semetimes you con't squeeze everything in comfortobly into o stereo picture.
There is a lof mare spoce in o 5.1 environment.
Peter Gabriel
(1950- |

We digress briefly to use the camera controls developed eatlier for producing stered
views of a scene. A stereo view can make a picture much more intelligible; when itis)

© IETE 14

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

rly the viewer obtains a sense of depth in a picture, which not only
b more interesting and realistic, but also reduces the visual ambiguity
{such 25 which lines lic in front of others.) All of the stereo figures in
made using the following technique.

call the camera used so far a “cyclops” camera, after the one-eyed mon-
emus, son of Poseidon, in greek mythology.” Also, replace “fabled” with
" To get a sense of its limitations, keep one eye closed as you walk around a
il try to do simple tasks. Qur natural stercoscopic eye-brain system pro-
emendous amount of information by adding a visual sense of depth, We
this capability to computer graphics piclures,
i stereo view, lwo pictures, a left and a right picture, are made using
rent cameras, as suggested in Figure 7.34, The cameras are built using
it lookAt point but different eye positicns. Two viewports are crealed side
the display as in Figure 7.34b. The Jeft picturc is displayed in the left view-
i the right picture in the right viewport,

ki

FIGURE 7.34 Creating stereo
I} VIEWE.
™ N
[4 . J
| Left picture Right picture
) " in lefl viewport in right viewport
Right
i T T
: Your left eye Your ripht eye
a‘) looks here looks here
Right eye

vicw a ster=o picture, let vour left eye look at the left picture and your right
look at the right picture. When you do this properly, the two images fuse into a
e image that appears (o hive depth. This may take some practice. (The preface
yibes a method for learning how to do this.)

figure 7.25 shows a stereo wireframe view of the Buckyball described in Chapter
lié two pictures are evidently quite different, and there is significant visual ambi-
f (which edges are in front: which behind?) when only one of the pictures is
ied, A stereo view, however, disambiguates the various edges, making the pic-
teasily intelligible.

© IETE 15

AC60/AT60

COMPUTER GRAPHICS | DEC 2015

FIGURE 7.35 Sterco view of the
Buckyball,

FIGURE 7.36 Closg-up views ol
the barn.

FIGURE 7.37 Sctting the two
eye positions for stereo viewnz.

© IETE

Figure 7.36 shows stereo views of the barn. Iy part g the camera & rolls
Note that the orientation of the barn is difficult to comprehend witha
effect. Port b shows a close-up of one eorner of the barn, and the severe pir
distortion produced is clesrly visitle, '

& B

a

To build the two cameras we must decide where to put the left and right$
simple approach beging with a regular camera based on a single TookAz poin
single initial cyclops eye, as suggested in Figure 7.37. Alang with a choice ol
cstablish the eyelops camera, with its u, v, and n directions :

16

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

eft and right eyes are defined al slight displacements of the cyclops eye, at
i D alopg —u and w, respectively. The choice of D depends on the unit
ire being used in the application. If all lengths and distances are heing
0 a5 inches, then the user will probably set up the camera at an appropriate
[of inches from the desired TookAt point. Human eyes are about 3 inches

ONOMY OF PROJECTIONS
bes 0 loves obligue, may well Themselves in every ongle greet: But ours, so fruly parallel, Though

infinite, con never meel.
The Definition af Love
Andrew Marvell
f1621-I678),

gramined the basic ideas of planar projections, where points are projected in
iy or another onto a plane. We looked at parallel projections in Chapter 5, and
fespective projections in this chapter. There are many special cases that have
fiused in ari, architecture, and enpineering drawings, and we now look o see
jiheir characteristics are, and how they fit together.

flinir projections fall naturally into the tree structure shown in Figure 7.38. Each
0f 3 projection type represents a special case of its parent in the tree. The first
dimentil split is between parallel and perspective projections. We shall first ex-
e classes of perspective projections.

=5 FIGURE 7.38 A taxonomy
Fia nar popular projections
projections

i gt

1 _ el Perspective

Par

S ; One /: ‘ }h int
g Orthographic ne-poin res-poi

DThquc | \ -rw ';“

. Axonometric .
Cavatier S20I0€t Other -~ | " Multiview
\ orthographic

Isornetric Dimelric Trimetric

8.1 One-, Two-, and Three-Point Perspective

spective projections divide nicely into three classes: one-point, two-point, and three-
it They are distinguished by the orientation of the camera relative to the world co-
fdinate system. The names derive from the situation of viewing the unit cube shown in
feure 7.39. The unit cube is nestled into the positive x-, y-, s octant with one corner at
& origin. Most importand, its edpes are aligned with the world coordinate axes, which
this discussion are called principal axes. The principal axes lie in the directions of the

© IETE 17

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

unit vectors i j. and k. Similorly, lhl..ﬂmpta.ucs.l =0y=0amdz= 0 are cli ;
principal planes, and the cube has its six, faces alipned with them.

FIGURE 7.39 The unil cube, the
principal axes, and the principal al ¥ bl ¥ Priicipal

!E ‘/ planes
: %

planes.

The camera can be oriented in an infinite number of ways relative (o this o
nate system. For some of these the n-axis of the camera is perpendicular 0 o
pal axis or enother. Traditionally, perspective projections are categorized by
the number of finite vanishing points that the principal axes produce. Recall thalil
line is perpendicular to m, ils vanjshing point is at infinity; otherwise it is fimite.
can also count the number of principal axes that are Ao perpendicular 1o n. Thi
also the number of principal axes that pierce the viewplane of the camera, (Wl

L. One-point perspective; Exactly one principal axis has finite vanishing po
Thus n is not perpendicular to exactly one of the three directions i j, or k. Bl
is perpendicular to the other two digections. so it is perpendicuiar to one ui
principal planes. Two of its three components, iy, 1y, or a2, must be 0, .

Figure 7.400 shows & one-paint perspective view, in which the camera hasheg
oriented with its viewplane parallel to the xy-plane. The receding lines ofil
cube converge o a [inie \ran:-qhmg paint, ‘l‘hu camera here hnz m = [ﬂ,i}.t ‘r

FIGURE 7.40 Onc-point
perspective viows,

© IETE 18

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

The location of the vanishing poimt does not depend on the position of the
..._ relative w a cube. Figure 7.40b shows several blocks in one-point per-

[.. g, Each block may be considered 1o have ils own principal axes, and in
lis | ¢ the ront face of e¢ach block is parallel 1o the viewplane. All receding
re the same vanishing point (0,0,

isit Fizure 7.24, which shows two seis of grid lines on a horizontal plane,

d lires run parallel wo the principal axes (the world coordingte axes). An-
lier et of grid lines, not shown, would run vertically. paraliel 1o the world y-axis.
b ligure looks like a one-point perspective, since there seems 1o be a single fi-
e mushmg point at the horizon. But the camera could be aimed downward,

tking il & lwo-poini perspective, as we discuss next. You can't tell from the fig-
g alone. (If you are told that the horizon projecis to y = 0, you can then con-
e that the camera is level and that this is indeed a one-point perspective.)

Iwi-point perspective. Exactly two principal axes have linite vanishing poings.
[hus the camera’s n direction is ner perpendicular to two of these axes:it is per-
fendicular to only one, One of its three components must be ().
ngrc 7.41a shows a cube in lwo-point perspective: there are two finite van-
hing points, since both axes i and k pierce the viewplane. The camera was set
[umggala:d in, Figure 7.41b, with its m making an angle of 8 with the z-axis,
pihat m = (sin{@), 0, cos(0}). Here m is perpendicular to §, so the vertical prin-
gpad axis has an infinite vanishing poinl.

FIGURE 7.41 A lwo-point

1
) perspective view,

I's ot hard to compute where the finite vanishing points are located (see the

| exercises).

[[t is interesting to see what happens if we view the infinite grid scene, firsi

{ seen in Figure 7.24, in two-poipt perspective. Figure 7.42 shows the case where
the eve is still al y = | oriented horizontally, but the camera has been yawed
L the left so that m = (74, 0, .67). Now both sels of lines recede to the hori-
zon, producing two widely separated vanishing points on the horizon. (What
dre the vanishing points numerically?) Many of the more remote lines are nol
drawn here, as they are so crowded together that they cannot be seen clearly.

Three-point perspective. All three principal axes have finite vanishing poinis: all
three pierce the viewplane. m is not perpendicular 10 any axes, so all of its com-
PONENIS AF¢ NONLCTO.

Q.7 a. What is ambient light illumination? Write the equations for ambient light. (8)

© IETE 19

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

Answer:

Ambient illumination is light that's been scattered so much by the environment that its direction
is impossible to determine - it seems to come from all directions. Backlighting in a room has a
large ambient component, since most of the light that reaches your eye has first bounced off
many surfaces. A spotlight outdoors has a tiny ambient component; most of the light travels in
the same direction, and since you're outdoors, very little of the light reaches your eye after
bouncing off other objects. When ambient light strikes a surface, it's scattered equally in all
directions.

Ambient Light

ambient light

Light from a diffuse, non-directional source.
The illumination of an object from ambient light can be represented by the equation:
I =laka

Where:

la is the ambient illumination and

ka is the ambient-refelection coefficient of the object material.

ambient-reflection coefficient

A material property, the ratio of reflected light intensity to ambient light.

I| N . d Ambient Reflecton

% overcome roblem of worally dark shadows, we i

iinagine that & amiorm

backeround elow called ambiend ii-‘_:in exists i the enviconment. This:ambenl
iformly. The spurce is assigned an mtensity, £, Bach face in the mode
signed a value [or its ambient vellection coetficient, p, (oflen this 1s the spme 8
} > f Lon &0 e T | erm 7 i wimnly led 1o whak
EeVCr Aifiuse am o 1 SACinm eve from each point M on that (B
I, and p, are nsually arvived at experimentally. by Lrylng various values and seeing

what looks best. Too Little ambient hght makes shadows appear too decp ung

& How to Combine Light Contributions
BECin now sum the three light contributions—diffuse, specular, and ambieni-—to

B (i toral amount of lisht J that reaches the ave fro point #
3
I | ail B
I F
| I = I|), ' 4 f f F
|
e ne n
- i .' li-m
ke m I 1d ;
& m m

BlEpcnds on the various source inlensities and reflection coefficients, as well as or
B refative positions of the point P. the eye, and the point light s

|| ik Even ferent names [nel o tn iensal

pronenis of the light source, becauge OpenG L allows you g set them individual

i we s [ater. In pracUce they ustally have the same value
b. Explain the Phong model for reflection of light from object surfaces to the
viewer’s eye. 8)
Answer:
© IETE 20

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

¢4 Specular Reflection
il objects do not seatter light uniformly in all directions, and so a specular compo-
il i added to the shading model. Specnlar reflection causes highlights, which can
isignificantly to the realism of a picture when objects are shiny, In this section we
s a simple model for the behavior of specular light due to Phong [Phong75]. It
jeasy Lo apply, and the highlights generated by Phong specular light give an object a
eliclike appearance, so the Phong model is good when yvou intend the object ta be
ad: of shiny plastic or glass The Phong model is less successful with objects that are
pposed 10 have a shiny metallic surface. although vou can roughly approximate
1 mwith OpenGL by careful choices of certain color paramelers. More advanced
indcls of specular light have been developed that do a better job of modeling shiny
mtals These are not supported diectly by OpenGL's rendering process, so we defer
dlailed discussion of them to Chapter I2 on ray lracing.
P 8.12a shows a situation where lighl from a source impinges on a surface
i s reflected in different directions. In the Phong model we discuss here, the
punt of light reflected is greatest in the direction of perfect mirror reflection {dis-
din Chapter 4),r, where the angle of incidence 8 equals the angle of reflection,
saslh:: direction m which all light would travel if the surface were a perfect mir-
i At other nearby angles the amount of light reflected diminishes rapidly, as indi-
fed by the relative lengths of the reflected vectors. Part b shows this in terms of a
gam paticrn” familiar in radar circles The distance from P to the beam envelope
0w Lhe relative sirength of the light scattered in that direction.
Part ¢ shows how to quantify this beam pattemn effect. We know from Chapter 4
il the direction r of perfect reflection depends on both s and the normal vector m
hthe surface, according to;

W

© IETE 21

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

ah :ﬁi b E@j} (é € :@

r ré
] / L] G

e v ——— s

FIGURE B.12 Specular reflection
(rem a shiny surfuge, (5-m) J A TR
r=—g+1 |:1f_2-- (the mirror-reflection direction)
For surfaces that are shiny bul not true mirrors, the amount of light refle
as the angle < between r and ¥ increases. The actual amount of fatloff
cated function of &, but in the Phong model it is said to vary as some p
cosine of b—that is, according ‘o (cos(&))', in which fis chosen experin
usualiv lies between 1 and 204}, _
Figure 8.13 shows how this intensity function varics with & for differcn
of £, As fincresses, the relleclion becomes more mirrorlike und is more
centrated along the direction r. A perfect mirror could be modeled using
but puge reflleciions are usually handled in a different manner, as d
Chapter 12

FIGURE 8.13 The falloff of]_ R s

speculur light with ngle. r cos (a)

o

2

Using the equivalence of cos(d) and the dot product between r and v (after ihif
are normalized), the contribution /., due to specular reflection is modeled by

Ty =1 (.:L)’ 33y

where the new term p, is the specular reflection coefficient. Like most other -_'_j'_
cients in the shading model, it is usually determined experimentally. (As with (b
‘diffuse term, if the dot product r- v is found to be negative, / P is setto zero.)

Q.8 a. How to create a new Pixmap from a combination of two pixmaps? Write an
OpenGL functions for performing this operation. (8)
Answer:

© IETE 22

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

There are circumstances where we wish to combine two pixmaps to produce 4
This is useful for such things as moving cursors around a screen, comparing two ik
apes, and morphing one image into another. We look at several examples of practicsl
importance. : :
Pixmaps are usually combined pirelwise—that is, by performing some operation
between corresponding pixels in the old and new pixmaps. Specifically, _a'f'i_f}.
and B are combined to form pixmap C' according to:
CIAU) = AL ® B foreachi,
where () denotes some operation. Examples of different operations are:

* Averaging two images—here 5 means to form the sum of one half of A plusone
half of B:

CliA = AL + BT

» Differencing two images, to determine how dilferent they are—here (& means
subiraction:

Clills) = Al - B

* Finding where one image is brighter than apother—here > means “is greater
than™ ~

Clill] = AL = B

giving each pixel in C ¥he value 1 if the corresponding pixel in A is brighter tha ‘I.'

that in B, and lmhemise. -

A generalization of averaging (wo images is to form their weighted average

Pixmap A 1s weighted by (1 — f) and B s weighted by f, [or some fraction f;

Cla = (1 = flAl + r8iUl (91)

For instance, if the RGB components of Ai|[j] are (14, 246, 97) and those of B[i
are (82, 12, 199), then for f = 0.2 we have C[i][j] = (27, 199, 115). A weighted av
erage of two RGBpixmaps can be achieved using the modification of the setPuﬂ[] 4
Function given in Figure 9.3.

IXAMPLE 9.3.1 Dissolving one image inte another

All interesting application of a u.enghlcd average occurs when vou wish W

-5_'- e between two images. First image A is fully displayed, but as time passes

slowly fades and image 8 emerges superimposed on A, until finally only B is
layed. If £ represents time, then at time ¢ the image:

Al -1+ B
",'Laplayed, as moves smoothly from 0 1o 1. This is very similar (0 tweening,
’. ch we described in Chapier 4. Figure 9.11 shows five stages of the displayed

FIGURE 9.11 Dissolving
between two iImages.

© IETE 23

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

b. What do you understand by antialiasing? Explain any two antialiasing
techniques. Also write the OpenGL function to perform antialiasing. (8)

Answer:

Antialiasing Techniques

ji can one reduce the aliasing produced by insufficient sampling? A higher-
golution display, coupled with better algorithms, helps, because the jags are then
mller relative to the object. But some of the jaggies still remain. We therefore
ik for other ways to deal with aliasing.

Antialiasing technigues involve one form or another of blurring to smooth the
lige. In the case of a black rectangle against a white background, the sharp transi-
b from black 1o white is softened by using a mixture of gray pixels near the rec-
igl's border. When the picture is looked at from afar, the eye blends together the
mectully varying shades of gray and sees a smoother Ldgt.

tiiltering techniques compute pixel colors based on an object’s coveruge: the [rac-
- ol‘ the pixel area that is covered by the object. Consider scan-converting a white
plvpon in a black background, as in Figure 9.47a. Suppose the intensily values are
ftor black and | for white, The polygon is situated in a square grid, where the cen-
irof each square corresponds to the center of a pixel on the display. A pixel that is
mit-covered by the polygon should be given the inlensity 1/2; one that is one-third
mered should be given the intensity 1/3; and so forth, 1f the frame bufler has 4 bits
Erpivel. su that black is represented by 0 and white by 15, a pixel that is one-quarter
mered by the polygon should be given the value of (1/4)15, which rounds up o 4.
Figure U.47b shows the pizel values that result when the coverage ol each pixel is cal-
alated. (What would this array of pixel values be if we instead just sempled the poly-
an at each pixel center, using level 15 when the rectangle covers the center, and ()

FWGURE 9.47 U'sing the fracticn
of piye] area covered by the
object.

o|l1]6]0]o]
0|6 (131158]|0

& TH |15 [T 3

o e B T R R) R L

The peometric computations required w find the coverage for each pixel can. of
tourse, be rather time consumimg, A number of efficient approaches have been de-
wloped, such as those by Pitteway and Watkinson [Pitteway80] and more recently
by Xiaolin Wuo [Wa91). These algorithms ealculate the coverage of each pixel in an
neremental fashion. using only integer arithmetic.

In summary. prefiltering operales on the detailed peometric shape of the ob-
#ci(s) being scan converted and compuies an average inlensity for each pixel based
an the objects found lying within each pixel’s area. For shapes other than polygons,

can be an expensive technique computationally. and so we shall seek alternative
ipprosiches to antialiasing.

© IETE 24

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

Supersampling i
Since alinsing arises from sampling an object at too few points, we can try lored
effects by sampling more densely than one sample per pixel. T
supersampling: taking more imensity samples of the scene than are displayes
display pixel value is formed as the average of several samples. :
Figure 9.48 shows an example of double sampling: The object (in this cisea
bar) is sampled twice more densely in both x and y than it is displayed. Th
indicate display pixels, and the «'s denote spots at which the scene is s
final display pixel is formed as the average of the mne neighbor samples:
one and the eight surrounding ones. Some samples are reused in several
lations. (Which ones?) The display pixel centered at A “sees” six is based
ples within the bar and three sumples of background. Its color is set to
two-thirds the bar’s color and one-third the background’s color. The pi
based on all nine samples within the bar, 1ts color is set to that of the bar,

FIGURE 9.48 Antialinsing using, Center of

supersampling. display
-Sample

J/ofacen:

400 pixels. The jaggies are readily apparent in the left-hand side, particular!
profiles of objects. The right-hand side of Figure 9.4% shows the benefits of dou
pling. The same scene was sampled at a resolution of 600-by-800 samples, and cahid
the 300-by-400 display pixels is an average of nine neighbors. The jasmes havel
softened considerably, although there is some apparent blurming,

FIGURE 9.49 Objects rendered
attwo different sample sizes lefl
panel without antialiasing; right
panel: with double sampling,

In gegeral, supersampling computes N, scene samples in both x and y
display pixel, averaging some number of neighbor samples to form each d
pixel value. Supersampling with N, = 4, for example, averages 16 samples for st

display pixel.

© IETE 25

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

pcan do antialiasing even with no supersampling (N, = 1). The scene is sam-
lhe corner of each display pixel, as suggested in Figure 9.50. The intensily of
iisplay pixel is set to the average of the four samples laken at its corners. Some
ing of the jaggies is still observed, even though there 18 no supersampling.

corner sampling.
£ o I o, W
* - ¥ w
* ¥ * » "
" L *- » +
- am— R

ag or filtering m:tht be improved by giving the center u.ﬂ.mple more weighl and
ght neighbors less weight. Or it may help to include more neighbors in the av-
! mputation.
g computes each display pixel as a weighted average of an appropriate
[neighboring samples of the scene. Figure 9.51 shows the situation for double
ling. Each value represents the intensity of a scene sample, the ones in gray in-
ing the centers of the various display pixels. The square mask or window func-
weights is laid over each gray square in turn. Then each window weight is
jplied by its corresponding sample, and the nine products are summed to form
isplay pixel intensity. For exampie, when the mask shown s laid over the sam-
fintensity 30, the weighted average is found to be

+ (28 4+ 16+ 4+ 42+ 17 + 53 + 60 + 62)/16 = 32.625

hrounds to intensity 33. This mask gives eight times as much weight 1o the cen-
ilo the other eight neighbors The weights always sum to 1.

Window function FIGURE 9.51 Postfiltering a
graphics image.
Center of display pixel
S aza /278 /J-?'ﬂ / Scenc samples
o .-_'" : fﬂ
Ma f,wf LA %7%/
a4 ;’ o i

© IETE 26

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

. Nole that supersampling as we have deseribed it is just a special case of postiil
m which all the weights have value 19, Sampling and filter theory from the sig
cessing Neld provide apalytical methods for determining how different clagses
dow functions perform as postfiliers. Sometimes larger masks, 5-by-5 or even T
are used. These look {arther into the neighborhood of the center sample and caap
vide additional smoothing, -
Postfiltering can be performed for any value of oversampling N, [N, = 4l
a 5-by-5, 7-by-7, or even 9-by-9 mask is appropriate. If N, = 1, as in the case
sumpling, one might vse a 3-by-3 mask that weights the center pixel most he
Blurring may or may not pay ofi, depending on the scene being rendered.

nection with cay tracing and are also discussed on line.

=

Antialiasing Using OpenGL

OpenGL provides some tools to perform antialiasing. The simplest (o use cmp
an accumulation buffer, which is an exira storage area similar to the frame buf
that OpenGL cun create and draw into, The antialiasing method resembles stoghis
tic sampling. It draws a scene multiple times at slightly different positions {wh

When all of the slightly perturbed drawings have been added to the accumnuliig
bulfer, the results are copied gver into the frame buffer and the antialiased drawing
is displayed. Thus the method forms in cach pixel an average value based on colin
in the projected scene that lie in the immediate vicinity of the pixel.

[l following code shows how an cxample of how this can be done when a
iti 15 taking a picture of a 3D scenc. The accumulation buffer is created at
mp and initially zeroed oul (using glClear(GL_ACCUM_BUFFER_BIT) Then
jeene 1s drawn eight times, each time translating the camera inx and y (recall
.';_. er 5 and 7) by a small displacement stored in an array jitter[] of vectors.
i new drawing is scaled by 1/8 and added pixel by pixel to the accumulation
' using glAccum(GL_ACCUM, 1/8.0). When the eight renditions have been
W, the accumulation buffer is copied into the frame buffer using glAccum
GRETURN, 1.0).

§lClear (GL_ACCUM_BUFFER_BIT); // clear the accumulation buffer
(int i=0: i < B: i++)

cam.slide(f * jitver[i].x, £ * jitter[i].y,0); // slide the
' camerd

displayv(); // draw the scene

qlAccum{GL_ACCUM, 1/8.03; // add to the accumulation buffer

cum(GL_RETURN, 1.0); // copy accumulation buffer into frame
buffer '].

Q.9 a. Define Bezier Curve. Explain the properties of Bezier Curve. (8)
Answer:

© IETE 27

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

I PROPERTIES OF BEZIER CURVES

A lifile inaceuracy sometimes saves a ton of explanation,
H. H. Munro {Saki)
(1870-1916)

-'::-.. curves have some important properties that make them well suited for CAD.
¢ will find later that these properties apply to B-splines as well. Exploring these
pperties and their proofs provides a great deal of insight into Berier curves,

.i"” Interpolation

ik Bezier curve P(r) based on control points P, Py .., P, does not generally
withrough, or interpolate, all of the control points. But we have seen that it always
s interpolate Py and Py. This is a very useful property, because a designer wha is
paiting a sequence of points thereby knows precisely where the Bezier curve will
g and end.

ifine Invariance

i often necessary to subject a Bezier curve to an affine transformation in order o

@l it, orient it. or position it for subsequent use. Suppose we wish to transform
jint P(1} on the Bezier curve of Equation (10.25) to the new point Q(¢), using the

#by-4 matrix in the 3D case.) So Q{r) = T{P(/}). It appears thal to find C{r) at
gﬁrnn value of we must first evaluate P{f), and then trapnsform it, effectively
darting over fresh for each new £, But this isn’t so. We need only transform the con-
1l points {once), and then use these new control points in the same Bernstein form
pre-crenle the transtormed Bexier curve at any ¢ That is;

L
S 0{r) = N T(PL)B{1) {10.30)
K=

Alline invariance means that the transformed curve is identical to the curve based
on the transformed control points.

. Figure 10.16 shows a Bezier curve based on four control points Py,..., P5. These
pients are rotated, scaled, and translated to the new control points {J;. and the Bezi-
orcurve determined by them s drawn, This curve is identical point by point to the
fesult of transforming the original Bezier curve,

Bezier curves are affine invariant for o very simple reason: they are formad as an
iffine combination of points, and from Section 5.2 we know thal an affine transfor-
mation preserves affine combinalions,

© IETE 28

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

FIGURE 10.16 Showing affine

invarianoce. L
Py =P

Convex Hull Property

Amnather property that designers may rely on is that a Bezier curve, P(r), never vk
ders outside its convex hull. Recall from Chapter 5 that the convex hull of u;_:j
points Py, Py,..., Py is the set of all convex combinations of the points—that is, the
set of all points givan by =

4 -
P {1031] "
k=0

where each « is nonnegative, and they sum to 1,

But P{r] af Equation [1[! IB)isa convex mml:nnalmn of its contral puluts

every p(:mt on the Bezier curve is a convex combination of its control pmnls s_u fu_:
must lie within the convex hull of the control points. -

The convex hull property also follows immediately from the fact that each point
on the curve is the result of tweening twe points that are themselves tweens, and the
tweening of two points forms a convex combination of them, Figure 10,17 illustrates
how the designer can use the convex hull property. Even though the eight contrgl
points form a jagged control polygon, the designer knows the Bezier curve will flow
smoothly between the two endpoints, never extending outside the convex hull.

Derivatives of Bezier Curves
Bemuse a curve can exinlm corners and olhcr ahrupl changes whcn its rJ‘:cm' il

AGURE 10.17 Using the convex
hull property.

TR T W TRDR T i-LLd‘-h‘..

© IETE 29

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

For a Bezier curve one can show that the first derivative is

L=l
(r)= LS APBL) (10.32)
< =0

AP, = Py ~ Py (10.33)

ee the exercises) So the velocily is another Bezier curve, butlt on a new sct of con-
vectors AP, We simply difference the original control points, AP, =

— Py, in pairs to form the control vectors of the velocily. Note from the form
'1[1'] that taking the denvative lowers the order of the curve by 1. For instance,
derivative of a cubic Bezier curve is a quadratic Bezier curve. The smoothness of
ier curves is addressed in the exercises. /

b. Discuss the de Casteljau algorithm to any number of points to generate a
Bezier Curve. (8)
Answer:
Bgending the de Casteljau Algorithm to Any Number of Points
e have seen that the de Casteljau algorithm uses tweening W produce quadratic
rametric representations when three points are used. and cubic representations
Bhen four pomts are used. It generalizes gracefully to the case in which [, + 1 control
:': s Py, Py P, are used. For each value of ¢ a succession of generations are buill
p ip,each one by tweening adjacent points produced in the previous generation:

Bl = (1 = 0P + L)

CPH() = (1 =)P+ P) (10.24)
fori = 0,...,.L. The superscript k in PX(¢) denotes the generation. The process
jlarts with P{r) = P, and ends with the final Bezier curve P(i} = P}(1). The re-
Hulting Bezier curve can be written in terms of Bernsiein polynomials
L "
Pit) = S PBE() (1025
) E -1)
where the kth Bernstein polynomial of degree L is defined as”

Bl = (i){l e (10 -'I-E:
Here (i‘) is the binominl coefficient function, piven by

L I : = : 1 .
(k) WL - jr_:l-i forl <=k {1

The value of this term is 0 if L < k. Each of the Bernstein polynomials is seen 1ok
of degree .. As before, the Bernstein polynomials are the terms one gels when &
panding [{1 — ¢) + 1]*, so we are assured that
I
;aﬂ:} =1 foral¢ (108)
P il
and that P{r) is a legitimate affine combination of poinis.

TEXTBOOK

© IETE 30

AC60/AT60 COMPUTER GRAPHICS | DEC 2015

l. Computer Graphics Using OpenGL, F.S. Hill, Jr., Second edition, PHI/Pearson
Education, 2005

© IETE 31

	LINE FUNCTIONS

