AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

Q.2 a. Explain the following systems: 9)
i. Batch processing systems
ii. Time sharing systems
iii. Real-time operating systems

Answer:

b. Draw the process state diagram. 3

Answer:

admitted

interrupt terminated

scheduler dispatch

/O or event completion /O or event wait

c. What resources are used when a thread is created? How do they differ from
those used when a process is created? 4

Answer: Because a thread is smaller than a process, thread creation typically uses fewer resources
than process creation. Creating a process requires allocating a process control block (PCB), a rather
large data structure. The PCB includes a memory map, list of open files, and environment variables.
Allocating and managing the memory map is typically the most time-consuming activity.

Q.3 a. Most round-robin schedulers use a fixed size quantum. Give an argument in
favour of small quantum and large quantum. Compare and contrast the
types of systems and jobs to which both the arguments apply. 4)

Answer:

Small quantum: Using a small quantum will enhance responsiveness by frequently running all
processes for a short time slice. When the ready queue has many processes that are interactive,
responsiveness is very important e.g. general-purpose computer system.

Large quantum: Using a large quantum will enhance the throughput, and the CPU utilization measured
with respect to real work, because there is less context switching and therefore less overhead. e.g. batch
jobs.

b. Consider the following set of processes: (6)
Process Name | Arrival Time | Processing Time
A 0 7
B 1 5
C 2 2
D 3 4

Find the average turn round time for the FCFS, SJF and RR (time quantum
= 4) non-preemptive CPU scheduling methods.

Answer:

© IETE 1

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

Turn Around Time (ms) (TAT)
Process | FCFS SJF RR
(4 Quantum)
A 7 7 17
B 11 17 17
C 12 7 8
D 15 10 11
Avg. 45/4= 41/4 = 53/4
TAT 11.25 10.25 =13.25

c. Mention any three measures for Deadlock detection and avoidance. (6)

Answer:

Deadlock Detection Algorithm

A check for deadlock can be made as frequently as each resource request or, less frequently, depending
on how likely it is for a deadlock to occur. Checking at each resource request has two advantages: It
leads to early detection, and the algorithm is relatively simple because it is based on incremental
changes to the state of the system. On the other hand, such frequent checks consume considerable
processor time.

Deadlock avoidance

This method on the other hand, allows the three necessary conditions (mutual exclusion, hold and wait,
no preemption) but makes judicious choices to assure that the deadlock point is never reached. As
such, avoidance allows more concurrency than prevention. With deadlock avoidance, a decision is
made dynamically whether the current resource allocation request will, if granted, potentially lead to a
deadlock.

Q.4 a. Explain the working of bounded-buffer problem in synchronization. (6)
Answer: The bounded-buffer problem was commonly used to illustrate the power of
synchronization primitives. We present here a general structure of this scheme, without committing
ourselves to any particular implementation. We assume that the pool consists of n buffers, each
capable of holding one item. The mutex semaphore provides mutual exclusion for accesses to the
buffer pool and is initialized to the value 1. The empty and full semaphores count the number of empty
and full buffers, respectively. The semaphore empty is initialized to the value n; the semaphore full is
initialized to the value 0.

b. Explain boot control block and volume control block used in file systems. (4)
Answer:
A bootcontrol block (per volume) can contain information needed by the system to boot an operating
system from that volume. If the disk does not contain an operating system, this block can be empty. It
is typically the first block of a volume. In UFS, it is called the boot block. In NTFS, it is the partition
boot sector.

A volume control block (per volume) contains volume (or partition) details, such as the number of
blocks in the partition, the size of the blocks, a free-block count and free-block pointers, and a free-
FCB count and FCB pointers. In UFS, this is called a superblock. In NTFS, it is stored in the master
file table.

c. Explain any two file sharing techniques. (6)
Answer:
DFS - Through the evolution of network and file technology, remote file-sharing methods have
changed. The first implemented method involves manually transferring files between machines via
programs like ftp. The second major method uses a distributed file system (DFS) in which remote
directories are visible from a local machine. In some ways, the third method, the WorldWideWeb, is a

© IETE 2

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

reversion to the first. A browser is needed to gain access to the remote files, and separate operations
(essentially a wrapper for ftp) are used to transfer files.

Clinet/server file systems allow a computer to mount one or more file systems from one or more remote
machines. In this case, the machine containing the files is the server, and the machine seeking access to
the files is the client. The client—server relationship is common with networked machines. Generally, the
server declares that a resource is available to clients and specifies exactly which resource (in this case,
which files) and exactly which clients.

Q.5 a. Consider a paged virtual memory system with 32-bit virtual addresses and
1K-byte pages. Each page table entry requires 32 bits. It is desired to limit
the page table size to one page. (3+3+4)

(i) How many levels of page tables are required?
(i) What is the size of the page table at each level?
(iii) The smaller page size could be used at the top level or the bottom level of
the page table hierarchy. Which strategy consumes the least number of
pages?
Answer:
(1) Virtual memory can hold (232 bytes of main memory)/(210 bytes/page) = 222
so 22 bits are needed to specify a page in virtual memory. Each page table contains (210
bytes per page table)/(4 bytes/entry) = 28 entries. Thus, each page table can handle 8 of the
required 22 bits. Therefore, 3 levels of page tables are needed.
(i) Tables at two of the levels have 28 entries; tables at one level have 26 entries. (8 +8 + 6 =
22).
(iii) Less space is consumed if the top level has 26 entries. In that case, the second level has 26
pages with 28 entries each, and the bottom level has 214 pages with 28 entries each, for a total
of 1 + 26 + 214 pages = 16,449 pages. If the middle level has 26 entries, then the number of
pages is 1 + 28 + 214 pages = 16,641 pages. If the bottom level has 26 entries, then the
number of tables is 1 + 28 + 216 pages = 65,973 pages.

b. Explain with a diagram how addresses are translated in a segmentation system.

(6)
Answer:
Vinual address
Seg
_/“\
\ Segment table d i E
\:ﬁ 3
oy |
L. [Lengih [Base p
\/“\
Program Segmentation mechanism Main memory
Address Translation in a Segmentation System
Q.6 a. Explain phases and passes of language processor. (6)
Answer:

© IETE 3

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

Phases and passes of a language processor

From the preceding discussion it is clear that a language processor consists of two
distinct phases—the analysis phase and the synthesis phase. Figure 1.11 shows a
schematic of a language processor. This schematic, as also Examples 1.3 and 1.4 may
give the impression that language processing can be performed on a statement-by-
statement basis—that is, analysis of a source statement can be immediately followed
by synthesis of equivalent target statements. This may not be feasible due to:

e Forward references

Language processor
Source | Analysis Synthesis Target
program phase phase program
1
Errors Errors

© IETE

AC59/AT59/AC110/AT110

OPERATING SYSTEMS & SYSTEMS SOFTWARE

DEC 2015

b. What is Intermediate Representation (IR)?

Answer:

e Issues concerning memory requirements and organization of a language pro-
Cessor.

We discuss these issues in the following.

Definition 1.3 (Forward reference) A forward reference of a program entity is a refer-
ence to the entity which precedes its definition in the program.

While processing a statement containing a forward reference, a language proces-
sor does not possess all relevant information concerning the referenced entity. This
creates difficulties in synthesizing the equivalent target statements. This problem
can be solved by postponing the generation of target code until more information
concerning the entity becomes available. Postponing the generation of target code
may also reduce memory requirements of the language processor and simplify its
organization. -

Example 1.5 Consider the statement of Ex. 1.3 to be a part of the following program in
some programming language:
percent_profit := (profit * 100) / cost_price;

long profit;

The statement long profit; declares profit to have a double precision value. The
reference to profit in the assignment statement constitutes a forward reference be-
cause the declaration of profit occurs later in the program. Since the type of profit
is not known while processing the assignment statement, correct code cannot be gen-
erated for it iri a statement-by-statement manner.

Departure from the statement-by-statement application of Definition 1.2 leads to
the multipass model of language processing.

Definition 1.4 (Language processor pass) A language processor pass is the processing
of every statement in a source program, or its equivalent representation, to perform
a language processing function (a set of language processing functions).

Here ‘pass’ is an abstract noun describing the processing performed by the lan-
guage processor. For simplicity, the part of the language processor which performs
one pass over the source program is also called a pass.

Example 1.6 It is possible to process the program fragment of Ex. 1.5 in two passes as

follows:
PassI : Perform analysis of the source program and
note relevant information
PassII : Perform synthesis of target program

Information concerning the type of profit is noted in pass I. This information is used
during pass II to perform code generation.

properties of an IR? 4)

© IETE

What are the desirable

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

Intermediate representation of programs

The language processor of Ex. 1.6 performs certain processing more th
pass I, it analyses the source program to note the type information. In.
again analyses the source program to generate target code using the type
noted in pass I. This can be avoided using an intermediate represent
source program.

Definition 1.5 (Intermediate Representation (IR)) An intermediate repres etz
is a representation of a source program which reflects the effect of some, b
analysis and synthesis tasks performed during language processing.

The IR is the ‘equivalent representation’ mentioned in Definition 1.4.
the words ‘but not all’ in Definition 1.5 differentiate between the target
an IR. Figure 1.12 depicts the schematic of a two pass language proce
pass performs analysis of the source program and reflects its results i
ate representation. The second pass reads and analyses the IR, inst
program, to perform synthesis of the target program. This avoids rep
of the source program. The first pass is concerned exclusively with sou
issues. Hence it is called the front end of the language processor. The
concerned with program synthesis for a specific target language. Hen
the back end of the language processor. Note that the front and back
guage processor need not coexist in memory. This reduces the memory ree
of a language processor.

psrggl{gfn Front end Back end p'g‘o%
5 ¥
N e
Intermediate

representation (IR)

Fig. 1.12 Two pass schematic for language processing

Desirable properties of an IR are:

e Ease of use: IR should be easy to construct and analyse.

e Processing efficiency: efficient algorithms must exist for cons ruc

analysing the IR.

o Memory efficiency: IR must be compact.

Like the pass structure of language processors, the nature of inte
sentation is influenced by many design and implementation considerations
following sections we will focus on the fundamental issues in language pe
Wherever possible and relevant, we will comment on suitable IR forms.

© IETE 6

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

Semantic actions ‘
As seen in the preceding discussions, the front end of a language processor analyses
the source program and constructs an IR. All actions performed by_ the front gnd,
except lexical and syntax analysis, are called semantic actions. These include actions
for the following:

1. Checking semantic validity of constructs in SP
2. Determining the meaning of SP
3. Constructing an IR.

c. Explain the allocation data structures: stacks and heaps used in language

processing. (6)
Answer:
2.2 ALLOCATION DATA STRUCTURES
/ We discuss two allocation data structures, stacks and heaps. '
2.2.1 Stacks

A stack is 2 Tinear data structure which satisfies the following properties:

1. Allocations and deallocations are performed in a last-in-first-out (LIFO)
manner—that is, amongst all entries existing at any time, the first entry to
be deallocated is the last entry to have been allocated.

2. Only the last entry is accessible at any time.

Figure 2.8 illustrates the stack model of allocation. Being a linear data structure,
an area of memory is reserved for the stack. A pointer called the stack base (SB)
points to the first word of the stack area. The stack grows in size as entries are
created, i.e. as they are allocated memory. (We shall use the convention that a stack
grows towards the higher end of memory. We depict this as downwards growth in the
figures.) A pointer called the top of stack (TOS) points to the last entry allocated in
the stack. This pointer is used to access the last entry. No provisions exist for access
to other entries in the stack. When an entry is pushed on the stack (i.e. allocated in
the stack), TOS is incremented by /, the size of the entry (we assume [= 1). When
an entry is popped, i.e. deallocated, TOS is decremented by [(see Figs. 2.8(a)-(c)).
To start with, the stack is empry. An empty stack is represented by TOS = SB—1 (see
Fig. 2.8(d)).

© IETE

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE

DEC 2015

TOS —
SB 10 SB —_10 SB —_10 L Y
20 20 20
30 30 30
40 | 40 TOS —_40
TOS —{_50 50
TOS —_60
(a) (b) (c) (d)

Fig. 2.8 Stack model of allocation

Extended stack model

The LIFO nature of stacks is useful when the lifetimes of the allocated entities follow
the LIFO order. However, some extensions are needed in the simple stack model be-
cause all entities may not be of the same size. The size of an entity is assumed to be
an integral multiple of the size of a stack entry. To allocate an entity, a record is cre-
ated in the stack, where the record consists of a set of consecutive stack entries. For
simplicity, the size of a stack entry, i.e. [, is assumed to be one word. Figure 2.9(a)
shows the extended stack model. In addition to SB and TOS, two new pointers exist

in the model:

1. A record base pointer (RB) pointing to the first word of the last record in stack.

2. The first word of each record is a reserved pointer. This pointer is used for
housekeeping purposes as explained below.

The allocation and deallocation timé actions in the extended stack model are
described in the following paragraphs (see Fig. 2.9(b)—(c)).

RB~ " ’> TOS
record)
TOS *b
(a) (b) (c)

Fig. 2.9 Extended stack model

© IETE

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

Allocation time actions

No. Statement

7 TOSY = TOS+E
2. TOSY 1 =. BB

3. BB R

4. TOsSw == TOS4um;

The first statement increments TOS by one stack entry. It now points at the
reserved pointer of the new record. The “** mark in statement 2 indicates indirection.
Hence the assignment TOS* := RB deposits the address of the previous record base
into the reserved pointer. Statement 3 sets RB to point at the first stack entry in
the new record. Statement 4 performs allocation of n stack entries to the new entity
(see Fig. 2.9(b)). The newly created entity now occupies the addresses <RB> +/ to
<RB> +I x n, where <RB> stands for ‘contents of RB’.

Deallocation time actions

No. Statement
1.6 TOSr= FRB =
2. BB =R

The first statement pops a record off the stack by resetting TOS to the value it had
before the record was allocated. RB is then made to point at the base of the previous
record (see Fig. 2.9(c)).

SB — =

RB — :

TOS — sum

Fig. 2.10 Stack structured symbol table

Example 2.11 When a Pascal program contains nested procedures, many symbol tables
must co-exist during compilation. Figure 2.10 shows the symbol tables of the main
program and procedure calc of the Pascal program of Ex. 2.2 when the statement sum
:= a+b is being compiled. Note the address contained in the reserved pointer in the
symbol table for procedure calc. It is used to pop the symbol table of calc off the
stack after its end statement is compiled.

© IETE 9

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

2.2.2 Heaps

; A heap is a nonlinear data structure which permits allocation and dezllocation of
entities in a random order. An allocation request returns a pointer tc the allocated
area in the heap. A deallocation request must present a pointer to the area to be
deallocated. The heap data structure does not provide any specific means to access
an allocated entity. It is assumed that each user of an allocated entity maintains a
| pointer to the memory area allocated to the entity.

Example 2.12 Figure 2.11 shows the status of a heap after executing the following C pro-

gram
float *floatptrl, *floatptr2;
int *intptr;
floatptrl = (float *) calloc (5, sizeof (float));
floatptr2 = (float *) calloc (2, sizeof (float));
intptr = (int *) calloc (5, sizeof (int));
free (floatptr2);
l Three memory areas are allocated by the calls on calloc and the pointers floatptr:,

floatptr2and intptr are set to point to these areas. free frees the area allocated
to floatptr2. This creates a ‘hole’ in the allocation. Note that following Section 2.1,
each allocated area is assumed to contain a lengrh field preceding the actual allocation.

floatptrl [=

floatptr2 =)
intptr [}l

Fig. 2.11 Heap

Iy management

Example 2.12 illustrates how free areas (or ‘holes’) develop in memory as a result

i of allocations and deallocations in the heap. Memory management thus consists of
: identifying the free memory areas and reusing them while making fresh allocations.
-" Speed of allocation/deallocation, and efficiency of memory utilization are the obvi-
i ous performance criteria of memory management.

:Henn:fjaing free memory areas

Two popular techniques used to identify free memory areas are:

© IETE 10

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

1. Reference counts
2. Garbage collection.

In the reference count technique, the system associates a reference count with
each memory area to indicate the number of its active users. The number is incre-
mented when a new user gains access to that area and is decremented when a user
finishes using it. The area is known to be free when its reference count drops to zero.
The reference count technique is simple to implement and incurs incremental over-
heads, i.e. overheads at every allocation and deallocation. In the latter technique, the
system performs garbage collection when it runs out of memory. Garbage collection
makes two passes over the memory to identify unused areas. In the first pass it tra-
verses all pointers pointing to allocated areas and marks the memory areas which are |
in use. The second pass finds all unmarked areas and declares them to be free. The
garbage collection overheads are not incremental. They are incurred every time the
system runs out of free memory to allocate to fresh requests.

To manage the reuse of free memory, the system can enter the free memory areas
into a free list and service allocation requests out of the free list. Alternatively, it can
perform memory compaction to combine these areas into a single free area.

EIII
||||||HI;IHHHH ,ijl_: —r
IEI <%IHZHHHIH |

5 ; -

&

Q.7 a. Give the specifications of scanner with regular expression and respective

semantic actions. (6)
Answer:
Writing a scanner
y We will use a notation analogous to the LEX notation (see Section 1.5.1) to specify
a scanner. A scanner for integer and real numbers, identifiers and reserved words of

a language is given in Table 3.1.

© IETE 11

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

Table 3.2 Specification of a scanner

Regular expression
[+1=1(a)"

Semantic actions

{Enter the string in the table of
integer constants, say in entry n.

Return the token [Int #n] }
[+ | =]((d)".(d)* | (d)*.(d)*) {Enter in the table of real constants.
Return the token [Real #m]}

{Compare with reserved words. If
a match is found, return the token

|Kw #k|, else enter in symbol table
and return the token [/d #i] }

11| d)*

o
b. What is macro? Identify and explain the different kinds of macro expansion.

Answer: “

Definition 5.1 (Macro) A macro is a unit of specification for program generation
{/ through expansion.

A macro consists of a name, a set of formal parameters and a body of code.
The use of a macro name with a set of actual parameters is replaced by some code
generated from its body. This is called macro expansion. Two kinds of expansion
can be readily identified:

|. Lexical expansion: Lexical expansion implies replacement of a character string
by another character string during program generation. Lexical expansion
is typically employed to replace occurrences of formal parameters by corre-
sponding actual parameters.

2. Semantic expansion: Semantic expansion implies generation of instructions
tailored to the requirements of a specific usage—for example, generation of
type specific instructions for manipulation of byte and word operands. Seman-
tic expansion is characterized by the fact that different uses of a macro can lead
to codes which differ in the number, sequence and opcodes of instructions.

c. What are the different steps in execution of a pro . .
ram?
help of a diagram. prog Explain with the
Answer: (6)

© IETE 12

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

Translated, linked and load time addresses

While compiling a program P, a translator is given an origin specification for P. This
y is called the translated origin of P. (In an assembly program, the programlr‘ner a(ian
specify the origin in a START or ORIGIN statement:) The translator uses t le vd ue
of the translated origin to perform memory allocation for the symbols declare bu;
P. This results in the assignment of a translation time qddress tsymb 1O eaci? sym 1Co
symb in the program. The execution start addres; or.sunply tl}e start acti) ress 0T hz
program is the address of the instruction from which its execution must begin.
start address specified by the translator is the translated start address of the program

Data
'
Binary
program

=
Source g \8/ Results
program

Object Binary —— Data flow
modules programs - -» Control flow

Translator Linker Loader --+

Fig. 7.1 A schematic of program execution

The origin of a program may have to be changed by the linker or loader for
one of two reasons. First, the same set of translated addresses may have been used
in different object modules constituting a program, e.g. object modules of library
rotines often have the same translated origin. Memory allocation to such programs
would conflict unless their origins are changed. Second, an operating system may
require that a program should execute from a specific area of memory. This may
require a change in its origin. The change of origin leads to changes in the execution
start address and in the addresses assigned to symbols. The following terminology is
used to refer to the address of a program entity at different times:

1. Translation time (or translated) address: Address assigned by the translator.
2. Linked address: Address assigned by the linker.
3. Load time (or load) address: Address assigned by the loader.

The same prefixes translation time (or translated), linked and load time (or load) are
used with the origin and execution start address of a program. Thus,

1. Trarslated origin: Address of the origin assumed by the translator. This is the
address specified by the programmer in an ORIGIN statement.

2. Linked origin: Address of the origin assigned by the linker while producing a
binary program.

3. Load origin: Address of the origin assigned by the loader while loading the
program for execution.

The linked and load origins may differ from the translated origin of a program
due to one of the reasons mentioned earlier. &

Q.8 a. Explain the pass structures of assemblers. (6)
Answer:

© IETE 13

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE

DEC 2015

4.3 PASS STRUCTURE OF ASSEMBLERS

%

In Section 1.3 we have defined a pass of a language processor as one complete scan of
the source program, or its equivalent representation (see Definition 1.4). We discuss
two pass and single pass assembly schemes in this section.

Two pass translation

Two pass translation of an assembly language program can handle forward refer-
ences easily. LC processing is performed in the first pass and symbols defined in the
program are entered into the symbol table. The second pass synthesizes the target
form using the address information found in the symbol table. In effect, the first pass
performs analysis of the source program while the second pass performs synthesis
of the target program. The first pass constructs an intermediate representation (IR)
of the source program for use by the second pass (see Fig. 4.7). This representation
consists of two main components—data structures, e.g. the symbol table, and a pro-
cessed form of the source program. The latter component is called intermediate code
(IC).

Single pass translation

© IETE

LC processing and construction of the symbol table proceed as in two pass transla-
tion. The problem of forward references is tackled using a process called backparch-
ing. The operand field of an instruction containing a forward reference is left blank
initially. The address of the forward referenced symbol is put into this field when its
definition is encountered. In the program of Fig. 4.3, the instruction corresponding
to the statement

MOVER BREG, ONE

14

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

Data structures

Source Target
PRERIFI e e > ase 11 e .
Progm ase P Program

\ — Data access

- == Control transfer

Intermediate code

Fig. 4.7 Overview of two pass assembly

can be only partially synthesized since ONE is a forward reference. Hence the in-
struction opcode and address of BREG will be assembled to reside in location 101.
The need for inserting the second operand’s address at a later stage can be indicated
by adding an entry to the Table of Incomplete Instructions (TII). This entry is a pair
(<instruction address>, <symbol>), e.g. (101, ONE) in this case.

By the time the END statement is processed, the symbol table would contain the
addresses of all symbols defined in the source program and TII would contain in-
formation describing all forward references. The assembler can now process each
entry in TII to complete the concerned instruction. For example, the entry (101, ONE)
would be processed by obtaining the address of ONE from symbol table and inserting
it in the operand address field of the instruction with assembled address 101. Al-
ternatively, entries in TII can be processed in an incremental manner. Thus, when
definition of some symbol symb is encountered, all forward references to symb can

be processed. //

b. What are the advantages of assembler directives. 4)
Answer:

© IETE 15

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

4.4.1 Advanced Assembler Directives
. ORIGIN
7

The syntax of this directive is

ORIGIN <address spec>

where <address spec> is an <operand spec> or <constant>. This directive indi-
cates that LC should be set to the address given by <address spec>. The ORIGIN
statement is useful when the target program does not consist of consecutive memory
words. The ability to use an <operand spec> in the ORIGIN statement provides the
ability to perform LC processing in a relative rather than absolute manner. Exam-
ple 4.1 illustrates the differences between the two.

Example 4.1 Statement number 18 of Fig. 4.8(a), viz. ORIGIN LO0P+2, sets LCto the value
204, since the symbol LOOP is associated with the address 202. The next statement,
viz.

MULT CREG, B

is therefore given the address 204. The statement ORIGIN LAST+1 sets LC to address
217. Note that an equivalent effect could have been achieved by using the statements
ORIGIN 202 and ORIGIN 217 at these two places in the program, however the ab-
solute addresses used in these statements would need to be changed if the address
specification in the START statement is changed.

EQU
The EQU statement has the syntax

<symbol> EQU < address spec>

where <address spec> is an <operand spec> or <constant>.

The EQU statement defines the symbol to represent <address spec>. This dif-
fers from the DC/DS statement as no LC processing is implied. Thus EQU simply
associates the name <symbol> with <address spec>. //

c. What are the problems of single pass assembler and their respective

solutions? (3+3)
Answer:

© IETE 16

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

4.5.4 Problems of Single Pass Assembly

A single pass assembler for Intel 8088 shares some problems with other single pass
assemblers, viz. problems in assembling forward references and in error reporting.
The forward reference problem is aggravated by the nature of the 8088 architecture.
We discuss two aspects of this problem. The sample program of Fig. 4.25 is used to
illustrate these problems.

4

Sr. No. Statement Offset
001 CODE SEGMENT
002 ASSUME CS:CODE, DS:DATA
003 Mov AX, DATA 0000
004 MoV DS, AX 0003
005 Mov CX, LENGTH STRNG 0005
006 MOV COUNT, 0000 0008
007 MOV SI, OFFSET STRNG 0011
008 ASSUME ES:DATA, DS:NOTHING
009 MOV AX, DATA 0014
010 MOV ES, AX 0017
011 COMP: CMP [S1],°A? 0019
012 JNE NEXT 0022
013 MOV COUNT, 1 0024
014 NEXT: INC SI 0027
015 DEC CX 0029
016 JNE COMP 0030

017 CODE ENDS

018 DATA SEGMENT

019 ORG 1

020 COUNT DB % 0001
021 STRNG DW 50 DUP (7) 0002
022 DATA ENDS

023 END

Fig. 4.25 Sample assembly program of Intel 8088

© IETE 17

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

Forward references

A symbolic name may be forward referenced in a variety of ways. When used as a
data operand in a statement, its assembly is straightforward. An entry can be made
in the table of incomplete instructions (TII) discussed in Section 4.3. This entry
would identify the bytes in code where the address of the referenced symbol should
be put. When the symbol’s definition is encountered, this entry would be analysed
to complete the instruction. However, use of a symbolic name as the destination in
a branch instruction gives rise to a peculiar problem. Some generic branch opcodes
like JMP in the 8088 assembly language can give rise to instructions of different
formats and different lengths depending on whether the jump is near or far—that is,
whether the destination symbol is less than 128 bytes away from the JMP instruction.
However, this would not be known until sometime later in the assembly process! This
problem is solved by assembling such instructions with a 16 bit logical address unless
the programmer indicates a short displacement, e.g. JMP SHORT LOOP. The program
of Fig. 4.25 contains the forward branch instruction JNE NEXT. However, the above
problem does not arise here since the opcode JNE dictates that the instruction should
be in the self-relative format.

A more serious problem arises when the type of a forward referenced symbol
is used in an instruction. The type may be used in a manner which influences the
size/length of a declaration. Such usage will have to be disallowed to facilitate single

pass assembly.

Example 4.16 Consider the statements
XYZ DB LENGTH ABC DUP(0)

ABC DD &

Here the forward reference to ABC makes it impossible to assemble the DB statement
in a single pass.

Segment registers
An ASSUME statement indicates that a segment register contains the base address of
a segment. The assembler represents this information by a pair of the form (segment
register, segment name). This information can be stored in a segment registers table
(SRTAB). SRTAB is updated on processing an ASSUME statement. For processing
the reference to a symbol symb in an assembly statement, the assembler accesses the
symbol table entry of symb and finds (segsymp, offsetsyms) Where segsymp is the name
of the symbol containing the definition of symb. It uses the information in SRTAB to
find the register which contains segy,ms. Let it be register r. It now synthesizes the
~ pair (r, offsetsyyp). This pair is put in the address field of the target instruction.

However, this strategy would not work while assembling forward references.

Consider statements 6 and 13 in Fig. 4.25 which make forward references to COUNT.

© IETE 18

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

When the definition of COUNT is encountered in statement 20, information concern-
ing these forward references can be found in the table of incomiplete instructions
(TID). What segment register should be used to assemble these references? The first
reference was made in statement 6 when DS was the segment register containing the
segment base of DATA. However, SRTAB presently contains the pair (ES, DATA) as
a result of statement 8, viz. ASSUME ES:DATA .. . A similar problem may arise
while assembling forward references contained in branch instructions. The following
provisions are made to handle this problem:

1. A new SRTAB is created while processing an ASSUME statement. This SRTAB
differs from the old SRTAB only in the entries for the segment registers named
in the ASSUME statement. Since many SRTAB's exist at any time, an array
named SRTAB_ARRAY is used to store the SRTAB’s. This array is indexcd
using a counter srzab_no.

2. Instead of TIL, a forward reference table (FRT) is used. Each entry of FRT
contains the following entries:

(a) Address of the instruction whose operand field contains the forward ref-
erence

(b) Symbol to which forward reference is made

(¢) Kind of reference (e.g. T : analytic operator TYPE, D : data address, S :
self relative address, L : length, F : offset, etc.)

(d) Number of the SRTAB to be used for assembling the reference.

Example 4.17 illustrates how these provisions are adequate to handle the problem
concerning forward references mentioned earlier. //

Q.9 a. Explain the role of static and dynamic memory allocation used in compilers.

©)

Answer:

© IETE 19

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

~ Following Definition 1.8, we can define memory binding as follows:

Definition 6.2 (Memory binding) A memory binding is an association between the
‘memory address’ attribute of a data item and the address of a memory area.

Memory allocation is the procedure used to perform memory binding. The bind-
ing ceases to exist when memory is deallocated. Memory bindings can be static or
dynamic in nature (see Definitions 1.9 and 1.10), giving rise to the static and dy-
namic memory allocation models. In static memory allocation, memory is allocated
to a variable before the execution of a program begins. Static memory allocation
is typically performed during compilation. No memory allocation or deallocation
actions are performed during the execution of a program. Thus, variables remain
permanently allocated; allocation to a variable exists even if the program unit in
which it is defined is not active. In dynamic memory allocation, memory bindings
are established and destroyed during the execution of a program. Typical examples
of the use of these memory allocation models are Fortran for static allocation and
block structured languages like PL/I, Pascal, Ada, etc., for dynamic allocation.

Example 6.6 Figure 6.1 illustrates static and dynamic memory allocation to a program con-
sisting of 3 program units—A, B and C. Part (a) shows static memory allocation. Part
(b) shows dynamic allocation when only program unit A is active. Part (¢) shows the
sitnation after A calls B, while Part (d) shows the situation after B returns to A and A
calls C. C has been allocated part of the memory deallocated from B. It is clear that
static memory allocation allocates more memory than dynamic memory allocation
except when all program units are active.

Dynamic memory allocation has two flavours—automatic allocation and pro-
gram controlled allocation. According to the terminology of Section 1.4.2, the former
implies memory binding performed at execution init time of a program unit, while
the latter implies memory binding performed during the execution of a program unit.
We describe the details of these bindings in the following.

In automatic dvnamic allocation, memory is allocated to the variables declared °
in a program unit when the program unit is entered during execution and is deallo-
cated when the program unit is exited. Thus the same memory area may be used for
the variables of different program units (see Fig. 6.1). It is aiso possible that different
memory areas may be allocated to the same variable in different activations of a pro-
gram unit, e.g. when some procedure is invoked in different blocks of a program. I

© IETE 20

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE

DEC 2015

Code(A) Code(A) Code(A) Code(A)
 Data(A) Code(B) Code(B) Code(B)

Code(B) Code(C) Code(C) Code(C)
“Data(B) | | Data(A) Data(A) Data(A)
: Code(-C)m Data(B) Data(C)

Data(C)
RRRRTRR

(a) (b) (c) (d)

Fig. 6.1 Static and dynamic memory allocation

program controlled dynamic allocation, a program can allocate or deallocate mem-
ory at arbitrary points during its execution. It is obvious that in both automatic and
program controlled allocation, address of the memory area allocated to a program
unit cannot be determined at compilation time.

Dynamic memory allocation is implemented using stacks and heaps, thus neces-
sitating pointer based access to variables. This tends to make it slower in execution
than static memory allocation. Automatic dynamic allocation is implemented using
a stack since entry and exit from program units is LIFO in nature (see Section 6.2.2
for more details). When a program unit is entered during the execution of a program,
arecord is created in the stack to contain its variables. A pointer is set to point to this
record. Individual variables of the program unit are accessed using displacements
from this pointer. Program controlled dynamic allocation is implemented using a
heap. A pointer is now needed to point to each allocated memory area. 2~ '

b. Define expression trees and give their applications. (5)

Answer:

© IETE

21

AC59/AT59/AC110/AT110

OPERATI
NG SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

Expression trees

'/ We have so far assumed that operators are evaluated in the order determined by &
bottom up parser. This evaluation order may not lead to the most efficient code for
an expression. Hence a compiler back end must analyse an expression 10 find the
best evaluation order for its operators. An expression tre¢ {s an abstract syntax tree

(see Section 3.2) which depicts the structure of an expression. This representation -
simplifies the analysis of an expression (0 determine the best evaluation order.

Example 6.24 Figure 6.22 shows two alternative codes to evaluate the expression
(a+b) /(c+d)- The code in part (b) uses fewer MOVER!MOVEM instructions. It
is obtained by deviating from the evaluation order determined by a bottom up parser.

MOVER AREG, A MOVER AREG, c
ADD AREG, B ADD AREG, D
MOVEM AREG, TEMP_1 MOVEM AREG, TEMP-1
MOVER AREG, C MOVER AREG, A
ADD AREG, D ADD AREG, B
MOVEM AREG, TEMP_2 DIV AREG, TEMP.1

MOVER AREG, TEMP_1
DIV AREG, TEMP2

(a) (b)

Fig. 6.22 Alternative codes for (a+b)/(c*d)

A two step procedure is used 10 determine the best evaluation order for the op-

erations in an expression. The first step associates a register requirement label (RR

© IETE

22

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

vumpliers and Interpreters 191

labell) with each node in the expression. It indicates the number of CPU registers
required to evaluat.e th.e subtree rooted at the node without moving a partial result
to memory. Labelling is performed in a bottom up pass of the expression tree. The

second step, which consists of a top down pass, analyses the RR labels of the child
nodes of a node to determine the order in which they should be evaluated.

Algorithm 6.1 (Evaluation order for operators)

1. Visit all nodes in an expression tree in post order (i.e., such that a node is
visited after all its children).

For each node n;

(a) If n; is a leaf node then
if n; is the left operand of its parent then RR(n;) := 1;
else RR(n;) :=0;
(b) If n; is not a leaf node then
If RR(/_child,,) # RR(r_child,,) then
RR(n;) := max (RR(r_child,,), RR(I_child,,));
else RR(n;) := RR(I_child,) + 1;
2. Perform the procedure call evaluation_order (root) (See Fig. 6.23), which
prints a postfix form of the source string in which operators appear in the de-
sired evaluation order.

procedure evaluation order (node);
if node is not a leaf node then
if RR(L_child,yq.) < RR(r_child,,q.) then
evaluation_order (r_child,pg,);
evaluation_order (I_child,,4.);
else
evaluation_order (1_child,,g.);
evaluation_order (r_child,,q.):
print node;
end evaluation_order;

Fig. 6.23 Procedure evaluation_order

Let RR=g for the root node. This implies that the evaluation order can evaluate
the expression without moving any partial result(s) to memory if ¢ CPU registers
are available. It thus provides the most efficient way to evaluate the expression.
Wher the number of available registers < g, some partial results have to be saved
in memory. However, the evaluation order still leads to the most efficient code. The
code generation algorithm is described in Dhamdhere (1997) and Aho, Sethi, Ullman

(1986). 7

c. Explain pure and impure interpreters. Give an illustration. (3+3)
Answer:

© IETE 23

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

6.6.3 Pure and Impure Interpreters

5 The schematic of Fig. 6.34(a) is called a pure interpreter. The source program is
retained in the source form all through its interpretation. This arrangement incurs
substantial analysis overheads while interpreting a statement.

Data
'
Source
program Interpreter — Results
(a)
Data
IR .
p?-g;gfn —» Preprocessor Interpreter [Results
(b)

Fig. 6.34 Pure and impure interpreter

An impure interpreter performs some preliminary processing of the source pro-
gram to reduce the analysis overheads during interpretation. Figure 6.34(b) contains
a schematic of impure interpretation. The preprocessor converts the program to an
intermediate representation (IR) which is used during interpretation. This speeds up
interpretation as the code component of the IR, i.e. the IC, can be analysed more
efficiently than the source form of the program. However, use of IR also implies that
the entire program has to be preprocessed after any modification. This involves fixed
overheads at the start of interpretation.

Example 6.42 Postfix notation is a popular intermediate code for interpreters. The interme-
diate code for a source string a+b*c could look like the following:

| S#17 | S#4] S#29 [» [+ |

where each IC unit resembles a token (see Section 1.3.1.1).

IC of Ex. 6.42 eliminates most of the analysis during interpretation excepting
type analysis to determine the need for type conversion. Even this can be eliminated
if the preprocessor performs type analysis before generating IC.

Example 6.43 The preprocessor of an interpreter performs type analysis to generate follow
ing IC for the expression a+b#*c, where a, b are of type real and c is of type integer

[S#IT| S#4 | S#9[tir | * | + |

where the unary operator 1, indicates type conversion of an operand (in this case,
c) from ‘integer’ to ‘real’. The arithmetic operators are also type specific now.Thus
“*,” indicates multiplication in the ‘real’ representation. This eliminates most analysis

during interpretation. ///

TEXT-BOOK

© IETE 24

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE | DEC 2015

l. Systems Programming and Operating Systems, D. M. Dhamdhere, Tata McGraw-Hill,
Second Revised Edition, 2005

© IETE 25

