
AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 1

 Q.2 a. Explain various fundamental features of the object oriented programming?
 (6)

Answer:
The fundamentals features of the OOPs are the following:

• Encapsulation: It is a mechanism that associates the code and data it manipulates into a single
unit and keeps them safe from external interference and misuse. In C++, this is supported by a
construct called class.

• Data Abstraction: The technique of creating new data types that are well suited to an application
to be programmed is known as data abstraction. It provides the ability to create user-defined data
types, for modeling a real world object, having the properties of built-in data types and a set of
permitted operators. The class is a construct in C++ for creating user-defined data types call
abstract data types (ADTs).

• Inheritance: It allows the extension and reuse of exiting code without having to rewrite the code
from scratch. Inheritance involves the creation of new classes (called derived classes) from the
existing ones (called base classes), thus enabling the creation of a hierarchy of classes that
simulates the class and subclass of the real world.

• Multiple Inheritance: The mechanism by which a class is derived from than one base class is
known as multiple inheritance.

• Polymorphism: It allows a single name / operator to be associated with different operations
depending on the type of data passed to it. In C++, it is achieved by function overloading,
operator overloading and dynamic binding (virtual functions).

• Message Passing: It is the process of invoking an operation on an object. In response to a
message, the corresponding method (function) is executed in the object.

• Extensibility: It is a feature, which allows the extension of the functionality of the existing
software components. In C++, this is achieved through abstract class and inheritance.

• Genericity: It is a technique for defining software components that have more than one
interpretation depending on the data types of parameters. In C++, genericity is realized through
function templates and class templates.

 b. With the help of an example describe size of C++ operator? (5)
Answer:
It looks like a built-in function, but it is called the sizeof operator. The format of sizeof follows:

sizeof data
or
sizeof(data type)

The sizeof operator is unary, because it operates on a single value. This operator produces a result that
represents the size, in bytes, of the data or data type specified. Because most data types and variables
require different amounts of internal storage on different computers, the sizeof operator enables programs
to maintain consistency on different types of computers.
The sizeof operator is sometimes called a compile-time operator. At compile time, rather than runtime,
the compiler replaces each occurrence of sizeof in your program with an unsigned integer value.
If you use an array as the sizeof argument, C++ returns the number of bytes you originally reserved for
that array. Data inside the array have nothing to do with its returned sizeof value—even if it’s only a
character array containing a short string.
Suppose you want to know the size, in bytes, of floating point variables for your computer. You can
determine this by entering the keyword float in parentheses—after sizeof—as shown in the following
program.

#include <iostream.h>
main() {

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 2

cout << “The size of floating-point variables on \n”;
cout << “this computer is “ << sizeof(float) << “\n”;
return 0;

}
Expected Output:
The size of floating-point variables on this computer is: 4

 c. Explain the difference between ‘A’ and “A” with suitable example. (3+2)
Answer:
The notations ‘A’ and “A” have an important difference. The first one (‘A’) is a character constant while
the second (“A”) is a string constant. The notation ‘A’ is a constant occupying a single byte containing
the ASCII code of character A. The notation “A” on the other hand, is a constant that occupies two bytes,
one for the ASCII code of A and the other for the null character with value 0, that terminates all strings.

 Q.3 a. Explain the use of break statement in switch-case statement? (4)
Answer:
The switch Statement
The switch and case statements help control complex conditional and branching operations. The switch
statement transfers control to a statement within its body. The syntax for switch statement is as follows:

selection-statement :
switch (expression) statement
labeled-statement :
case constant-expression : statement
default : statement

Control passes to the statement whose case constant-expression matches the value of switch (expression).
The switch statement can include any number of case instances, but no two case constants within the
same switch statement can have the same value. Execution of the statement body begins at the selected
statement and proceeds until the end of the body or until a break statement transfers control out of the
body. Use of the switch statement usually looks something like this:

switch (expression)
{
 declarations
 .
 case constant-expression :

 statements executed if the expression equals the
 value of this constant-expression
 .
 .
 . break;
 default :
 statements executed if expression does not equal
 any case constant-expression
}

We can use the break statement to end processing of a particular case within the switch statement and to
branch to the end of the switch statement. Without break, the program continues to the next case,

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 3

executing the statements until a break or the end of the statement is reached. In some situations, this
continuation may be desirable.
The default statement is executed if no case constant-expression is equal to the value of switch (
expression). If the default statement is omitted, and no case match is found, none of the statements in the
switch body are executed. There can be at most one default statement. The default statement need not
come at the end; it can appear anywhere in the body of the switch statement. In fact it is often more
efficient if it appears at the beginning of the switch statement. A case or default label can only appear
inside a switch statement.
The type of switch expression and case constant-expression must be integral. The value of each case
constant-expression must be unique within the statement body.
The case and default labels of the switch statement body are significant only in the initial test that
determines where execution starts in the statement body. Switch statements can be nested. Any static
variables are initialized before executing into any switch statements.

The following examples illustrate switch statements:

switch(c)
{
 case 'A':
 capa++;
 case 'a':
 lettera++;
default :
 total++;
}

All three statements of the switch body in this example are executed if c is equal to 'A' since a break
statement does not appear before the following case. Execution control is transferred to the first statement
(capa++;) and continues in order through the rest of the body. If c is equal to 'a', lettera and total are
incremented. Only total is incremented if c is not equal to 'A' or 'a'.

switch(i) {
 case -1:
 n++;
break;
 case 0 :
 z++;
 break;
 case 1 :
 p++;
 break;
}

In this example, a break statement follows each statement of the switch body. The break statement
forces an exit from the statement body after one statement is executed. If i is equal to 1, only n is
incremented. The break following the statement n++; causes execution control to pass out of the
statement body, bypassing the remaining statements. Similarly, if i is equal to 0, only z is incremented; if
i is equal to 1, only p is incremented. The final break statement is not strictly necessary, since control
passes out of the body at the end of the compound statement.

 b. Write the syntax for initialization at definition of two-dimensional array. Give

one example also. (4)

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 4

Answer:
A two-dimensional array can be initialized during its definition as follows:
 data-type array-name[row-size][col-size] = {
 { elements of first row},
 {elements of second row},
 ……………
 ……………
 {elements of n-1 row}
 };

For example, the statement
 int arr[3][3] = {
 {1, 2, 3},
 {6, 7, 8},
 (5, 9, 3}
 };
defines two dimensional array of order 3 X 3 and initializes all its elements.

 c. Write the syntax for accessing structure members in C++. Also construct a

structure called “Student” whose members are roll_no, name, branch and
marks. Use this structure in your program that will read student information
and then display that information? (8)

Answer:
C++ provides the period or dot(.) operator to access the members of a structure . The dot operator
connects a structure variable and its member. The syntax for accessing members of a structure variable is
as follows:

 structvar.membername
Here, structvar is a structure variable and membername is one of the member of structure. Thus, the dot
operator must have a structure variable on its left and a member name on its right.

#include <iostream.h>

struct Student {
 int roll_no;
 char name[25];
 char branch[10];
 int marks;
};

void main() {
 Student s1;
 cout << “Enter data for student” << endl;
 cout << “Roll Number” ;
 cin >> s1.roll_no;
 cout << “Name” ;
 cin >> s1.name;

cout << “Branch” ;

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 5

 cin >> s1.branch;
cout << “Marks Obtained” ;

 cin >> s1marks;

 cout << “ Student Report” << endl;
 cout << “Roll Number :” << s1.roll_no << endl;
 cout << “Name :” << s1.name << endl;

cout << “Branch :” << s1.branch << endl;
cout << “Marks Obtained :” << s1.marks << endl;

}

 Q.4 a. Define Inline function? What are the guidelines that need to be followed for

deciding whether to the member function inline or not?. (6)
Answer:
Inline function: If a member function is define as well declared, in the definition of the class itself, the
member function is said to be defined inline.

Following are the certain guidelines need to be followed while declaring a member function as inline
function:

(i) Defining inline functions can be considered once a fully developed and tested program too
slowly and shows bottlenecks in certain functions.

(ii) Inline functions can be used when member functions consist of one very simple statement
such as the return statement. For example,
inline int date :: getday() {
 return day;
}

(iii) If a function is too large to be expanded, it will not be treated be treated as inline. Thus,
declaring a function will not guarantee that the compiler will consider it as an inline function.

(iv) Functions consisting of loops will not be considered as inline functions.

 b. What are the conditions that must be satisfied for function calling? (4)
Answer:
The following conditions must be satisfied for a function call:

• The number of arguments in the function call and the function declaratory must be same.
• The data type of each of the arguments in the function call should be the same as the

corresponding parameter in the function declaratory statement. However, the names of the
arguments in the function call and the parameters in the function definition can be different.

 c. What is function overloading? Write overloading functions for swapping two

characters, two integers and two float parameters. (2+4)
Answer:
Function overloading is a concept that allows multiple functions to share the same name with different
argument types. Function overloading implies that the function definition can have multiple forms.
Assigning one or more function body to the same name is known as function overloading or function
name overloading.

#include <iostream.h>
void swap(char &x, char &y) {
 char t;

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 6

 t = x;
 x = y;
 y = t;
}

void swap(int &x, int &y) {
 int t;
 t = x;
 x = y;
 y = t;
}

void swap(float &x, float &y) {
 float t;
 t = x;
 x = y;
 y = t;
}

void main() {
 char ch1, ch2,
 cout << “Enter two characters :”;
 cin >> ch1 >> ch2;
 swap(ch1, ch2);
 cout << “After Swapping characters :” << ch1 << “ ” <<ch2 << endl;

 int in1, in2,
 cout << “Enter two integers :”;
 cin >> in1 >> in2;
 swap(in1, in2);
 cout << “After Swapping integers :” << in1 << “ ” <<in2 << endl;

 float fl1, fl2,
 cout << “Enter two floats :”;
 cin >> fl1 >> fl2;
 swap(fl1, fl2);
 cout << “After Swapping floats :” << fl1 << “ ” <<fl2 << endl;
}

 Q.5 a. What is the use of constructor in C++? List any four properties of

constructor? (2+4)
Answer:
A constructor is a special member function whose main use is to allocate the required resources such as
memory and initialize the objects of its class. It is generally used to initialize the object member
parameters and allocate the necessary resources to the object members.

Properties

1. It has same name as that of the class to which it belongs.
2. It is executed automatically whenever the class is instantiated.
3. It does not have any return type.
4. It can’t be invoked explicitly.

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 7

5. It can access any data member like other member functions.
6. Constructor must be declared in public section of the class.

 b. Write a complete C++ program to do the following :

(i) ‘Student’ is a base class, having two data members: entryno and name;
entryno is integer and name of 20 characters long. The value of entryno is 1 for
Science student and 2 for Arts student, otherwise it is an error.

(ii) ‘Science’ and ‘Arts’ are two derived classes, having respectively data items
marks for Physics, Chemistry, Mathematics and marks for English, History,
Economics.

(iii) Read appropriate data from the screen for 3 science and 2 arts students.

 (iv) Display entryno, name, marks for science students first and then for arts

students. (10)
Answer:
#include<iostream.h>
class student {
 protected:
 int entryno;
 char name[20];
 public:
 void getdata(){
 cout<<"enter name of the student"<<endl;
 cin>>name;
 }
 void display(){
 cout<<"Name of the student is"<<name<<endl;
 }
};

class science:public student {
 int pcm[3];
 public:
 void getdata(){
 student::getdata();
 cout<<"Enter marks for Physics,Chemistry and Mathematics"<<endl;
 for(int j=0;j<3;j++){
 cin>>pcm[j];
 }
 }

 void display(){
 entryno=1;
 cout<<"entry no for Science student is"<<entryno<<endl;
 student::display();
 cout<<"Marks in Physics,Chemistry and Mathematics are"<<endl;
 for(int j=0;j<3;j++){

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 8

 cout<<pcm[j]<<endl;;
 }
 }
};

class arts:public student {
 int ehe[3];
 public:
 void getdata(){
 student::getdata();
 cout<<"Enter marks for English,History and Economics"<<endl;
 for(int j=0;j<3;j++){
 cin>>ehe[j];
 }
 }

 void display(){
 entryno=2;
 cout<<"entry no for Arts student is"<<entryno<<endl;;
 student::display();
 cout<<"Marks in English,History and Economics are"<<endl;
 for(int j=0;j<3;j++){
 cout<<ehe[j]<<endl;;
 }
 }
};

void main(){
 science s1[3];
 arts a1[3];
 int i,j,k,l;
 cout<<"Entry for Science students"<<endl;
 for(i=0;i<3;i++){
 s1[i].getdata();
 }
 cout<<"Details of three Science students are"<<endl;
 for(j=0;j<3;j++){
 s1[j].display();
 }
 cout<<"Entry for Arts students"<<endl;
 for(k=0;k<3;k++){
 a1[k].getdata();
 }
 cout<<"Details of three Arts students are"<<endl;
 for(l=0;l<3;l++){
 a1[l].display();
 }
}

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 9

 Q.6 a. Give the syntax for overloading a unary and binary operator. Is it possible to
overload the ternary (? :) operator? Support your answer with proper
reason. (2+2+3)

Answer:
The syntax for overloading a unary operator is as follows:

returntype operator OperatorSymbol () {

 // body of Operator function

 }
The keyword operator facilitates overloading of the C++ operators. The keyword operator indicates that
the OperatorSymbol following it, is the C++ operator to be overloaded to operate on members of its class.
The following examples illustrate the overloading of unary operaters:
 int operator +();

void operator –();
The syntax for overloading a binary operator is as follows:

 returntype operator OperatorSymbol (arg) {

 // body of Operator function

 }

The keyword operator facilitates overloading of the C++ operators. The keyword operator indicates that
the OperatorSymbol following it, is the C++ operator to be overloaded to operate on members of its class.
The operator overloaded in a class is know as overloaded operator function.

For examples,
 complex operator + (complex c1);

 int operator – (int a);

No, it is not possible to overload the ternary (? :) operator.
The ternary (? :) operator has an inherent meaning and it requires three arguments. C++ does not support
the overloading of an operator, which operates on three operands. Hence, the conditional operator, which
is the only ternary operator in C++ language, cannot be overloaded.

 b. Write a program to illustrate the overloading of new and delete operators.

 (5)
Answer:
#include <iostream.h>
const int ARRAY_SIZE = 10;

class vector {
 private:
 int *array;
 public :
 // overloading of new operator

 void * operator new(size_t size) {

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 10

 vector *my_vector;
 my_vector = ::new vector;

 my_vector ->array = new int[ARRAY_SIZE];
 return my_vector;
 }

 // overloading of delete operator

 void operator delete(void* vec) {
 vector *my_vect;
 my_vect = (vector *) vec;
 delete (int *) my_vect -> array;
 ::delete vec;
 }

 void read();
 int sum();
}

void vector ::read() {
 for (int i=0; i<ARRAY_SIZE; i++) {
 cout << "Vector[" << i << "] = ";
 cin >> array[i];
 }
}

int vector:: sum() {
 int sum = 0;
 for (int i=0; i<ARRAY_SIZE; i++)
 sum = sum + array[i];
 return sum;
}

void main() {
 vector *my_vector = new vector;
 cout << "Enter Vector Data" << endl;
 my_vector -> read();
 cout << "Sum of Vector = " << my_vector ->sum();
 delete my_vector;
}

 c. What are the restrictions for overloading operators? (4)
Answer:

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 11

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 12

 Q.7 a. What is Inheritance? What are the rules must be kept in mind while deciding

whether to define members as private, protected, or public? (5)
Answer:
The technique that allows the extension and reuse of exiting code without having to rewrite the code from
scratch is known as Inheritance. Inheritance involves the creation of new classes (called derived classes)
from the existing ones (called base classes), thus enabling the creation of a hierarchy of classes that
simulates the class and subclass of the real world.
Inheritance is a technique of organizing information in a hierarchical form. It allows new classes to be
built from older and less specialized classes instead of being rewritten from scratch. Classes are created
by first inheriting all the variables and behavior defined by some primitive class and then adding
specialized variables and behaviors.

 Feature A

 Base Class Feature B

 Feature C

 Feature D

 Feature A
 Derived Class
 Feature B

 Feature C

Thus, inheritance is a prime feature of OOPs used as a process of creating new classes (called derived
classes, from the existing classes (called base classes). The derived class inherits all the capabilities of the
base class and can add refinements of its own. The base class remains unchanged. The derivation of new
class from the existing class is shown in the above figure. The derived class inherits all features (A, B and
C) of the base class and adds its own feature D. The arrow in the figure symbolizes derived from. Its
direction from the derived class towards the base class represents that the derived class accesses features
of the base class and not vice versa.

The following rules are to be kept in mind while deciding whether to define members as private,
protected, or public are as follows:

• A private member is accessible only to members of the class in which the private member is
declared. They cannot be inherited.

• A private member of the base class can be accessed in the derived class through the member
functions of the base class.

• A protected member is accessible to members of its own class and to any of the members in a
derived class.

• If a class is expected to be used as a base class in future, then members which might be needed in
the derived class should be declared protected rather private.

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 13

• A public member is accessible to members of its own class, members of the derived class, and
outside users of the class.

• The private, protected, and public sections may appear as many times as needed in a class and in
any order. In case an inline member function refers to another member (data or function), that
member must be declared before the inline member function is defined. Nevertheless, it is normal
practice to place the private section first, followed by the protected section and finally the public
section.

• The visibility mode in the derivation of a new class can be either public or private.
• Constructors of the base class and the derived class are automatically invoked when the derived

class is instantiated. If a base class has constructors with arguments, ten their invocation must be
explicitly specified in the derived class’s initialization section. However, no-argument constructor
need not be invoked explicitly constructors must be defined in the public section of a class (base
and derived) otherwise, the compiler generates the error message: unable to access constructor.

 b. What would be the output of the following code: (4)
 #include <iostream.h>

class BC {

 public:

 BC(int a){
 cout<<"\nOne-argument constructor in base class\n";
 }
 };

class DC : public BC {

 public:
 DC(int d) : BC(d){
 cout<<"\nOne-argument constructor exists in derived Class\n";
 }

};

void main(){
 DC objD(3);
 }
Answer:
The expected out is:
 One-argument constructor in base class

One-argument constructor exists in derived Class

 c. Explain the term Polymorphism? What are the different forms of

polymorphism? What are the rules that need to be kept in mind while
deciding virtual functions? (2+2+3)

Answer:

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 14

The technique to allow a single name / operator to be associated with different operations depending on
the type of data passed to it is known as Polymorphism. In C++, it is achieved through function
overloading, operator overloading and dynamic binding (virtual functions).

Polymorphism is a very powerful concept that allows the design of flexible applications. The word
Polymorphism is derived from two Greek words, Poly means many and morphos means forms. So,
Polymorphism means ability to take many forms.
Polymorphism can be defined as one interface multiple methods which means that one interface can be
used to perform different but related activities.

The different form of Polymorphism is

• Compile time (or static) polymorphism.
• Runtime (or Dynamic) polymorphism.

Compile Time Polymorphism
In compile time polymorphism, static binding is performed. In static binding, the compiler makes
decision regarding selection of appropriate function to be called in response to function call at compile
time. This is because all the address information requires to call a function is known at compile time. It is
also known as early binding as decision of binding is made by the compiler at the earliest possible
moment. The compile time polymorphism is implemented in C++ using function overloading and
operator overloading. In both cases, the compiler has all the information about the data type and number
of arguments needed, so it can select the appropriate function at compile time.
The advantage of static binding is its efficiency, as it often requires less memory and function calls are
faster. Its disadvantage is the lack of flexibility.
Runtime Polymorphism
In runtime polymorphism, dynamic binding is performed. In dynamic binding, the decision regarding the
selection of appropriate function to be called is made by the compiler at run time and not at compile time.
This is because the information pertaining to the selection of the appropriate function definition
corresponding to a function a call is only known at run time. It is also known as late binding as the
compiler delays the binding decision until run time. In C++, the runtime polymorphism is implemented
using virtual functions.
The advantage of dynamic binding is that it allows greater flexibility by enabling user to create class
libraries that can be reused and extended as per requirements. It also provides a common interface in the
base class for performing multiple tasks whose implementation is present in the derived classes. The main
disadvantage of dynamic binding is that there is little loss of execution speed, as compiler will have to
perform certain overheads at run time.

When virtual functions are used for implementing run time polymorphism, there are certain rules to be
followed:

• When a virtual function in a base class is created, there must be a definition of the virtual function
in the base class even base class version of the function is never actually called.

• They cannot be static members
• They can be a friend function to another class
• They are accessed using object pointers.
• A base pointer can server as a pointer to a derived object since it is type-compatible whereas a

derived object pointer variable cannot serve as a pointer to base objects.
• Its prototype in a base class and derived class must be identical for the virtual function to work

properly.
• The class cannot have virtual constructors, but can have virtual destructor.

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 15

• To realize the potential benefits of virtual functions supporting runtime polymorphism, they
should be declared in the public section of a class.

 Q.8 a. What is Class Template? Explain the syntax of a class template with suitable

examples. (8)
Answer:
It is possible to write class templates, so that a class can have members that use template parameters as
types. For example:

template <class T>
class mypair {
 T values [2];
 public:
 mypair (T first, T second)
 {
 values[0]=first;
 values[1]=second;
 }
};

This class defination serves to store two elements of any valid type. For example, if we wanted to declare
an object of this class to store two integer values of type int with the values 115 and 36 we would write:

mypair<int> myobject (115, 36);
This same class would also be used to create an object to store any other type:

mypair<double> myfloats (3.0, 2.18);

The only member function in the above class template has been defined inline within the class declaration
itself.

// class templates
#include <iostream>
using namespace std;

template <class T>
class mypair {
 T a, b;
 public:
 mypair (T first, T second) {

a=first;
b=second;

}
T getmax ();

};

template <class T>
T mypair<T>::getmax (){
 T retval;

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 16

 retval = a>b? a : b;
 return retval;
}

int main () {
 mypair <int> myobject (100, 75);
 cout << myobject.getmax();
 return 0;
}

 b. Create a class number to store an integer number and the member function

read() to read a number from console and the member function div() to
perform division operations. It raises exception if an attempt is made to
perform divide-by-zero operation. It has an empty class name DIVIDE used as
the throw’s expression-id.
 Write a C++ program to use these classes to illustrate the mechanism for
detecting errors, raising exceptions, and handling such exceptions. (8)

Answer:
#include <iostream.h>
class number {
 private :
 int num;
 public :
 void read() { // read number from keyboard
 cin >> num;
 }
 class DIVIDE {}; // abstract class used in exceptions

 int div(number num2) {

if (num2.num == 0) // check for zero division if yes raise exception
 throw DIVIDE();
else
 return num / num2.num; // compute and return the result

 }
};

int main() {

number num1, num2;
int result;

 cout << “Enter First Number : ”;
 num1.read;
 cout << “Enter Second Number: ”;
 num2.read();

 try {
 cout << “Trying division operation”;
 result = num1.div(num2);

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 17

 cout << result << endl;
 } catch (number::DIVIDE) { // exception handler block
 cout << “Exception : Divide-By-Zero”;
 return 1;
 }
 cout << “No Exception generated:”
 return 0;
}
 Q.9 a. Explain the following: (3×3)

 (i) ifstream
 (ii) ofstream
 (iii) fstream
Answer:

(i) ifstream
The header file ifstream.h is a derived class from the base class of istream and is used to read a stream
of objects from a file.
For example, the following program segment shows how a file is opened to read a class of stream
objects from a specified file.

#include <fstream.h>
void main() {
 ifstream infile;
 infile.open(“file_name”);

 ……………
 ……………
}

(ii) ofstream
The header file ofstream.h is derived from the base class of ostream and is used to write a stream of
objects in a file.
For example, the following program segment shows how a file is opened to write a class of stream
objects on a specified file.

#include <fstream.h>
void main() {
 ofstream outfile;
 outfile.open(“file_name”);

 ……………
 ……………
}

(iii) fstream
The header file fstream.h is a derived class from the base class of iostream and is used for both
reading and writing a stream of objects on a file. The statement #include<fstream.h> automatically
includes the header file iostream.h

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 18

For example, the following program segment shows how a file is opened for both reading and writing
a class of stream objects from a specified file.

#include <fstream.h>
void main() {
 fstream infile;
 infile.open(“file_name” , ios::in || ios::out);

 ……………
 ……………
}

When a file is opened for both reading and writing, the I/O streams keep track of two file pointers, one for
input operation and other for output operation.

 b. Write a program to open a file whose name is passed as command line

argument. (7)
Answer:
include<iostream.h>
include<conio.h>
include<fstream.h>
include<process.h>

void main(int argc,char *argv[]){

if(argc < 2){
 cerr<<"Illegal Usage Correct Usage: size <file-name>";
 exit(1);
}
ifstream in(argv[1],ios::in|ios::binary);

if(!in){

 cerr<<"Error opening the input file";
 exit(1);

}
long int size=0;
char ch;
while(!in.eof()){

 in>>ch;
 size++;

}
cout<<"The size of file "<<argv[1]<<" is "<<size<<" bytes.";

}

TEXT BOOK

AC55/AT55/AC105/AT105
OBJECT ORIENTED PROGRAMMING WITH C++

DEC 2015

© IETE 19

I. C++ and Object-Oriented Programming Paradigm, Debasish Jana, Second Edition, PHI,
2005 (TB-I:)

