AC109/AT109 UNIX & SHELL PROGRMMING | DEC 2015

Q.2 a. Explain the structure of UNIX file system. (8)
Answer:

Unix uses a hierarchical file system structure, much like an upside-down tree, with root (/) at the
base of the file system and all other directories spreading from there.

A UNIX file system is a collection of files and directories that has the following properties:

. It has a root directory (/) that contains other files and directories.

. Each file or directory is uniquely identified by its name, the directory in which it
resides, and a unique identifier, typically called an inode.

. By convention, the root directory has an inode number of 2 and the lost+found

directory has an inode number of 3. Inode numbers 0 and 1 are not used. File inode
numbers can be seen by specifying the -i option to Is command.

. It is self contained. There are no dependencies between one file system and any
other.

b. What is the difference between internal and external commands? (4+4)
Answer:
¥ Since 15 is a program or file having an imndependent existence in the /bin directory (or fusr/bin),
tis branded as an external command. Most commands are external in nature, but there are some
shich are not really found anywhere, and some which are normally not executed even if thev ar
m one of the dircctories St ified by PATH. Take for instance the echo command:
§ type echo
echo is a shell bufltin
echo isn't an cxternal command in the sense that, when you type echo, the shell won't look in its
PATH 1o locate it (even af it 15 there 1n fbin). Rather, it will execute it from 1its own sct of bmli-in
commiands that are not stored as separate files. These built-in commands, of which eche is a member,
are known as intermal commands

tou inust have noted thar it's the shell thar acrually deoes all this work. This program starts running
for you when you log in, and dies when you log out. The shell 1s an external command with a
difference; it possesses its own set of internal commands. So ifa command exists both as an internal
command -_IZ- the shell as well as an cxternal one (0 'bin Of I_.'u5|-_ bin), the shell will accord |I.J}'
priority to its own internal command of the same name.

This is exactly the case with echo, which is also found in /bin, but rarely ever executed because the
shell tnakes sure thatthe internal echo command takes precedence over the external. We'll take up
the shell in detail later

Q.3 a. Which command is used to change permission associated to File/Directories?
List and explain methods to change permission of File/Directories? List and
explain methods to change permission of File/Directories. (8)
Answer:
To change file or directory permissions, you use the chmod (change mode) command. There are
two ways to use chmod: symbolic mode and absolute mode.

$ls -1 testfile

© IETE 1

AC109/AT109 UNIX & SHELL PROGRMMING | DEC 2015

-rTWXIrwxr-- 1

$chmod o+wx testfile

$ls -l testfile

-rwxrwxrwx 1 amrood users 1024 Nov 2 00:10 testfile
Using chmod with Absolute Permissions:

The second way to modify permissions with the chmod command is to use a number to specify
each set of permissions for the file.

Each permission is assigned a value, as the following table shows, and the total of each set of
permissions provides a number for that set.

Then each example chmod command from the preceding table is run on testfile, followed by Is -l
$ chmod 755 testfile

$ls -1 testfile

-rwxr-xr-x 1 amrood users 1024 Nov 2 00:10 testfile

Changing Owners and Groups:

While creating an account on Unix, it assigns a owner ID and a group ID to each user. All the
permissions mentioned above are also assigned based on Owner and Groups.

Two commands are available to change the owner and the group of files:

1. chown: The chown command stands for "change owner" and is used to change the
owner of a file.
2. chgrp: The chgrp command stands for "change group™ and is used to change the

group of a file.

Changing Group Ownership:
The chrgp command changes the group ownership of a file. The basic syntax is as follows:
$ chgrp group filelist

The value of group can be the name of a group on the system or the group ID (GID) of a group
on the system.

b. How will you accomplish the following in vi? (8)
(i) Combine two consecutive lines into one.
(i) Display line numbers.
(iii) Display the file in read only mode.
(iv) Save the file and quit vi.
Answer:

© IETE 2

AC109/AT109 UNIX & SHELL PROGRMMING | DEC 2015

1) When you want to merge two lines into one, position the cursor anywhere on the first line, and press
J to join the two lines.

ii) zset number
iii). fileinread-only mode, enter either:

$ vi -R file, $ view file

iv) :wq
Q.4 a. Write a Shell script to find the total and average of four numbers to be read
from the user with respect to Unix. (8)
Answer:
echo Enter four integers with space between
readabcd

sum="expr $a + $b + $c + $d"
avg="expr $sum/ 4’

echo Sum=%$sum

echo Average=$avg.$dec

b. Define the following terms: (8)
(i) file
(i) process
(iii) Multi-user
(iv) Multitasking
Answer:

i) Unix does not impose or provide any internal file structure. This implies that from the point of
view of the operating system, there is only one file type. The structure and interpretation thereof
is entirely dependent on how the file is interpreted by software. Unix does however have some
special files. These special files can be identified by the Is -l command which displays the type of
the file in the first alphabetic letter of the file system permissions field. A normal (regular) file is
indicated by a hyphen-minus '-'.

i) When you execute a program on your UNIX system, the system creates a special environment
for that program. This environment contains everything needed for the system to run the program
as if no other program were running on the system. Whenever you issue a command in UNIX, it
creates, or starts, a new process. When you tried out the Is command to list directory contents,
you started a process. A process, in simple terms, is an instance of a running program. The
operating system tracks processes through a five digit ID number known as the pid or process ID
. Each process in the system has a unique pid.

i) multi-user more than one user can use the machine at a time supported via terminals (serial or
network connection)

iv) multi-tasking more than one program can be run at a time.

© IETE 3

http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Computer_file
http://en.wikipedia.org/wiki/File_system_permissions
http://en.wikipedia.org/wiki/Hyphen-minus

AC109/AT109 UNIX & SHELL PROGRMMING | DEC 2015
Q.5 a. Explain the three timestamps associated with a file. (3+3+3)
Answer:

A UNIX file has three oime stanps associated with ic In this section, we'll be discussing st
them (the frst two):

s Time of last file modificanon Shown by 1s =]
o Time of last access Shown by 1s -1u
s Time of last inode modification Shown by 15 -1¢

Whenever you write to a file, the time of last modification 1s updated in the file's inode. A ding
can be modified by changing its entries—by creating, removing and renaming files in the di y
Note that changing a file's contents only changes its last modification time but not that o
directory. 1s -1 displays the last modification nme,

Hiile also has an access ime, i.e., the last time someone read, wrote or executed the file. This ime
{iedistinctly different from the modification time that gets set only when the contents of the file are
fthanged. For a dircctory, the access time is changed by a read operation only; creating or removing
falile or doing a “ed” 1o a directory doesn’t change its access time. The access ume is displayed
fwhen 15 -1 is combined with the -u aption.

Exen though 1s -1 and Is -1u show the time of last modification and aceess, respectively, the sorn
forder remains standard, i.e. ASCIL However, when you add the -t option to -1 or -1y, the files are
:!'il:luaﬂ!.r displayed in order of the respective time stamps:

[ls-1t Diusplays Listing in arder of their modification time

Els -Tut Displays lisung in order of their access time

f

Hnowledge of a file's modification and access times is extremely important for the system
Hdministrator. Many of the tools used by him look at these time stamps to decide whether a partcular
file wall participate in a backup or not. A file is often incorrectly stamped when extracting it {using
fn option) from a backup with a file restoration utility (like tar or epio). If that has happened to

fou, you can use touch o reset the times to.certain convenient values without actually madifying
foraccessing the file. touch is discussed next.

11.6.1 touch: Changing the Time Stamps

s has just been discussed, you may sometimes need to set the modification and access tmes to
predefined values. The touch command changes these times, and is used in the following manner:

touch options cxpression filename(s)

When touch is used without aptions or expresiion, both times are set to the current time. The file is
treated 1f it doesn’t exist:

touch emp.Tst Creates file if it docin’t exist
When touch is used without options but with expresdon, it changes both times, The expression

gonsists of an eight-digit number using the format MMDDhbbmem (month, day, hour and minute).
Dptionally, you can suffix a two- or four-digit year string;

§ touch 03161430 emp.lst ; 15 -1 emp.lst

TW=r==r== 1 kumar metal 870 Mar 16 14:30 emp.lst
§1s -lu emp.lst
~rW-r=-r-- 1 kumar metal 870 Mar 16 14:30 emp.lst

lisalsa p::r.'-'ecihlc to change the two times indix’itiu:l”p. The -mand -a options ch:lngc the modification
ind access times, respectively:

§ touch -m 02281030 emp.lst ; 1s -1 emp.lst

arw-r--r-- 1 kumar metal 870 Feb 28 10:30 emp.lst
§ touch -a 01261650 emp.lst ; 1s -Tu emp.lst
“W-T--r-- 1 kumar metal 870 Jan 26 16:50 emp.lst

© IETE

AC109/AT109 UNIX & SHELL PROGRMMING | DEC 2015

T he system ad minustrator often nses touch to “touch up these times so a hle may be included ino
excluded from an rrcremental ba feeep (that backs up only .]':.l[;_:_: d files), The find command can
then be used to locate files that have « ||.||l;;'-'= or have been accessed after the time set by toudh
find 15 the last command we discuss in this chapter and s taken up next, _
b. Describe the content of /etc/passwd. (7)
Answer:

letc/passwd file is used to keep track of every registered user that has access to a system.
The /etc/passwd file is a colon-separated file that contains the following information:

. User name

. Encrypted password

. User ID number (UID)

. User's group ID number (GID)
. Full name of the user (GECOS)
. User home directory

. Login shell

Q.6 a. What do these commands do? (8)
(i) grepabc
(it) grep <HTML> foo
(iii) grep*foo
(iv) grep “letter” abc
Answer:
I. searches for any lines in files b and c that contains the character "a"
ii. error occurs because it thinks you're redirecting "<" and ">"; correct: grep "\<HTML\>" foo
iii. searches for any lines in the file foo that contains zero or more of the character "*"
iv. searches for any lines in the file xyz that contains "letter" word

b. Explain with examples use of + and ? in grep command. (4+4)
Answer:

© IETE 5

AC109/AT109 UNIX & SHELL PROGRMMING | DEC 2015

. The ERE set includes two special characters, + and 2. They are often used in place of the ¥l
restrict the matching scope. They signify the following:

+ — Matches one or more occurrences of the previvus character.
? — Matches zero or one occurrence of the previous character,
In both cases, the emphasis is on the previous character. This means that b+ matches b, bb, bbb, e

but unlike b*, it doesn’t match nothing. The expression b? matches either a single instance ofhor
nothing. These characters restrict the scope of match as compared to the *.]

Using this extended set, you can now have a different regular expression for matching Agarwal and
aggarwal. Nouw that the character g eccurs only once or twice. So, 997 now restricts the expansion’
to one or two g9s only. This time we necd to use grep's -E option (o use an ERE:

{ grep -E "[aAlgg?arwal® enp.lst
2476]anil aggarwal Imanager |[sales |01/05/59 5000
3564 |sudhir Agarwal |executive |personnel |06/07/47 17500

The +is a pretty useful character too, When you are looking for a muluword string like #incl e

expression #include +<stdio.h> o match them all. This expression marches the following pater ‘.'
#include =stdio.h> finclude <stdio.h> #include <stdio.h>
And 1f you are not sure whether there's a space hetween # and include, include the ? in the expression
f Tinclude +<stdio.h>

But there could be tabs here instead of spaces as well, so how does one handle them?

Q.7 a. Explain use of expr command. (8)
Answer:
¢ Bourne shell can check whether an integer is greater thin another, but it doesn't have any

nputing features at all. It has ta rely on the external expr command for that purpose. This
rand combincs two functions in one:

© IETE 6

AC109/AT109 UNIX & SHELL PROGRMMING | DEC 2015

s Performs arithmetic aperations on integers,

» Manipulates strings.

We'll use expr to perform both these functios, but with not-very-readable code when it comes o
string handling, If you arc using the Korn shell or Bash, you have better ways of handling thet
things (21.7), bt you must also understand the helplessness of Bourne. It's quite possible that you
have 1o debug someone else’s seript which contains expr. b

14.9.1 Computation
expr can perform the four basic arithmetic operations as well as the modulus (remainder) functione

£ 2=3 y=§ Multiple ascignments without a 5

§ expr 3 +5

B

$ expr $x - 3y

=2

$ expr 3 *§ Asterisk has to be ercaped

15

£ expr iy / Sx

1 Decimal portion truncated

S expr 13 5 5

3
The operand, be it +, -, * etc., must be enclosed on either side by whitespace. Observe tha d
multiplication operand (*) has to be escaped ro prevent the shell from interpreting ivas the filenang
metacharacter. Since expr can handle only integers, division yields only the integral par. L

expr 1s often us¢d with command substitution to assign a variable. For example, you can sita’
variable 2 to the sum of rwo numbers: 4
$ u=6 y=2 ; r="expr $x + $y°
§ echo 3z
8
Perhaps the most common use of expris in incrementing the value of a variable. All programming
languages have a shorthand method of doing that, and it is namral that UNTX should also have isows
§ x=5
§ x="expr $x + 1" This i5 the same as C's x+4

1 echo $x
6

If you are using the Korn shell or Bash, then you can turn to Section 21.5 for a discussion on the
let statement that both shells use to handle computation.

14.9.2 String Handling

Though expr's stning handling facilings arcn’t exactly elegant, Bourne shell users hardly have a|f:—;
choice, For mnnipula ting strings, expr uscs two cxpressions separated by a colon, The string ro be.
worked upon is placed on the left of the ;, and a regular expression is placed on its right. Depending
on the composition of the expression, expr can perform three important string funcuons:

i

© IETE 7

AC109/AT109 UNIX & SHELL PROGRMMING | DEC 2015

i Determine the length of the string.
rEntr.:rf a subsrring.

tLocate the position of a character in 2 stning.

wtgth of ¢ String - The length of a string is a relatively simple matter; the regular expression

fies toexpr that it has to print the pumber of charzorers maching the pavern, e, the
B

il of the entire siring:

% eipr "abcdefghijkl® ; .’ Space on either side of : required

& expr has counted the number of vecurrences of any character (. *), This feature 15 usetul in
Widiting data entry. Consider that you want to validate the name of a person accepted through
}i::,rlln;lrci so that it deesn’t exceed, say, 20 characters in length. The ollowing expr sequence
@ be quite useful for this task:
Wile echy "Enter your name: \c® ; do echo aftays retrrns trie
read name
if [“expr “"Sname” : '.*'" -gt 20] ; then

gche "Name too Teng"

else
break break fermimates @ loop

Fetni g @ Sudstring expr can cxtract a string enclosed by the escaped characters \[and V). If

Bepr "fstg” 'L A() Extracts last dwe haracters

ote the pattern group \ (.. \). This is the tagged regular expression (TRE) used by sed (13.71.3),
jtit is used here with a somewhat different meaning. It signifies that the first two characters in
flievitiie of $stg have to be ignored and two characters have to be extracted from the third character

beuting Fasition of a Character expr can also return the location of the first occurrence of a
gricter inside a string. To locate the position of the character d in the string value of $stg. vou
lave 1o count the number of characters which are notd ([~d]*), followed by a d:

3 stg=abcdefgh ; expr "$stg" : ‘[~d]*d’

Tuplicates same of the features of the test statement, and also uses the relatienal operators in
¢ samne way They are not pursued here because test is a buili-in feqture of the shell, and is
equently faster. The Korn shell and Bash have buile-in string handling facilities; they don't
expr, '

b. What is the exit status of a command? What is its normal value and in which
parameter is its value stored? (8)
Answer:
The exit status is an integer that represents the success or failure of a command. If has the value
0 when the command executes successfully and is stored in the parameter $?

Q.8 a. What is the use of following built in variables in awk? (8)
(i) NR
© IETE 8

AC109/AT109 UNIX & SHELL PROGRMMING

DEC 2015

(i) FS
(iii) NF
(iv) FILENAME
Answer:
awk has severatbuilt-in variables (Table 18.2). They are all assigned automatically, though itis als
possible for a user to reassign some of them. You have already used NR, which signifies the record
number of the current line. We'll now have a brief look at some of the other variables.

The FS Variable As stated elsewhere, awk uses a contiguous string of spaces as the defan
field delimiter. FS redefines this field separator, which in the sample database happens to be the
When used atall, it must occur in the BEGIN scetion so that the body of the program knows its value
before it starts processing: '

BEGIN { FS="|" }
This ts an alternative 1o the -F option which does the same lhing,

The OFS Variable When you used the print statement with comma-separated arguments,
cach argument was scparated from the other by a space. This is awk’s default output field separatog
and can be reassigned using the variable OFS in the BEGIN section: k

BEGIN { OFs="-" }

When you reassign this variable with a - (tilde), awk will use this character for delimiting the print
arguments, This is a useful variable for creating lines with delimited fields.

The NF Variable NF comes in quite handy for cleaning up a database of lines that dont

contain the right number of fields. By using it on a file, say empx. 1st, you can locate those lines not

having six fields, and which have creptin due to fanlty data entry:
$ awk 'BEGIN { Fs = "|" }

= NF 1= 6 {
> print "Record Mo ", NR, "has ", NF, " fields"}' empx.1st

g

feora No 6 has 4 fields
scord No 17 has 5 fields

EFILENAME variable FILENAME stores the name of the current file being processed. Like
Pipand sed, awk can also handle multiple filcaames in the command line. By default, awk deesn't
ithe filename, but you can instruct it to do so:

%4 < 4000 { print FILENAME, $0 |}

Function

Cumulative number of lines read
Tnpu! ﬁl’!ld Sfpﬂi‘ﬂtﬂr

Output field separator

Number of fields in current line
Current input file

Number of arguments in command line
List of arguments :

b. Explain in detail the simple awk filtering. (8)
Answer:

© IETE 9

AC109/AT109 UNIX & SHELL PROGRMMING | DEC 2015

a filter action is the most efficient way to limit its scope. In AWK scripts, the action specified by
such a conditional filter occurs only if the specified pattern matches the record in question.

The format for a conditional filter rule is as follows:
pattern { action }

The action here is a series of statements just like any other filter rule. The pattern can be blank
(in which case it matches every record), or it can contain any combination of regular expressions
or relational expressions. These two types of expressions are briefly explained in the following
sections.

Q.9 a. How do you double-space a file with perl? (8)
Answer:

Double space a file.
perl -pe '$\="\n"

This one-liner double spaces a file. There are three things to explain in this one-liner. The "-p"
and "-e" command line options, and the "$\" variable.

while (<>) {

your program goes here
} continue {

print or die "-p failed: $!\n";
}

This construct loops over all the input, executes your code and prints the value of "$_". This way
you can effectively modify all or some lines of input. The "$_" variable can be explained as an
anonymous variable that gets filled with the good stuff.

The "$\" variable is similar to ORS in Awk. It gets appended after every "print" operation.
Without any arguments "print" prints the contents of "$_" (the good stuff).

In this one-liner the code specified by "-e" is '$\="\n", thus the whole program looks like this:

while (<>) {

$\="\n";
} continue {

print or die "-p failed: $1\n";
}

There is actually no need to set "$\" to newline on each line. It was just the shortest possible one-
liner that double-spaced the file. Here are several others that do the same:

perl -pe 'BEGIN { $\="\n" }'

© IETE 10

AC109/AT109 UNIX & SHELL PROGRMMING | DEC 2015

This one sets the "$\" to newline just once before Perl does anything (BEGIN block gets
executed before everything else).

perl -pe'$_.="\n"
This one-liner is equivalent to:
while (<>) {
$ =% ."\n"
} continue {

print or die "-p failed: $!\n";
}

It appends another new-line at the end of each line, then prints it out.
The cleanest and coolest way to do it is probably use the substitution "s///" operator:
perl -pe 's/$/\n/'

It replaces the regular expression "$" that matches at the end of line with a newline, effectively
adding a newline at the end.

b. Explain the split and join functions available in perl? (4+4)
Answer:

© IETE 11

AC109/AT109 UNIX & SHELL PROGRMMING | DEC 2015

9.10 split: SPLITTING INTO A LIST OR ARRAY

Gl programmers using per! need 10 understand two impartant array handling functions—split
1Join. split breaks up a line or expression into fields. These fields arc assigned either o variables
an array. Here are the two syntaxes:

arl, Sear2, Svars.....) = split(/fsep/.otg) &

= split(/sep/ . s1g) :

_.-.' ttakes up to three arguments but is usually used with two. Tt splits the string stz on sep, but
tiesep can be a literal character or a regular expression (which could expand to multiple characters),
{1k optional, and in its absence, §_ is used as default. The fields resulting from the split are
gned either to the vaniables Seart, $ear2 and so on, or w the array Garr.

9.10.1 Splitting into Variables

now use the first syntactical form in our next program, 3_numbers.pl (Fig. 19.7), 0 assign
iee numbers, taken from the keyboard, to a set of variables.

understand how split breaks up the vaniable $numstring and assigns three new variables, let's
i this program twice:

3 3 numbers.p

Inter three numhers [Enter] Nothing entered

Hothing entered

—— et e S S, ===

#! fusr/bin/per

Script: 3_nunbers.pl - Splits a string on whitespace

L

print(*Enter three numbers: ®) :

chop($numstring = <5TDIN>) :

die("Nothing entered\n®) 1f ($rnumstring eq "") :

($f_number, $s number, $1 number) = split(/ /, $numﬁtring} s
print("The last. second and first numbers are ") ;.
print(*$1_number, $s_number and $f_number.\n*) ;

Fig. 19.7 3_numbers.p

© IETE 12

AC109/AT109 UNIX & SHELL PROGRMMING | DEC 2015

§ 3_numbers.pl
Enter three numbers: 123 345 567
The last, second and first numbers are 567, 345 and 123.

When the three numbers are entered, $numstring acquires the value 123 345 5674n, from wher
the newline is subsequently chopped off. split acts on this stnng using a single space as delimiter,
and breaks it up into three vaniables.
19.10.2 Splitting into an Array 2
What do you do whena line contains a large number of fields? In that case, it's better to split itinte
an array rather than variables. The following statement fills up the array @thislist:

Bthislist = split{f:f, ¥string) ;
$string is ofien the last line read, in which case we can replace it with §_ or rather, drop it altogether:

Bthislist = split{/:/) ; split aser §_ by default

In the ncxt program, repl.pl (Fig. 19.8), we print some specific ficlds from the sample davabis
with the last name shown before the first name. We need to use split twice—first on the | delimiter
and then again on the space that separates the first and last names. The program selects the ﬁmt
four lines and prints a total of the salary field for the selected lines.

The second splitwas used to enable the reversal of the first and last names, with a comma between
them. We also use the range operator (..) to print only the first four lines, and §. to print the
eurrent line number as serial number:

i repl.pl emp.lst

1 shukla, a.k. sales GO0
~2 sharma, jai production 7000
#!fusr/bin/per] -

Script: repl.pl - Uses split twice; prints with first and last name reversed
4

while (<>} {
chop;
@field = split {/\|/) 3 # §_ is used by default
if (1..4) § # Lines 1 to 4

$dept = §field[3] ; Sname = $Ffield[1] ; $salary = §field[5] ;
($f name, $1 name) = split(/ +/, ihame];

$name = 31 _name . *, * . $f_name ; # Reusing $name
$totsal += $salary ;

printf{ "%3d %-20s %-11s %4d\n", §., $name, %dept, §salary) :

}

}
printf("%35s %5d\n", "Total Salary: ", $totsal) :

Fig. 19.8 repl.pl

© IETE 13

AC109/AT109 UNIX & SHELL PROGRMMING | DEC 2015

¥ chakrobarty, sumit marketing 6000
. 4 sengupta, barun personnel 7800
Total Salary: 26800

11t can also be used without an explicit assignment, in which case it populates the built-in argay, 8
teplit (f:/) s Filis ap the array @_

g1t gets shortened further. The array @_has the clements §_[0], §_[1] and so forth. You should
‘tused o this form also as you'll see it used in many programs.

Note: When the return value of split is not explicitiy assigned to variables or an array, the built-in array,
‘B is automatically assigned. Also, when split is used with the null string (//) as delimiter, @ stores

The join function acts in an opposite manner to split. Tt combines its arguments into a single
stang and uses the delimiter as the first argument. The remaining arguments could be either an
amay name or a list of variables or strings to be joined. This is haw you provide a space after each day:
weekstring = join(® *, Bweek array) ;

Eweakstring = jein(™ *, "Mon™, *Tue", "Hed", “Thu", "Fri", “"Sat", "Sun“) ;

. print §weekstring ;

[ither statement should produce this autput:

Mon Tue Waed Thu Fri Sat Sum

split and join oficn go together. The next program, rep2.pl (Fig. 19.9), splits each line of our
sample database on the |, addsa century prefix to the date and then joins all fields back. The script
s well documented to need elaboration.

Let's now print the first two lines of our transformed darabase by ranning the program:

§ repZ.pl emp.1st | head -n 2
2233|a.k. shukla |g.m. |sales ILE}IEHHEE E000
%76 | jai sharma |director |production|12/03/1250|7000

{ #1/usr/bin/perl -n

§ Script: rep2.pl - Uppercases the name and adds cenlury prefix to the date
4
@ine = split(/\|/) ; ~# §_ is assumed
(§day, Smonth, Syear) = split(/\//, $1ine[8]); # Splits date field

| §year = “19* . §year ; # Adds century prefix

| §1ine[4] = join(*"\/", $day, $month, $year); # Rebuilds date field
$line = join("\|", ®line); # Rebuilds line
print $line; i

Fig. 19.9 rep2.pl
Joining on a specified delimiter has comumon applications in everyday programming. Even though
we used join on a specific delimiter in our examples, the next section uses join withoutany delimier
to perform a very uscful task. =7

© IETE 14

AC109/AT109 UNIX & SHELL PROGRMMING | DEC 2015

[- 7 (i i
CODE Ac 1nA / AT 109 SUBJECT U_._w. ot K \»-5_,.-‘_.- 3 (\
&]\’i'nrinn}; Scheme) | N A _
il k . - . —fa I AT, APIA_
L“" P E& Laa By Lt.t L i T _,r! LA ‘._.,L\.; -l\Jﬁ'- LaA L LTy l (
t . f! 'h"'" l".&""i' \'\. ¥ | "..'l
Pttt | PR . .l TV LY e A S s W
6. % ,{Lf‘,';,éz'.}%..t.f . \ T
’ | Boald,
- : f Pape
oo il :}' _ o Condenis j"w:'[
| Q.2 N
[}

!
|
|

" I
| bh. o ™ :l.x.l""l‘ L

F
;
|
E
Ei
I
1
i
|
E|
!
f

1 foun. panll
0. -L'\, '{_’f". Al s i‘.-'_.i \. [\ &
J v

MODERATIONT

© IETE 15

AC109/AT109 UNIX & SHELL PROGRMMING | DEC 2015

WobERATIONT

i
{U—H a ':t-. ﬂ1k1 .H-"\. .’:-_\EF_'. .1 A 'L_._ ?—1 \ Jl v L_"‘l _. lf_—__ B I -
] \.a
| |
i
! b. o
55 s s s e S S T i "
I
b
HDDERFINN 3
T R == =R e == .._._‘L_sr-..,,.__._. ¥ =SS
s b AN \'\-:‘-
TEXT BOOK
I UNIX Concepts and Applications, 4™ Edition, Sumitabha Das, Tata McGraw Hill, 2008

© IETE 16

	Using chmod with Absolute Permissions:
	Changing Owners and Groups:
	Changing Group Ownership:

